NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

.....

Fisheries Organization

Serial No. N1518

NAFO SCR Doc. 88/75

SCIENTIFIC COUNCIL MEETING - JUNE 1988

Report of the 1987 Ad Hoc Working Group for the Assessment of the Cod

Stock in Subdivision 3Ps

Ъу

Anon.

 Opening - appointment of rapporteurs - adoption of agenda plan of work

The Working Group met at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada during May 28-30, 1987 to consider the status of the cod stock in Subdivision 3Ps and matters related to its assessment. The agenda comprises Appendix 1.

Scientists from Canada and France attended the meeting and Mr. W.R. Bowering acted as Chairman. The list of participants comprises Appendix 2.

List of Contents

	Page
1.	Openingl
2.	Stock Definition
	2.1 Tagging
3.	Assessment of Cod in Subdivision 3Ps
	3.1 Fisheries
4.	Assessment parameters 9 4.1 Partial recruitment 9 4.2 Cohort analysis 9 4.3 Fishing mortality in 1986 9 4.4 Recruitment 10 4.5 Yield per recruit 10
5.	Projection of Stock Biomass (3+) and Catch Levels at Various Options as Required10
6.	Summary12

2. Stock Definition (Doc. 1, 2, 3)

Recent information with respect to the relationships between cod in Subdiv. 3Ps and adjacent areas was examined.

2.1. Tagging

From a total of 3,190 cod tagged in March 1986 on Burgeo Bank (Fig. 1) in the northwest part of Subdiv. 3Ps (Fig. 2), there were 210 returns in the spring, summer and autumn of 1986. Forty percent of these returns came from Subdiv. 3Ps and 49% from Subdiv. 3Pn and Divisions 4RS. During the winter of 1987 most of the recaptures were from Subdiv. 3Pn, Burgeo Bank in Subdiv. 3Ps and St. George's Bay in Div. 4R.

During March 1986, 1,923 cod were tagged on the southeast slope of St. Pierre Bank. Of the 29 returns in 1986, 55% were from the tagging area and most of the remainder were reported from the neighbouring Grand Bank to the east. In the winter of 1987, most of the returns came from near the tagging area and along the southwest slope of the Grand Bank.

In March 1986, 1,341 cod were also tagged on the southern slope of Green Bank (strata 325 and 326 of the survey scheme, Fig. 3). Thirty-three percent of the 39 returns in 1986 were from the tagging area and 54% from the shallow part of the Grand Bank. In the winter of 1987, most of the recaptures reported were from the tagging area or along the southwestern slope of the Grand Bank.

In October 1980 and 1982, 2,471 cod were tagged in the shallow part of St. Pierre Bank in the area between $45^{\circ}30'N-45^{\circ}45'N$ and $55^{\circ}30'W-56^{\circ}00'W$. Up to November 1986, 85% of the returns were from Subdiv. 3Ps, and the remainder of the returns were mainly from the Green Bank. Recaptures in the fourth quarter (October December) were mainly near the tagging area.

The Working Group notes that the tagging results reviewed here do not take into account the influence of the different levels of fishing effort in the areas from which recaptures were reported. Further, it is not clear if the cod tagged at specific sites were representative of cod spawning in Subdiv. 3Ps or of cod spawning in other areas but present in Subdiv. 3Ps at that time.

In general, the recent tagging studies indicate that in winter cod in the northwest part of Subdiv. 3Ps include a portion of cod from the Gulf of St. Lawrence. In winter, also, cod in the south and southeast of the Subdivision include a portion of cod from the Grand Bank. These mixtures may be substantial but cannot be precisely quantified from the present data. Cod tagged in the autumn toward the centre of the Bank were recaptured mostly within the Subdivision.

2.2. Meristics

A sample of about 100 specimens was taken in winter 1987 from each of 3 areas (Rose Blanche bank in Subdiv. 3Pn, Burgeo Bank in the northwest of Subdiv. 3Ps and northern St. Pierre Bank). Two of the 6 meristic characters examined, mean number of rays in the second anal fin and mean number of vertebrae, indicated a significant difference between areas. The conclusion was that cod sampled from Burgeo Bank were different from the other two areas, but no evidence to support the proposition that cod from Rose Blanche and the northern part of St. Pierre Bank were different.

The Working Group notes that further analysis of such data including year-class differences would be helpful.

2.3. Nematodes as biological tags

The incidence of nematode worms in the fillets and napes (belly flaps) of the same samples of cod described under the meristics section, show an increasing prevalance of infestation from St. Pierre Bank to Rose Blanche Bank, with the Burgeo Bank nematode prevalence being intermediate. In all areas cod of ages 7 years and older were more heavily infested than those of age 3-6. The pattern of infestation is not inconsistent with the presence on Burgeo Bank of a mixture of cod from the Gulf of St. Lawrence and from St. Pierre Bank.

2.4. Growth

Age and growth information derived from independent samples taken from Burgeo Bank and St. Pierre Bank in 1986, and between those areas and Rose Blanche Bank in 1987 clearly indicated that the length-at-age pattern of cod on Burgeo Bank was intermediate between that of Rose Blanche Bank (Subdiv. 3Pn) and St. Pierre Bank (Subdiv. 3Ps).

2.5. Maturity at length

Values of the length at which 50% of cod were mature (males and females combined) were available for the period 1978-87 and showed that cod on Burgeo Bank matured at a smaller size than those of St. Pierre Bank except for 1979 when the values were similar. In 1986 the steep decline in the length at 50% maturity in the cod sample from Burgeo Bank may have implied a larger than usual influx of cod from the Gulf of St. Lawrence.

2.6. Conclusions

From the new material available and from consideration of previous studies, it would appear that cod in Subdiv. 3Ps comprise a stock. At the peripheries of the stock, in the northwest at Burgeo Bank and in the south and southeast parts of St. Pierre Bank, for example, there are clearly inter-relationships with other stocks. The extent of mixing cannot be defined precisely with present data. The imprecise nature of the boundary of this stock is not uncommon for cod stocks or, for stocks of other species.

3. Assessment of Cod Stock in Subdivision 3Ps

3.1. Fisheries (Doc. 1, 4, 7)

In the period, 1959-86, catches from the Subdiv. 3Ps have ranged from 84,000 t in 1961 to 27,000 t in 1978 (Table 1, Fig. 4). Up to 1976 fishing was dominated by Canada and Spain. The Canadian contribution was mainly due to inshore fleets fishing with cod-traps, gillnets, handlines and linetrawls (or longline) pratically all the year round but with higher catches in summer. Its overall catch averaged 25,500 t during this period. The highest catch of the Canadian offshore fleet was 8,700 t in 1971 but catches fluctuated generally between 2,000 and 4,000 t.

The Spanish fleet fishing in the area was composed of single and pair bottom trawlers but between 1964 and 1976 the latter accounted for the bulk of the catch. The fishing season extended usually from September to April but good catches also were made occasionally in May or August.

The other nations fishing in Subdiv. 3Ps were France, Portugal, UK, and the USSR. The catches of the latter appeared in the mid-sixties and reached a peak in 1968 with 15,500 t but declined afterwards to 2,000 to 4,000 t.

Since 1977 only Canada and France have prosecuted the fishery. In recent years catch restrictions have limited the offshore activities of the Canadian fleet, the catch of which averaged 2,400 t from 1977 to 1984. As a result of increased allocations, Canadian offshore catches rose in 1985 and 1986 to about 4,000 and 5,000 t. Inshore fleets, especially those fishing with cod-traps and gillnets have also increased their catch from 1982.

The French catches are recorded separately for the long distance freezer freezer fleet (metropolitan component) and for the Saint Pierre based fleets which land in the island. The SPM fleet is composed of medium size trawlers and of inshore boats fishing with handline between May and September. The French inshore catch decreased from about 3,500 t in early sixties to less than 400 t in 1986. During the same period the offshore fleet developed and its catch reached 14,000 t in 1986. In the most recent period this fleet fish almost all the year round but with decreased activity between June and September. The fishing season of the distant fleet (M) is concentrated between October to May; its recorded catches increased regularly from 1,500 t in 1976 to 12,000 t in 1986.

Two series of TACs are set separately by Canada and the EEC or France both including a share between Canada and France. Catches and TACs (000 t)

for the period 1976-1985 were as follows:

	1976	1977		1979	1980	1981	1982	1983	1984	1985
Advised TAC	47.5	32.5	25	25	28	30	33	33		41
Effective TAC	47.5		25	25	28	39	33	332	35.8 ²	44.62
Catch	37	32	27	33	38	39	34	38	37	511

1 Provisional data.

 2 Effective TAC is obtained by combining the Canadian portion (as established by Canada) of the advised TAC with the EEC recommended catch as given in EEC regulations.

3.2. Commercial Catch and Fishing Effort (Doc. 1, 6, 7)

Catch and effort (hours fished) data for Canada, France (SPM) Portugal . and Spain were available from ICNAF/NAFO Statistical Bulletins for the period 1959-84 with the exception of certain years for France (SPM). Data were also available for the French fleet for 1980 and 1983-86 and for Canada for 1985-86. Analyses using the multiplicative model were completed for two time periods, 1959-86 and 1977-86. The latter period was done separately to determine if the changes in the fishery since 1976, namely the reduction of catch and the exclusion of participants other than Canada and France, had resulted in a change in the pattern of catch rates.

Both series indicated strong seasonal trends with catch rates being highest in the winter months. Each series showed an increase from 1980-85 and a substantial decrease in 1986 (Fig. 5 & 6).

Catch rates by the France (metropolitan) fleet were available as catch per day. It was noted that these catch rates should be considered to be approximate. There was nevertheless a decline from a level of about 30 t/day in 1983 and 1984 to about 20-25 t/day in 1985 and 1986.

Catch rate information from the Canadian inshore fishery was available for the period 1980-86 for traps, gillnets, handlines and linetrawls, and for two vessel categories; less than 35 feet and 35-64 feet in length. The catch rate data are in the form of catch per purchase receipt. It is assumed that the amount of gear used per purchase receipt is constant.

In general, for vessels less than 35 feet, no trends were apparent in the catch rates for gillnet and handline while there may have been a slight decline in linetrawl. The catch rates for traps increased after 1982. The catch rate of vessels between 34 and 64 feet increased for trap and gillnet since 1981 and 1982 respectively and remained stable for handline and linetrawl for the period examined. Fishing effort (all inshore vessels and gears) as measured by the number of purchase receipts declined from 1980 to 1983 and then increased to 1986.

3.3. Research Vessel Surveys (Doc. 1, 5; 7)

Stratified random surveys have been conducted in Subdiv. 3Ps by France since 1978 and by Canada since 1972. The fishing gears used in the two series were different but the stratification scheme, method of sampling and analyses of results have been the same. The Canadian surveys were conducted in different months over the years. Since there are changes in the distribution of cod during the year, the abundance estimates were seasonally adjusted to correspond to February-March surveys by the use of monthly estimates corresponding to the pattern observed in the offshore commercial fishery. Surveys conducted by France have all taken place in February-March and there was therefore no need to adjust these abundance estimates for seasonal variation. From new material related to stock discrimination (see Section 2 above), it was concluded that areas of mixing with other stocks included the Burgeo. Bank area to the northwest and areas in the south and southeast portion of the Subdivision. The degree of intermixing could not be precisely defined but for some years might be substantial. It was not considered appropriate to analyze the survey results for the Subdivision with results from Burgeo Bank removed and to include at the same time results from the southern areas of mixing. There was no basis upon which to remove these southern areas as the boundaries of these areas are not very well known. The Working Group further notes that catch rates from the commercial fishery apply to the whole of the Subdivision. For these reasons, the survey results were analyzed for the Subdivision as a whole. In the previous assessment, completed by the Scientific Council of NAFO in June 1986, survey results for Burgeo Bank had been excluded.

A comparison of 9 tows made side by side by the research vessels <u>Cryos</u> and <u>W. Templeman</u> on February 28 - March 1, 1987 on St. Pierre Bank yielded preliminary indications that; 1) for cod under 45 cm, the <u>Cryos</u> is much more efficient than the <u>W. Templeman</u> for the smallest cod and more efficient for the larger cod within this group and 2) for cod of all lengths greater than 45 cm, the <u>Cryos</u> is more efficient than the <u>W. Templeman</u> by a factor of about 2. For cod of ages 6 and older (6+) it was therefore considered appropriate to combine the French and Canadian survey results. To derive a survey index of abundance for the period 1978-87, the catch per tow of age 6+ cod from the French and Canadian surveys was each normalized to its mean and then averaged (Table 3).

Results from the surveys are variable but show clearly an increasing trend over the 10 year period. In the French series the value for 1985 seems to be an underestimate since it is smaller by a factor of 4 or 5 than the values for 1984 and 1986. On the other hand, the value for 1981 in the Canadian series appears to be an overestimate since it is 5 times larger than the 1980 value and twice as large as the 1982 value. In the combined series, the values for these years, 1981 and 1985, remain inconsistent with values for adjacent years. In these two years, the catch per tow of year-classes fully susceptible to capture by the survey gear is not consistent with the regular decline in abundance expected. As an example, from the French survey, the text table that follows shows that for year-classes 1976-1979, the sharp drop in abundance in 1985 is not consistent with the abundance in succeeding years.

AGE	1984	1985	1986	1987
6	20.47	1,10		
7	6.03	2.02	10.13	
8	2:30	1.18	7.74	3.21
9		0.81	4.27	2.10
10			0.88	1.04
11				0.22

Similar inconsistences are present in the Canadian series with respect to 1981. In that case, important year-classes apparently increase sharply in abundance in 1981 and then decline sharply in 1982. The abundance indices for 1981 and 1985 are therefore considered anomalous.

3.4. Age Composition of the Catches by the Commercial Fishery (Doc. 1, 7)

The age composition of the catches in the Canadian and French fisheries in 1986 was derived from extensive sampling in both cases. The age compositions were similar with 5- and 6-year-old cod being dominant. The sum of products check, that is, calculated catch as compared with reported catch, was reasonable (less than 10% difference). Average weights at age were the average of the values provided from the Canadian and French sampling with the exception of age 10 which appeared anomalously low. The average weight at age 10 was therefore derived from Canadian sampling only as this estimate was consistent with values for previous years (Table 2.) The age composition for 1984 was recalculated to incorporate the values for the French fishery as provided at this meeting. Age compositions for the French fishery for the period 1978-1983 were available but could not be incorporated at this meeting. The values for this later period were, however, similar to the total age compositions used in previous years and these had included apparently reasonable estimates of the age compositions of the French catches for 1978-83. It is anticipated that these new data will be incorporated into the catch-at-age matrix before the next assessment.

4. Assessment Parameters

4.1. Partial recruitment (Relative fishing mortality pattern at age)

Preliminary estimates of partial recruitment at age in the fishery in 1986 were derived by iteration from historical cohort averages over the period 1978-83. These estimates were adjusted so that the abundance of recent year-classes at age 3 showed a correspondence between cohort analysis and survey results. Survey numbers were those from a combined index at age 2 and 3 for the same year-class from the French surveys. This survey index (Table 4) indicated a significant relationship (r^{2} -.87) with population numbers at age 3 from the cohort analysis for year-classes from 1975 to 1980 (Fig. 7). The average partial recruitment from 1979-83 and that adjusted to reconcile cohort year-class strength are as follows:

AGE	3	4	5	6	7	8	9	10	11	12	13	14
PR (AV.)	.02	.18	.52	.72	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
PR (Adjusted)	.01	.15	•45	.73	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

4.2. Cohort analysis

Catch and average weight data at age from the commercial fishery from 1959-86 (Table 2) were used in a cohort analysis. Natural mortality was assumed to be 0.20 and fishing mortality on the oldest age group (14) in each year was set equal to the total fishing mortality for the fully recruited age groups (7-11).

4.3. Fishing mortality in 1986

An age 6+ abundance index (Section 3) from Canadian and French surveys for the period 1978-86 was used to estimate fully recruiting fishing mortality in 1986 using an unweighted least squares regression analysis. The relationship, with the 1981 and 1985 values excluded, indicated that F1986 was between 0.40 and 0.50. Above this level the r² values decreased rapidly while at lower F's the difference between observed and predicted cohort abundance values (residuals) for the most recent years became larger (Table 5). Regressions of commercial catch rates on offshore exploitable biomass for the period 1977-86 were also attempted in order to estimate F1986. These relationships were not significant and there was little discrimination in r^2 values over a wide range of fishing mortalities (0.3-0.6). Generally, the trends observed in the CPUE index were similar to those observed in the age 6+ survey index (Fig. 8). The Working Group concluded that results of calibration using the survey index would not be inconsistent with trends observed in the commercial catch rate. Precise determination of F1986 within the calculated range was not possible and it was decided that an average (0.45) would be an appropriate estimate. Population numbers, average biomass and fishing mortalities from a cohort analysis at $F_t=0.45$ are shown in Tables 6. 7 and 8.

The partial recruitment pattern and the fully recruited fishing mortality of 0.45 resulted in fishing mortalities in 1986 as follows:

AGE	3	4	5	6	7 (and older)
F	.0045	.0675	.2025	.3285	.45

~ 6 -

4.4. Recruitment

Abundance estimates of ages 2 and 3 cod from Canadian and French research vessels surveys were examined as indicators of year-class strength. The objective of this examination was to determine the strength of the 1981-84 year-classes from the relationships between cohort and survey population estimates of the 1975-80 year-classes.

There was correspondence $(r^2=0.61)$ between age 2 and age 3 estimates from French surveys so these indices were normalized to their respective 1976-84 means and averaged to arrive at a single estimate of year-class strength (Table 4). The relationship of this index with corresponding abundance estimates for the 1975-80 year-classes from cohort analysis indicated a significant regression $(r^2=0.87)$. The survey index values for the 1981, 1982 and 1984 year-classes were larger than values observed in the relationship, **t** therefore, the size of these year-classes was assumed to be at least the size of the largest year-class in the relationship (100 million fish). The size of the 1983 year-class was estimated to be about 68 million fish (Fig. 9).

There was no clear relationship between the abundance of age 2 and age 3 cod for the same year-classes from Canadian surveys. For this reason, each of these indices was regressed with age 3 population abundance from cohort analysis. No significant relationships were observed and the Working Group decided it was most appropriate to use only the French survey estimates as indicators of year-class strength.

4.5. Yield per recruit

Values of F_{max} =.33 and F_{0+1} =0.20 were available from a yield per recruit analysis published in 1981. More recent values for this calculation were available except for reliable estimates of weight at ages from 15-20 years. It was therefore decided to use the 1981 values and attempt to derive more current estimates before the next assessment.

Projection of stock biomass (3+) and catch levels at various options as required

Projections of catch and biomass were made from the population at the beginning of 1987 established from the population at the beginning of 1986, the catch in 1986 and fishing mortalities in 1986 as described in the assessment section. The size of the 1984 year-class as 3-year-old cod in 1987 was estimated (Section 4) at 100 million. Average weights at age were taken as the average of values in 1984-86. The partial recruitment pattern was taken as the one which was applied in 1986 as adjusted to reconcile the sizes of the 1981-83 year-classes. These parameters (Table 9) were used to project catches and biomasses to 1989. In 1987 a catch of 60,000 t was assumed, the approximate total of the Canadian and French allocations as set by the respective management authorities. The geometric mean of the abundance of 3-year-old cod in the period 1959-86 was about 55 million and that value was used as the size of the 1985 and 1986 year-classes as 3-year-olds in 1988 and 1989. Projections of 1988 catches and biomasses at various levels of fishing mortality are shown in Fig. 10. For 1988 and 1989 the catches and biomasses (000 t) implied by the use of constant fishing mortality levels of $F_{0.1}$, F_{max} and F1986 were as follows:

		1987					1988			1989		1990
FISHING MORTALITY	SSB JAN, 1	CATCH	3+ av. BIOMASS	MANAGEMENT OPTIONS	SSB JAN.	1	CATCH	3+ AV. BIOMASS	SSB JAN. 1	CATCH	3+ av. Blomass	SSB JAN,
F-0.35	159	60	319	F _{0•1} =•18	187		37	333	234	45	363	273
				F _{max} =, 32	187	;	62	320	210	69	323	223
				F ₈₆ =.45	. 187		84	309	191	84	292	185

The Working Group notes that the average population biomass of cod of ages 3 years and older (3+) projected for 1987, 1988 and 1989 at about 300,000 t is well in excess of all biomasses previously observed. The highest value prior to 1984 was about 230,000 t in 1959 (Fig. 11). The Working Group was asked to provide advice for the catch level in 1987 but considers that it has not sufficient knowledge of the catch to date nor the management objective in mind for 1987 to provide such advice. Further, since the projected catch in 1989 already contains assumed abundance values for ages 3 and 4, projections beyond this year could be quite imprecise and therefore were not done.

6. Summary

Fishing mortality was at about the 0.5 level from 1959 to the early 1970s and rose to a peak of about 1:0 in 1974 and 1975. The level of fishing mortality since then has again been at about the 0.5 level. Population biomass of age 3 and older cod declined from a level of about 230,000 t in 1959 to a low of about 70,000 t in 1975. There was an increase to 1982. A very sharp increase in biomass is estimated since 1982 and the 1986 biomass was about 260,000 t. The increase from 1975 to 1982 was primarily due to the entrance of the relatively strong 1972-74 year-classes. The marked increase after 1982 is attributed to the very strong 1980 year-class and successive year-classes which have all been substantially greater than the long-term mean of 55 million.

The present size of the stock is apparently the highest since 1959. However the long-term potential and stability of the fisheries are dependent upon the level of recruitment which has shown large fluctuations over the period observed.

The Chairman expressed the sincere appreciation of the Working Group to Ms. Theresa Dugas and Ms. Dianne Geddes for the excellent secretarial and editorial support so generously given.

Appendix 1

Agenda

1. Opening-appointment of rapporteurs - adoption of agenda - plan of work

Stock definition

3. Assessment of cod stock in Subdivision 3Ps

- Projection of stock biomass (3+) and catch levels at various options as required
- 5. Other matters
- 6. Adoption of report
- 7. Adjournment

Appendix 2

List of Participants

J.W. Baird, Northwest Atlantic Fisheries Center, St. John's, NFLD., Canada J. Bertrand, IFREMER, Boulogue/Mer, France C.A. Bishop, Northwest Atlantic Fisheries Center, St. John's, NFLD., Canada

W.R. Bowering, Chairman, Northwest Atlantic Fisheries Center, St. John's, NFLD., Canada

A. Maucorps, IFREMER, Nantes, France

J.-C. Poulard, IFREMER, St. Pierre et Miquelon, France

R. Wells, Northwest Atlantic Fisheries Center, St. John's, NFLD., Canada

- 8 -

Table 1. Cod catches (t) from Subdivision 3Ps, 1959-86.

	CA	LN (N)		FRA	NCE				
YEAR	OFFSHORE	INSHORE INSHORE	CAN (M)	INSHORE	OFFSHORE	SPAIN	PORTUGAL	OTHER	TOTAL
1959	2,726	32,718	4,784	3,078	4,952	7,794	3,647	471	60,170
1960	1,780	40,059	5,095	3,424	2,670	17,223	262	2,123	72,636
1961	2,167	32,506	3,883	3,793	11,837	21,015	4,985	3,434	83,620
1962	1,176	29,888	1,474	2,171	4,208	10,289	1,873	1,560	52,639
1963	1,099	30,447	331	1,112	969	10,826	209	6,828	51,821
1964	2,161	23,897	370	1,002	3,872	15,216	169	9,880	56,567
1965	2,459	25,902	1,203	1,863	2,488	13,404	-	4,535	51,854
1966	5,473	23,785	583	1,157	6,657	23,678	519	4,355	66,207
1967	3,861	26,331	1,259	1,494	3,954	20,851	980	4,044	62,774
1968	6,536	22,938	585	979	2,027	26,868	8	18,613	-77,556
1969	4,269	20,009	849	1,415	1,077	28,141	57	7,982	63,799
1970	4,650	23,410	2,166	1,307	698	35,750	143	8,734	76,858
1971	8,657	26,651	731	1,196	3,185	19,169	81	2,778	62,448
1972	3,323	19,276	252	990	446	18,550	109	1,267	44,213
1973	3,107	21,349	181	976	189	19,952	1,180	5,707	52,641
1974	3,770 .	15,999	657	600	5,714	14,937	1,246	3,789	46,712
1975	741 -	14,332	122	586	3,738	.2,234	1,350	2,270	35,373
1976	2,013	20,978	317	722	1,683	9,236	177	2,007	37,133
1977	3,333	23,755	2,171	845	2,141	•		•	32,245
1978	2,082	19,560	700	360	4,474			45	27,221
1979	2,381	23,413	863	495	5,854				33,006
1980	2,809	29,427	715	214	4,403				37,568
1981	2,696	26,068	2,321	333	7,474				38,892
1982	2,639	21,351	2,948	1,009	5,955				33,902
1983	2,100	23,915	2,580	843	9,013				38,451
1984	891	22,863	1,969	777	10,444				36,944
1985	4,150	24,044	4,516	642	17,866				51,218
1986	4,981	24,208	2,210	389	25,592				57,290
	•								

)

1

Table 2. Catch (numbers) and average weight at age of cod from the commercial fishery in Subdivision 3Ps for the period 1959-86.

							c	ATCH A	t age								
AGE	1959	1960	1961	1962	1963	1764	1965	1966	1967	1768	1969	1570	1971	1972	1973	1974	
3 4 5 6 7 8 9 10 11 12 13 14	- 44	567 5496 23704 6714 3476 3484 1020 927 406 407 283 27	560	1245 6749 9003 4533 5715 1367 791 571 187 140 135 241	961 4499 7051 5275 2527 3030 858 292 143 99 107 92	1906 5785 5635 5179 2945 1881 1891 652 339 329 54 27	5799 3609 3254 2055 1218 1033	949 13662 13065 4621 5119 1586 1833 1037 517 389 32 22	12700 6392 2349 1364 604 316	5	774 7098 11585 7178 4554 1757 792 717 61 120 67 110	121	2884 6444 8574 7266 8218 3131 1275 541 85 125 62 57	731 4944 4591 3552 4603 2636 833 463 205 117 46 45	945 4707 11386 4010 4022 2201 2019 515 172 110 14 29	1887 6042 9987 6365 2540 1857 1149 538 249 80 32 17	
3+ 4+ 5+ 6+	38279 24339 16814	45844 40343 16644	45203 44753 39157 28810	29432 22633 13680		24717 18732 13297	27157 17521 11722	41885 23223 15158	35465 24552 11652	37 889 25237 12152	34813 34039 26941 15356	41713 40957 32843 19927	38662 35778 29334 20760	22768 22037 17093 12502	30130 29185 24478 13092	30743 28856 22814 12827	
AGE	1975	1976	1977	·1973	1979	1930	1781	1982	1983	1984	1985	1986					
3 4 5 6 7 8 9 10 11 12 13 14 14 14 14 14 14 14 15 16 17 18 19 10 11 11 12 14 15 16 17 16 17 18 19 10 11 1		4110 12139 7923 2875 1305 495 140 53 17 21 4 3	935 9156 8326 3207 920 395 265 117 57 43 31 11	218 4308 5391 4203 1791 730 243 189 76 26 19 10	149 2370 \$777 5235 2588 854 284 82 48 19 11 10	8335 -4387 1420 347 104	1000 2765 2864 4220 5187 1573 571 204 89 37 24 6	110 5075 4114 1977 2806 3101 725 297 102 34 34 15 10	783 2623 9106 3784 1705 1140 1029 237 90 355 18 8	203 4521 4538 7018 2221 584 542 338 134 35 8 8	198 4557 11067 5951 4995 1466 418 378 332 130 23 12	277 4924 10159 11180 4247 2144 639 220 168 141 78 23					Ð
3+ 4+ 5+ 6+	27232 25392 18063 12666	29085 24975 12836 4913	23465 22530 13374 5048	17204 16986 12678 7287	21457 21308 18938 9161	21773 21475 19831 14735	17540 14775	18372 18262 13183 5065	20758 19975 17352 8246	20150 19947 15426 10888	29527 29329 24772 13705	4200 33923 28999 18840					
				11	1		AVERA	GE WEIG	HT AT A	ĢE							
AGE	1959	1960 1	961 19			1965	1966	1967 1	56 <mark>8</mark> 15	69 197	0 1971	1972	1973	1974 1	975 19	76 197	'7
+·	0.29	0.29 0		າຄິດຳ	0 0 20	0 70	A 20	A 20 A		70 A 7	0 A 20	0.20	 .V 26	0 79 N	- <u></u>		5

AGE	1	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
3 4 5 6 7 8 9 10 11 12 13 14		0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 E.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 5.05	0.28 0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05 5.16	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.66 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.65 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.69 1.08 1.68 2.40 3.21 4.10 5.08 6.03 7.00 8.05	0.55 0.68 1.30 1.86 2.67 3.42 4.15 4.94 5.52 6.76 8.78 10.90
AGE	ł	1978	1979	1980	1981	193	2 17	83 <u>/</u>	984	1985	1986			-						
3 4 5 6 7 8 9 10 11 12 13		0.45 0.70 1.08 1.75 2.45 2.99 4.10 5.16 5.17 7.20 7.75	0.41 0.65 1.01 1.65 2.55 3.68 4.30 6.49 7.00	0.52 0.72 1.13 1.66 2.48 3.60 5.40 6.95 7.29 8.64 5.33	0.43 0.79 1.32 1.80 2.30 3.27 4.36 5.68 7.41 9.04 8.39	0.4 0.7 1.1 2.3 2.8 3.9 5.2 6.1 3.6 8.6	5 0. 7 0. 7 1. 8 1. 8 3. 8 3. 8 5. 9 6. 2 8. 4 10.	58 54 53 58 58 58 58 58 57 45 56 56 56 57 90 6 1 1 1 1 1 1 1 1 1 1 1 1 1	648631356431	0.53 0.81 1.16 1.69 2.58 3.00 4.66 5.47 5.84 6.65 9.39	0.54 0.75 1.18 1.84 2.43 3.15 4.30 5.50 4.19 8.72 8.05	·						·		

	NUMBER CAU	GHT PER TOW	NORMALIZED	CATCH PER TOW	AVERAGE CATCH			
YEAR	FRANCE	CANADA	FRANCE	CANADA	PER TOW			
1978	3.40	3.16	0.17	0.31	0.24			
1979	7.66	3.46	0.38	0.34	0.36			
1980	8.10	4.03	0.41	0.39	0.40			
1981	19.11	22.45	0.96	2.19	1.58			
1982	19.39	10.36	0.97	1.01	0.99			
1983	17.88	12.73	0.90	1.24	1,07 ÷			
1984	35.62	7.24	1.79	0.71	1.25			
1985	8.88	10.04	0.45	0.98	0.72			
1986	49.12	12.25	2.47	1.20	1.84			
1987	30.03	16.80	1.51	1.64	1.58			

Table 3. Trends in the abundance of cod of ages 6 and older as derived from French and Canadian surveys in Subdivision 3Ps during the period 1978-87

Table 4. Recruitment index derived from age 2 and age 3 French research survey abundance estimates

YEAR-CLASS	AGE 2	AGE 3	NORMA	LIZED	RECRUITMENT	
	NUMBERS	NUMBERS	AGE 2	AGE 3	INDEX	
1975		1.65		0.23	0.23	<u></u>
1976	0.77	0.41	0.10	0.06	0.08	
1977	0.45	1.76	0.06	0.25	0.16	
1978	7.55	5.57	1.03	0.80	0,90	
1979	0.20	1.98	0.03	0.28	0.15	
1980	12.10	5.73	1.65	0.82	1.24	
1981	11.46	8.25	1.56	1.18	1.37	
1982	12.50	15.05	1.70	2.15	1.93	
1983	5.70	4.67	0.78	0.67	0.73	· .
1984	8.04	12.51	1.10	1.79	1.45	-
1985	22.42		3.05		3.05	· · -
1976-84 AV.	7.34	6.99			5105	
						· · .

Table 5. Correlation of survey 6+ numbers and cohort 6+ numbers for the period 1978-87 but excluding the 1981 and 1985 data points.

Fr r ² Interc		.30 .62 71	•35 •61 115	•40 •59 147	•45 •57 173	•50 •53 193	
Slope	566	4 38	346	278	226	184	
Residu	als					· .	
1978	67	36	14	-3	-15	-25	
1979	83	64	52	43	36	30	
1980	199	183	172	164	158	152	
1982	-288	-233	-194	-165	-142	-123	•
1983	-311	-252	-209	-178	-155	-136	
1984	-238	-177	-133	-101	- 75	- 56	
1986	66	72	76	79	81		ر. '
1987	424	306	222	161	113	83 76	

Table 6. Population numbers ('000) at the beginning of the year of Subdivision 3Ps cod from a cohort analysis at F1986=0.45.

						POP	ULATION	HUNDERS				•		
AGE	1959	1760	1961	1962	1963	1964	1765	1966	1967	1968	1969	1970	1971	1972
3 4 5 6 7 8 9 10 11 12 13 14	3440 3663	59261 47716 75039 22523 13245 8909 3906 2176 1676 2428 474 36	50945 48006 34054 39989 12365 7658 4142 2275 1033 1005 1619 132	48670 41306 34250 18542 18299 6852 2068 1718 617 442 583 819	42955 38721 27712 19895 11080 9810 4373 978 890 334 235 355	70839 34299 27632 16272 11516 6785 5290 2763 536 599 186 96	80985 56273 22847 17524 8636 6763 3853 2620 1676 132 193 103	84407 64211 37354 13459 11082 4127 3678 2052 1211 1076 47 47	\$8471 68248 40210 18761 6838 4441 1943 1353 740 523 529 ?	1045	54311 56416 52477 25778 12101 4608 1660 1470 471 472 114 275	35484 43766 39767 32482 14610 5787 2183 642 555 330 278 33	60158 28368 28491 20871 17760 6195 2515 1127 332 293 201 118	39317 46643 17395 15568 10513 7105 2239 906 433 195 127 108
3+ 4+ 5+] 6+ 7+ AGE		237438 178177 130460 55421 32898 1974	203306 152358 104352 70258 30269 1975	174167 125496 84190 49941 31399 1976	157340 114385 75664 47952 28057 1977	176817 105978 71679 44048 27775 1973	201607 120622 64349 41501 23977 1979	222750 138344 74132 36779 23320 1730	242066 143596 75348 35138 16377 1991	233664 163494 85471 39469 18221 1982	210154 155843 99427 46950 21171 1983	175917 140433 96667 56900 24418 1784	166429 106271 77903 49412 28541 1985	140550 101233 54569 37194 21626 1 786
3 4 5 6 7 8 9 10 11 12 13 14	30987 31529 33715 10088 9532 4443 3432 1079 379 379 379 54 60	41948 24515 21554 17301 4631 4165 1646 983 418 109 39 31	56354 32637 14604 8611 3406 1493 1730 308 318 117 16 3	58915 44474 20089 7073 2941 1573 568 334 157 103 40 8	71512 44516 25428 9279 3190 1227 840 338 225 113 65 36	36864 57703 28162 13285 4673 1779 647 448 171 133 54 25	21269 29984 43345 18179 7074 2222 796 310 196 71 85 27	35146 17279 22405 26642 10147 3450 1019 375 180 117 41 60	67006 28505 12659 13732 14271 4338 1540 519 229 98 58 17	51693 53955 20836 7773 7425 6390 1129 14 10 107 47 26	105051 42223 39579 13337 4573 3540 2917 1087 340 104 57 25	97287 85300 32196 24165 7314 2202 1867 1457 675 197 54 30	101766 79468 65747 22254 13434 3979 1274 1038 887 432 130 37	68064 83137 60940 43815 12835 6479 1931 665 508 426 236 85
3+ 4+ } 5+ 6+ 7+	125410 94423 62894 29179 19092	117339 75391 50876 29322 12021	124595 68241 35605 21001 12390	136283 77369 132895 12806 5733	156770 85258 40742 15314 6035	143965 107101 49398 21235 7951	123555 102250 72306 28960 10781	116880 E1734 64455 42050 15409	142971 75965 47460 34301 21069	151764 100271 46316 25430 17707	212833 107782 65539 25930 12643	252744 155457 70157 37961 13796	290445 188679 109211 43464 21211	279124 211060 127921 66781 23166

Table 7. Average population biomass (t) of Subdivision 3Ps cod from a cohort analysis at F1986=0.45.

POPULATION BIDHASS (AVERAGE)

AGE	1959	1960	1961	1962	1963	1964	1965	1966	1967	7 196	3 1969	1970	197	71 1972
3 4 5 6 7 8 9 10 11 12 13	14935 62171 30955 30539 29333 15394 12352 12463 18109 5418 937	14962 27962 60142 28459	128/4 28112 2757/ 46612 22414 1375 11252 6456 4196 542	3 12182 2 23500 5 26540 1 24347 4 32679 1 17720 2 5768 6 394 8 2790 5 2275	10770 22677 23206 25747 21017 23495 14389 3734 4431 1775 1250	17718 19449 23971 20251 21431 16632 15582 11057	20237 31857 19160 23617 14655 15259 11721 9275 8166 576 835	21292 35382 29159 16426 17430 7307 9531 6536 4942 5396	24598 38913 32106 22543 11920 10650 5536 5411 2777 2987	1765 4444 3771 52729 1630 788 778 365 380 7124	2 13678 2 32849 3 45016 5 33043 2 20542 3 10421 1 4394 3 4770 2 2350 5 2563	8902 24553 31656 40967 23539 12604 6549 2389 2472 1 1821	1487 1546 2309 2537 2791 1247 646 366	72 9878 31 27483 73 14484 77 20671 13 16914 76 16203 51 6515 56 2870 13 1693
14	,3,	585	810		2521	667	685	286	521			1501 205	130 120 61	5 721 7 681
3+ 4+ 5+ 6+ 7+	232604 217669 155498 124543 94005	220822 205860 177898 117756 89297	188967 176098 147987 120410 73799	153604 130104 101564	155011 144241 121564 98359 72612	152138 134420 114972 51001 70750	157042 136805 104949 85789 62172	155873 134581 99200 70041 53615	136953 98040 65934	154571 110130 72417	158277 125428 80410	157158 148256 123703 92047 51091	13420 11933 10385 8075 5538	4 118880 11 109002 11 81519 18 67035
AGE	1973	1974	1975	1976	1977	1976	1979	1980	1981	1982	1983	1984	1985	1986
3 1 4 1 5 1 6 1 7 1 8 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1	7735 18096 26570 11774 15558 9041 8030 3539 1185 621 335 358	10387 13202 15235 20702 6653 8896 3272 2993 1422 342 112 175	17842	23507 2 15115 2 8192 1 4706 3751 1818 1403	4298 3 4315 2 2513 1 6451 3 3100 2613	5128 1 4632 3 7247 2 8097 1 3655 1878 1572	6907 4662 2729	0692 0019 2856 6954	19332 13224 18463 23462	35725	31066 7 41550 3 19952 3 8370 1 8524 7931	78104 37687 36007	58048 56534 62688 28924 24608 8498 4365 4056 3672 2154 \$76 272	33240 54711 55198 62622 22934 15008 6106 2689 2311 2732 1395 748
3+ 4+ 5+ 6+ 7+	102844 95109 77013 50442 38668	73005 59803 44568	57203 39361 28143	60267 7 36760 5 216 46 2	6734 9 2446 5 8131 3	4028 9 8901 8 4268 4	9271 5 2364 8 7702 6	7555 9 6864 7 6845 6	73715 10 74383 8 51159 4	02908 1 67183 47516	24756 19 93690 11 52140 7	1220 19 3116 1 5429 3	6766 10232	263694 230454 175743 116545 53923

Table 8. Fishing mortalities for Subdivision 3Ps cod from a cohort analysis at F1986=0.45.

FISHING NORTALITY

AGE	1	17.	9 196	0 1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
4567		0.01 0.11 0.22 0.40 0.40	5 0.13 4 0.42 3 0.40 2 0.34	6 0.138 9 0.409 0 0.582 3 0.390	0.199 0.343 0.315 0.423	0.137 0.332 0.347 0.290	0.433 0.332	0.210 0.329 0.258 0.539	0.258 0.489 0.477	0.194 0.438 0.472 0.478	0.531	0.150 0.280	0.227 0.445 0.404 0.658	0.237 0.404 0.486 0.716	0.021 0.125 0.345 0.251 0.661 0.528	0.034 0.180 0.467 0.579 0.628 0.793	0.051 0.318 0.718 0.522 0.532 0.679	0.037 0.285 0.525 0.874 1.476 0.766
		0.19 0.41 0.51 0.21 0.71 0.38	9 0.34 9 0.34 1 0.31 4 0.20	1 0.680 5 1.104 2 0.649 5 0.344	0.549 0.458 0.408 0.431	0.257 0.401 0.196 0.394	0.503 0.302 1.199 0.934	0.430 0.572 0.243 0.839	0.800 0.820 0.639 0.510	0.421 0.299 0.838 0.224	0.291 0.597 0.355 0.631	0.749 0.775 0.155 0.330	0,461 0,459 0,438 0,298	0.821 0.756 0.332 0.636	0.530 0.832 0.740 1.087 0.542	1.050 0.750 0.889 1.268	1.476 0.929 1.076 1.685 2.379	1.445 0.473 0.528 0.680 0.515
14 Age	ł	0.37 197	3 0.42 6 1977	3 0.656 1978	0.389	0,334	0.370	0,481	0.704	0,433	0.498	0.572						1.312
3456789 10111213		0.08 0.33 0.55 0.65 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4	i9 0.258 2 0.449 4 0.384 7 0.440 8 0.429 3 0.440 3 0.440 3 0.440 3 0.440 3 0.440 3 0.440 3 0.440 4 0.328 6 0.544	0.007 0 0.086 0 0.233 0 0.430 0 0.548 0 0.604 0 0.536 0 0.628 0 0.628 0 0.628 0 0.628 0 0.628 0 0.628 0 0.628 0 0.624 0 0.243 0 0.495 0 0.564 0	.091 0 .287 0 .513 0 .519 0 .579 0 .346 0 .346 0 .348 0 .154 0	.111 0. .290 0. .424 0. .550 0. .607 0. .476 0. .344 0. .506 0. .710 0.	113 0.1 288 0.2 415 0.3 514 0.5 512 0.6 527 0.4 570 0.5 561 0.6 538 0.4 616 0.4	10 0.07 46 0.29 30 0.40 41 0.53 74 0.44 72 0.49 82 0.27 34 0.34 32 0.46 36 0.43	1 0.064 3 0.16 1 0.38 1 0.40 0 0.34 4 0.38 5 0.29 6 0.24 4 0.21 1 0.18	0 0.06 7 0.20 7 0.35 9 0.52 7 0.52 7 0.52 7 0.55 8 0.51 8 0.51 8 0.51 8 0.51 8 0.51 9 0.21 8 0.21 8 0.21 8 0.21 8 0.21 8 0.21 8 0.21 8 0.51 9 0.51 9 0.51 9 0.51 9 0.51 9 0.51 9 0.52 9 0.53 9 0.52 9 0.52	5 0.068 6 0.203 0 0.329 7 0.450 3 0.450 0 0.450 5 0.450 4 0.450 5 0.450 5 0.450 6 0.450 6 0.450 7 0							

Table 9. Input parameters to project catch and biomasses for Subdivision 3Ps cod.

AGE	1987 POPULATION BEG. YEAR (000)	AVERAGE WEIGHT 1984-86 (KG)	PARTIAL RECRUITMENT	MATURITY OGIVE
3	100,000	0.61	0.01	0.01
4	55,476	0.86	0.15	0.05
5	63,682	1.24	0.45	0.30
6	40,903	1.80	0.73	0.68
7	25,942	2.53	1.00	0.92
8	6,743	3.29	1.00	0.99
9	3,399	4.56	1.00	1.00
10	1,015	5.51	1.00	1.00
11	350	6.00	1.00	1.00
12	267	. 7.82	1.00	1.00
13	223	10.06	1.00	1.00
14	123	10.78	1.00	1.00

;

· . .

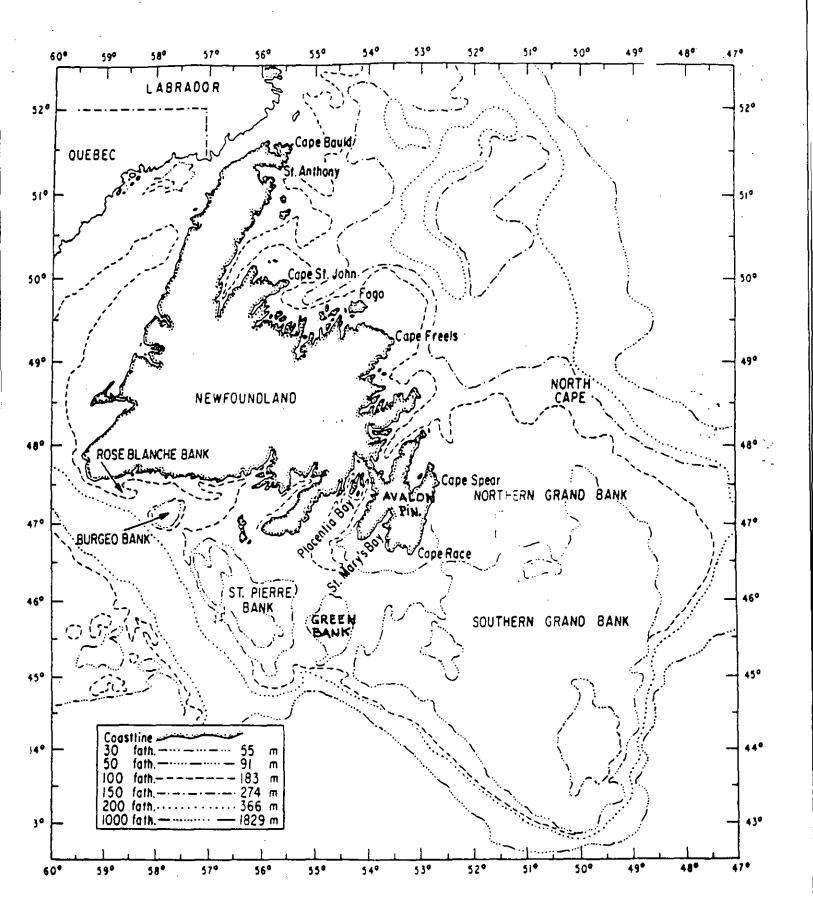


Fig. 1. Map of Subdivision 3Ps and adjacent areas.

- 1.4 -

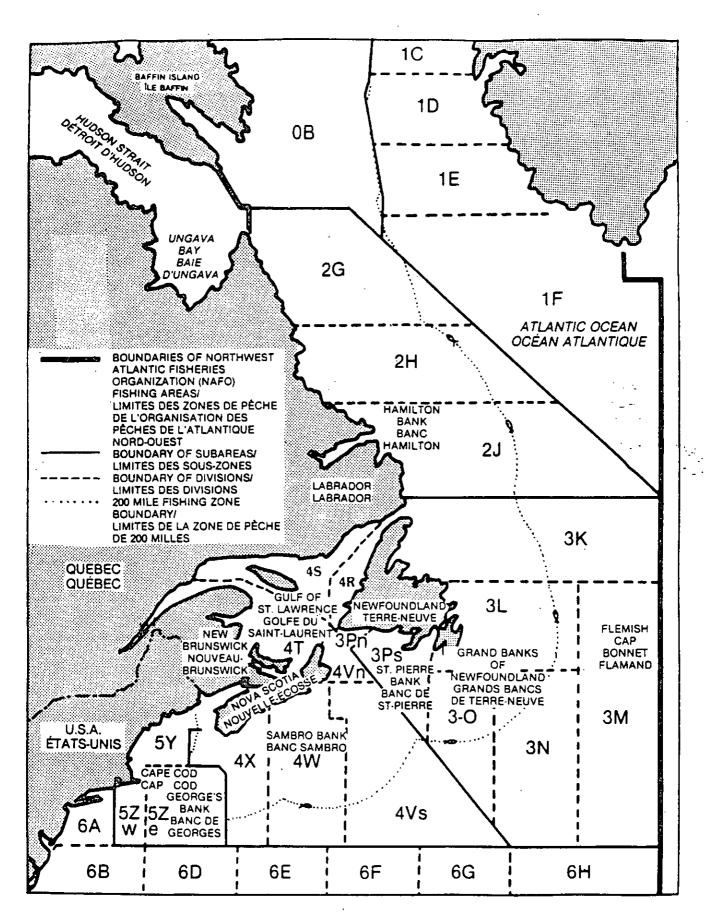


Fig. 2. NAFO convention area chart with fishing areas.

- 15 -

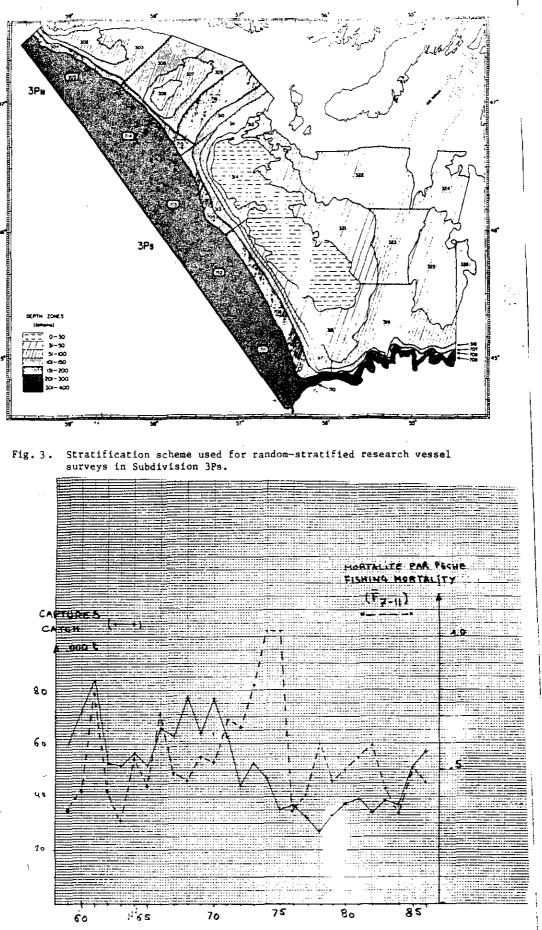
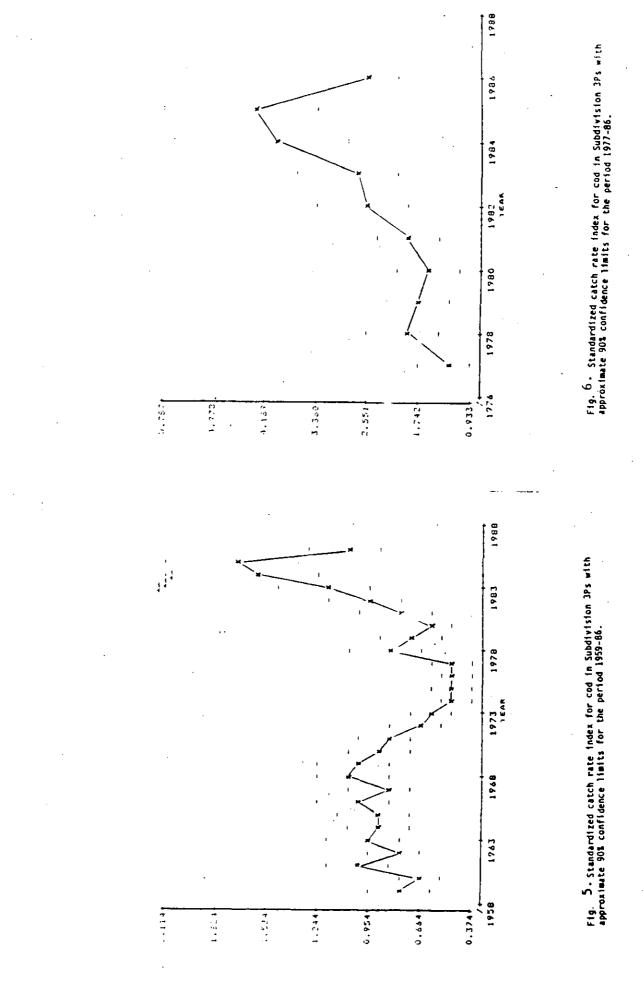
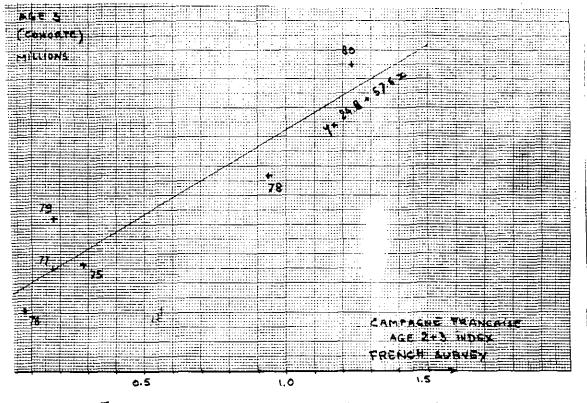
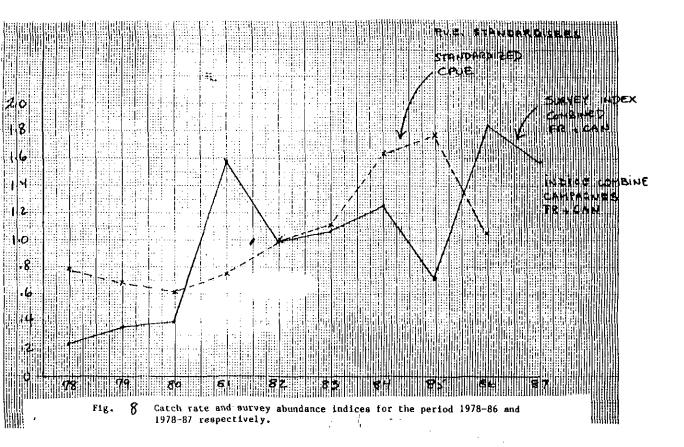




Fig. 4. Trends in catches and average (age 7 to 11) fishing mortality over the period 1959-1986.


- 17 -

£

σ

Fig. 7 Abundance relationship between age 3 from cohort analysis and ages 2+3 from French surveys.

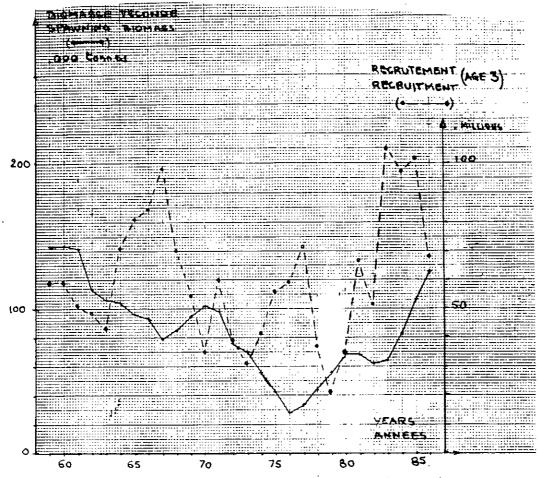
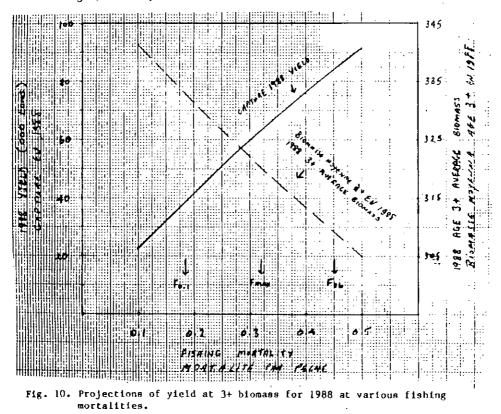



Fig. 9. Trends in spawning biomass (000 t) and recruitment (millions) at age 3 in the period 1959-1986.

- 19 -

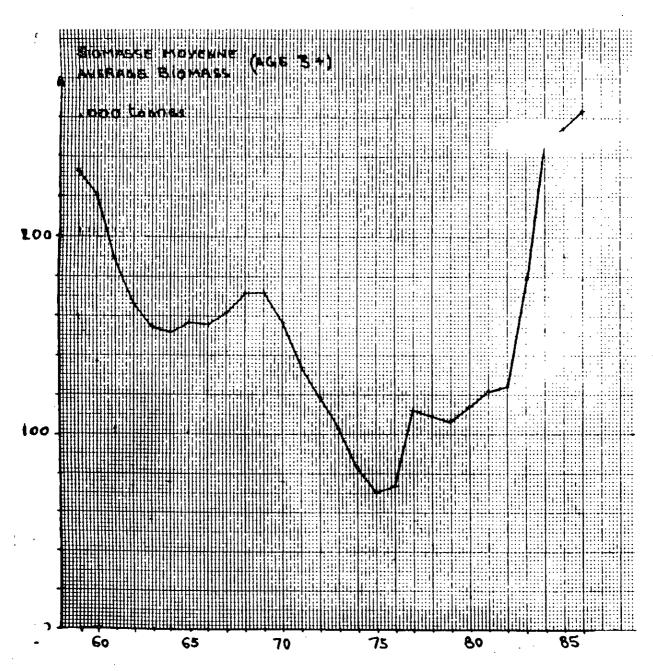


Fig. 11. Mean 3+ biomass (000 t) from 1959-1986.