NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N1510

NAFO SCR Doc. 88/67

SCIENTIFIC COUNCIL MEETING - JUNE 1988

Modal Analysis for Davis Strait Shrimp Samples

by

D. M. Carlsson, D. G. Parsons and L. Savard

INTRODUCTION

In January 1987, the Scientific Council concluded that some experts on shrimp should meet at some time in June 1987 to analyse data from West Greenland shrimp samples (NAFO, 1987). In response to that directive and in advance of a special meeting on shrimp ageing, scientists from Canada and Greenland analysed data from a number of years for age composition. This paper presents a brief overview of those analyses and a brief discussion on problems of interpretation.

MATERIALS AND METHODS

Shrimp samples from selected stations from the Greenland shrimp research surveys in the Davis Strait (NAFO Div. OA, IA, IB and IC - Fig. 1) in July-August 1983 to 1986 were analysed for age composition. Oblique carapace lengths (Rasmussen, 1953) were measured to the nearest 0.1 mm using Vernier calipers and subsequently combined to 0.5 mm. Shrimp were separated into male and female components based on the characteristics of the endoped of the first pleopod (Rasmussen, 1953). Females were further separated into primiparous (first time spawners) and multiparous (spawned previously) groups based on the condition of the sternal spiens (McCrary, 1971). Modal analyses (Macdonald and Pitcher, 1979) were performed on male length distributions only, to obtain estimates of the mean for each normal component.

Modal analysis were conducted by two of the authors independently. Results were compared and tabulated by year.

RESULTS

Results of the independent analysis show that there was good agreement between the two (Table 1). Results were virtually identical in several instances and in cases where differences occurred, they were related to problems in the interpretation of the tails of the distribution or where overlapping was severe.

Seven components were identified with means at roughly 7, 10-12, 13-14, 15-17, 28-19.5, 20-22 and greater than 22 mm, as illustrated in Table 2. Although the seven modes were not evident in all samples, when summarized for all years, some consistency is evident (Fig. 2). The plot does not show any trend in mean size related to latitude (Fig. 1).

DISCUSSION

The method of modal analysis is very sensitive to the number of components selected at the outset. Despite this, the agreement achieved between the individuals is noteworthy. However, at this point, it is uncertain whether or not the modes represent year-classes, given that there are no other data to support these conclusions. In an attempt to resolve these difficulties, it would be appropriate to investigate the parameters associated with the estimates (standard deviations, proportions), analyse further samples from areas where individual size-groups were prominent and attempt to follow modal progression over time.

Sample	Analysis			Analysis			Analysis	
защрте	A	в	Sample	A	B	Sample	Ā	В
83-218		18.51	84+220	15.90	14.87	85-220	17.25	17.27
		20.09		18.00	18 / 2		20.47	20.47
	21.27	21.83		19.41	10.42		00 07	
83-236		13 08	94-217	15 10	16 16	85-231	20.37	20.38
00 200	14.88	14.95	04 217	18.60	18.58		20.09	23.74
	18.14	17.97				85-236	18.70	18.63
	20.58	20.23	84-218	15.92	15.92		21.38	21.32
		21.04		18.37	18.19			
02-260		12 02		20.62	19.47	86-203	18 21	18 21
03-240	13.45	12.97			23.61	00 205	21.91	21.77
	16.15	16.28						
	18.63	18.47	84-216	15.66	15.60	86-216	13.59	13.49
	01 /5	19.63		18.82	18.78		16.63	16.64
	21.65	21,64		22,22	22.24		19.47	19.61
83-245	11.89	11.89	84-223	14.06	14.03	86-217	16.78	17.99
	16.47	16.40		18.83	19.02		18.34	
	18,26	18.25		21.13	21.18		20.48	20.79
	20.80	20.85	0/ 000			94-219		17 70
02 202	13 53	13 51	84-222	15.68	17 40	00-210	20.34	20.92
00-200	17 66	17.67		20.87	21.22		21.08	20172
	20.15	20.16		2010,				
	22.59	22.59	84-229	13.91	13,98	86-222	19.38	
				18.20	18.25		21.22	21.47
83-234	18.80	18.70		21.94	21.94		22.98	23.35
	21.02	21.22	84-234	17 54		86-234	20.80	20.75
	22.01	23.10	04 234	19.22	19.00		22.60	22.62
83-216		11.62		21.24	21.48		18.46	17.63
	15.70	15.70		23.05			21.60	21.41
	19.39	19.26	97 000	10.01	10 60	86-231	18.49	18.47
	22.00	21./4	84-230	21 16	21 15		21.79	21.79
83-217	12.01	12.00		22.85	22.83	86 000	12.05	10 57
	16.33	16.33				86-220	15.85	16.50
	19.33	19.34	84-236	14,90	15.34		19.19	19.27
	21.96	22.00		17.43	17.47		21.21	21.51
83-221		7 03		20.42	20.44			
83-220	10,46	10.43	84-240	15.98	15.96	86-221	11.70	11.08
	14.78	14.73		19,53	19.52			15.50
	18.57	18.57	84-245	10 73	10.73	86-223	16.89	18.42
		20.52		14.40	14.38		21.49	21.91
	16.88	16.87		18.68	18.77		22,58	
	19.24	19.23		21.03	21.38	86-229	16.97	15.65
	21,15	21.09				00 117	19.28	19.73
83-223	14.34		85-203		13.76		21,58	21.73
05 225	18.55			18.71	19,19	96 007	15 (7	15 (0
	20.95			21.58	21.74	00-237	13.67	19.53
00 00/		10 / 0	85-216	12 57	1.9 51		20.51	19.55
83-234		10.43	00-210	15.25	13.31		22,11	21.70
		15.58	I	16.98	17 17			
	16.64	17.68	F	18.26	1/.14	86-245	10.07	15.47
	21 10	19.39		19,38			20.29	22.48
	41,10	21.51		21.01	21.77		2012)	22.40
		23.11	85-217	16.77	16.66	86-240	13.44	13.82
83-229		12.17		19.66	19.62		15.68	
	14.74	14.71					18,39	18.43
		19.30	85-218	20.40	20,40		20,33	
	21.21	21.49		22.35	22.33	86-236	7.70	
<u> </u>		23.13	85-234	19.33	19.35		11,39	11.39
84-203	16.80	16.80		22.03	22,03		20.26	20.27
	18.69	18.69	85-223	18.88	•			-0.27
	21.09	21.09		20.31	20.35	86-230	18,20	18.15
84-221	15,05	14.53	I	21.91	22,20		20,95	22.10
	17,94	17.84					22.77	
	19.49							

Table 1. Results (mean carapace lengths) of independent modal analyses of Davis Strait shrimp samples.

/

.

ı.

Sample	<u> </u>		Comp	onent		2	
NO.		2	<u>ل</u>	4		. 0	
			1983	-			
221	7.0	10.4		14.7	18.6	20.5	
216		11.6		15.7	19.3	21.8	
217		12.0		16.3	19.3	22.0	
245		11.9		16.6	18.5	20.8	
236				14.9	18.1	20.4	
223				14.3	18.6	21.0	•
234	,	10.0	÷	· 1/` 7	18.8	21.0	23.0
203		12.2	13.5	14.7	19.3	20.2	22.
240			13.5	16.2	18.5	21.6	
			1984				
245		10.7	14.4		18.7	21.1	•
229		r	13.9		18.2	21.9	
203		· - · .	14.0	16.8	18.7	21.1	
222				15.7	17.4	21.0	
236				15.1	17.4	20.4	
221				16.0	18.0	20.0	
220				15.5	18.2	19.4	
217				15.2	18.6		
216				15.6	18.8		22.2
234		, i i		17.5	19.1	21.4	23.0
230					19.7	21.2	22.8
			. <u>1985</u>				
203			13.8	15 16	18.9	21.6	
217			13.5	16.7	19.6	21	
220	,			17.3		20.5	~ ~ ~
223					18.9	20.3	22.0
231						20.4	23.7
234				·	19.3		22.0
					10.7		
236	. '-	11.4	1986	15.9		203	
221		11.7		15.4		20.9	
240			13.6	15.7	18.4	21.0	
216			13.8	16.7	19.3	21.4	
229			13.0	15.7	19.5	21.7	
245				15.5	19.7	22.5	
237				15.5	19.5	21.7	
218				10.0	17.8	20.9	
203					18.3	21.9	
234					18.0	21.5	
223					18.5	21.8 21.9	
230					18.2	21.0	22.8
222					19.4	21.4	23.3
234						20.8	22.6

.

.

2

Table 2. Summary of modal analysis by year (means indicated).

Fig. 2. Average mean carapace lengths of shrimp from sampling stations in Davis Strait, 1983-86.

1

2