Northwest Atlantic

Fisheries Organization

NAFO SCR Doc. 89/44

Serial No. N1621

SCIENTIFIC COUNCIL MEETING - JUNE 1989

Capelin School Surface Area Index for NAFO Div. 3L in 1988

Ъy

Brian S. Nakashima

Science Branch, Department of Fisheries and Oceans, P. O. Box 5667 St. John's, Newfoundland, Canada AlC 5X1

Abstract -

The 1988 aerial survey utilized 33.0 flying hours and provided repeat coverage of at least four times for the three out of four transects. No surveys were conducted between June 26 and July 3 due to poor weather conditions. The peak in total school surface area occurred June 19-22 in Trinity Bay and June 24-25 in Conception Bay. The estimate of total school surface area of 447,851 m² was the second highest in the series and approximately 60% of the 1987 estimate.

Introduction

Background information on the use of surface area of capelin schools estimated from aerial photographs as an index of relative abundance was presented in previous reports (Nakashima 1985, 1986). This manuscript documents the methods and results of the aerial photographic survey conducted in 1988 along the shorelines of Conception Bay and Trinity Bay in NAFO Div. 3L (Fig. 1). The index of total school surface area is compared to other estimates of trends in abundance.

Materials and Methods

Particulars of the aerial surveys including aircraft type, camera and film used, survey time, and altitude flown are listed in Table 1. Since 1982 the survey has covered four transects as often as possible during the spawning season. The four transects were the outside of Trinity Bay from the Horse Chops to Gooseberry Cove, the inside of Trinity Bay from Gooseberry Cove to Hopeall, the outside of Conception Bay from Caplin Cove to Harbour Grace Islands, and the inside of Conception Bay from Harbour Grace Islands to Portugal Cove (Fig. 1). The best photographic conditions were in the morning when the sun angle was less than 50° and winds were light. Afternoon photography was usually restricted when the sun angle declined to 20°. Photography in the afternoon was more likely to be negatively influenced by winds and land shadowing.

In each photograph, capelin schools were identified and their outlines were traced on clear plastic sheets. The surface area of each school was measured with a compensating polar planimeter, corrected for altitude and expressed in m^2 . Each time a transect was overflown, the mean and median school surface areas, the number of schools, and the total surface area of all schools observed along the transect were estimated. Small schools generally less than 55 m^2 were not measured on photographs taken at 457 m because they were less than the resolving power of the planimeter used.

The relative index for the year was estimated by summing the highest total school surface area observed on each of the four transects. I assumed that peak school surface area was indicative of inshore abundance for each transect for that year. The trend in the index derived from 1982-88 was compared to trends in catch rates from capelin traps and purse seines (Nakashima and Harnum 1989) and to projections of mature biomass from acoustic surveys (Anon. 1982, 1983, 1984, 1985, 1986, 1987).

Results and Discussion

Three transects were surveyed at least four times (Tables 2b, c, and d), however the transect on the outside of Trinity Bay was only covered twice (Table 2a). Poor weather between June 26 and July 3 precluded any aerial surveys being conducted in the survey area. The highest number of schools, largest schools, and most surface area were observed on the outside of Trinity Bay on June 19 (Table 2a). The peak in total surface area of schools on the inside of Trinity Bay was recorded on June 22 which was one third less than the amount measured on this transect in 1987 (Table 2b). The largest school sizes were observed on June 25. Large schools in Trinity Bay were mainly observed in the Bellevue Beach area. For the outside portion of Conception Bay, the highest surface area and most number of schools were measured on June 25 (Table 2c). On June 24-25, 289 schools and the highest total school surface area were observed on the inside transect of Conception Bay (Table 2d). Data collected on the afternoon of June 24 and the morning of June 25 were combined to provide an estimate for this transect. From observations conducting during the aerial survey the peak occurrence of capelin inshore was June 19-22 in Trinity Bay and June 24-25 in Conception Bay. By July 4-5 when the aerial survey was completed, there was a noticeable decline in the number, size, and extent of distribution of capelin schools along the four transects.

Comparison of the school surface area index with the commercial catch rates of the trap and purse seine fisheries and the projected mature biomass estimated from acoustic surveys yielded differences for 1988. The mature biomass for 1988 was projected to be 900,000 t which was supported predominantly by the 1985 year-class (Anon. 1987). The catch rate for capelin traps in the 1988 fishery was 6.2 t/day which was the second highest estimate in the series and less than observed in 1987 (Table 3). The purse seine catch rate of 20.7 t/day in 1988 was the highest in that series (Table 3). Nakashima and Harnum (1988) cautioned that the trap catch rate may have been biased upward and the purse seine catch rate downward in 1987 due to the late start of the capelin fishery. The aerial survey estimate of 447,851 m² of total school surface area observed along the survey track was the second highest in the series and 60% of the 1987 estimate. Thus the two inshore catch rates and school surface area index in 1988 indicated that the inshore mature biomass of capelin was higher than any year except for 1987. The projected biomass for 1988 was expected to be only one third of the 1987 level and third highest since 1982. Assuming the inshore indices were representative of the available mature biomass in 1988, it appears the projected biomass for 1988 was a conservative estiate relative to the past few years.

Acknowledgments

The survey was conducted by Aerial Mapping and Photography Ltd. in 1988. K. Foote assisted in recording observations and conducting the survey. M. Y. Hynes assisted in the preparation of the manuscript.

References

Anon. 1982. NAFO Scientific Council Reports. p. 33-35.

1983. NAFO Scientific Council Reports. p. 52-54.

1984. NAFO Scientific Council Reports. p. 58-66.

1985. NAFO Scientific Council Reports. p. 74-77.

1986. NAFO Scientific Council Reports. p. 73-75.

1987. NAFO Scientific Council Reports. p. 73-75.

Nakashima, B. S. 1985. The design and application of aerial surveys to estimate inshore distribution and relative abundance of capelin. NAFO SCR Doc. 85/84, Ser. No. N1058. 11 p.

1986. School surface area of capelin schools from aerial photographs as an index of relative abundance. NAFO SCR Doc. 86/14, Ser. No. N1126. 7 p.

1987. Capelin school surface area index incorporating the 1986 aerial survey in NAFO Div. 3L. NAFO SCR Doc. 87/49, Ser. No. N1338. 6 p.

1988. Capelin school surface area index for NAFO Div. 3L, 1982-87. NAFO SCR Doc. 88/11, Ser. No. N1447. 11 p.

Nakashima, B. S., and R. W. Harnum. 1988. The inshore capelin fishery in NAFO Div. 3L in 1987. NAFO SCR Doc. 88/9, Ser. No. N1445. 16 p.

1989. The inshore capelin fishery in NAFO Div. 3L in 1988. NAFO SCR Doc. 89/43, Ser. No. N1620, 12 p.

Table 1. Summary of serial surveys conducted from 1982 to 1988.

Year	Aircraft	Camera	Lens (mm)	Pilter	Film	Radar altimeter	Survey period	Altitude (m)	Flying hours
1982	Piper Aztec	RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	No	June 18- July 5	152-160	
1983	Aero-Commander	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 19- July 9	457	21.8
1984	Cessna 310	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 17- July 7	457	38.5
1985	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 18- July 3	290-610	28.6
1986	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Amrocolour Neg. 2445	Yes	June 19- July 5	381-579	13.4
1987	Piper Aztec	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 16- July 3	457	37.0
1988	Piper Chieftsin Piper Axtec	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 15- July 5	305-488	33.0

Table 2a. Schooling data for the outside part of Trinity Bay from Horse Chops to Gooseberry Cove, 1982-88.

	No. of	Total surface	Scho	ol size (m²)
Date	schools	area (m²)	Mean ± SD	Media
June 19, 1982	7	2963	423 ± 50	2 12
June 26, 1982	0	0	_	-
uly 3, 1982	1	522	522	52
une 23, 1983	7	11330	1619 ± 131	5 128
une 24, 1983	10	13671	1367 ± 126	0 108
une 25, 1983	7	11662	1666 <u>+</u> 215	
une 29, 1983	8	2288	286 ± 22	
Tune 30, 1983	13	18470	1420 ± 161	
July 1, 1983	3	6417	2139 ± 217	6 117
une 18, 1984	9	3236	360 ± 42	3 22
une 19, 1984	8	3962	495 ± 70	3 27
une 25, 1984	22	30467	1385 ± 195	
une 26, 1984	3 B	37219	979 ± 171	
une 29, 1984	9	2790	310 ± 22	3 27
July 3, 1984	48	43412	904 ± 301	0 22:
uly 6, 1984	34	16015	471 ± 48	5 16
une 21, 1985	0	o		
une 25, 1985	0	0		
une 29, 1985	18	15536	863 ± 98.	
uly 1, 1985	32	48808	1525 ± 162	
uly 2, 1985	24	49216	2051 ± 296	
uly 3, 1985	9	2498	278 ± 18	3 270
une 18, 1987	59	41348	701 ± 98	5 39:
une 22, 1987	81	45421	561 ± 78	279
une 28, 1987	15	5189	346 ± 38	
uly 3, 1987	9	12220	1358 ± 304	
une 19, 1988	41	45812	1117 ± 2569	279
uly 5, 1988	13	10714	824 + 61	

Table 2b. Schooling data for the inside part of Trinity Bay from Gooseberry Cove to Hopeall, 1982-88.

	No. of	Total surface	School size (m²)			
Date	schools	area (m²)	Mean :	t SD	Median	
June 19, 1982	31	12724	411	± 712	149	
June 26, 1982	29	35607	1228	2755	299	
June 29, 1982	11	62397	5672		592	
July 2, 1982	8	31365	3921	9281	705	
July 3, 1902	2	1920	960	± 17	960	
June 23, 1983	11	69583	6326	£ 6299	4241	
June 24, 1983	26	39004	1500	1880	753	
June 25, 1983	30	174487	5816	12759	781	
June 29, 1983	35	152557	4359	11139	781	
June 30, 1983	46	199373	4334	6927	558	
July 1, 1983	25	189497	7580	£ 19791	2288	
June 19, 1984	13	15624	1202	t 1770	335	
June 23, 1984	9	8314	924		502	
June 25, 1984	96	31526	328		117	
June 26, 1984	96	40510	422		223	
June 29, 1984	47	12053	256		. 167	
July 3, 1984	57	23827	418 :	£ 814	167	
July 7, 1984	77	43245	562	t 1124	223	
June 21, 1985	13	7041	542	± 706	270	
June 25, 1985	35	22459	642	t 1144	211	
fune 26, 1985	30	16540	551	t 721	214	
ruly 1, 1985	125	60245	462	963	181	
July 2, 1985	130	195659	1503	6046ª	179	
June 28, 1986	59	95898	1625	t 4502	340	
June 17, 1987	45	167567	3724 -	± 17727	223	
June 19, 1987	91	399026		31197	167	
June 27-28, 1987	37	59315	1603	5612	446	
July 3, 1987	5	1786	357		279	
June 16, 1988	27	18749	694	902	391	
June 19, 1988	50	104179	2084	4546	502	
June 22, 1988	67	112863	1685	5749	391	
June 25, 1988	20	87103	4338	15287ª	474	
July 5, 1988	23	32252		3199	223	

a calculation excludes capelin in traps

Table 2c. Schooling data for the outside of Conception Bay from Caplin Cove to Harbour Grace Islands, 1982-88.

			School size	• (m²)
Date	No. of schools	Total surface area (m²)	Mean ± SD	Median
une 29, 1982	10	6577	658 ± 366	642
uly 2, 1982	2	1357	679 ± 554	679
une 23, 1983	34	51838	1374 ± 2266	530
une 24, 1983	16	10658	666 ± 823	447
une 25, 1983	4	4408	349 ± 184	279
uly 1, 1983	5	5413	1083 ± 1884	112
une 18, 1984	1	391	391	
une 19, 1984	0	0		
une 25, 1984	49	63779	1294 ± 2874	391
une 26, 1984	67	65956	697 ± 1091	279
une 30, 1984	21	22320	818 ± 1509 ^a	223
uly 3, 1984	4	1786	446 ± 599	195
une 20, 1985	0	0		
une 24, 1985	0	0	_	
une 27, 1985	30	8840	268 ± 378	120
une 28, 1985	125	50837	368 ± 800 a	137
une 29, 1985	22	19253	875 ± 1169	291
uly 1, 1985	28	28036	991 ± 1616	264
uly 2, 1985	66	69166	914 ± 2064 ⁸	223
une 19, 1986	88	132455	1462 ± 2853	279
June 16, 1987	139	184307	1322 ± 2924	391
une 19, 1987	143	112660	766 ± 1516	279
Tune 27, 1987	21	12164	539 ± 559	393
tune 30, 1987	37	29462	790 ± 1481	27!
June 20, 1988	54	36993	679 ± 1099	223
June 22, 1988	64	18916	230 ± 324	112
June 25, 1988	116	87534	676 ± 1331	279
July 4, 1988	51	39785	578 ± 805	279

a calculation excludes capelin in trap

Table 2d. Schooling data for the inside of Conception Bay from Harbour Grace Islands to Portugal Cove, 1982-88.

			School			size (m²)	
Date	No. of schools	Total surface area (m²)	Mean	±	SD	Media	
une 26, 1982 AM	33	19408	571	±	907ª	13	
une 26, 1982 PM	20	36513			1914	208	
une 27, 1982	48	151214			6015 ⁸	52	
une 29, 1982	27	30275			1707	41	
uly 4, 1982	3	13042			4951	140	
uly 5, 1982	7	5127			582	59	
une 23, 1983	53	97595	1787	±	2754ª	55	
une 24, 1983	30	56860			2965	55	
une 25, 1983	29	79961	2677	±	3725	78	
une 30, 1983	7	8091			1181	55	
uly 1, 1983	1	2009	2009				
une 16, 1984	0	0			_		
une 23, 1984	8	17689			2556	94	
une 25, 1984	70	63891			1789	22	
une 26, 1984	33	23603	703	ŧ	1708	22	
une 30, 1984	29	16852	508	±		33	
uly 3, 1984	10	9040	329	±	254 ^a	22	
uly 5, 1984	0	O					
une 20, 1985	0	0		•			
une.24, 1985	. 2	1600	800			80	
une 26, 1985	17	10124			1145	31	
une 27, 1985	76	16552	214			7	
une 28, 1985	120	33850	274			6	
uly 1, 1985	16	43228			5140	30	
uly 2, 1985	17	13436	676	±	1872	19	
une 19, 1986	39	31574	786	±	1105	35	
une 20, 1986	4	3515	698			36	
une 22, 1986	86	30930	343			13	
uly 2, 1986	10	5019	502	±	600	35	
une 17, 1987	196	53066	263		350	16	
une 19, 1987	365	205846			1482	16	
une 21, 1987	179	74128	393			16	
une 27, 1987	138	94747	681	±	2389	16	
une 28, 1987 une 30, 1987	63 41	68969	1036	İ	2402	16	
uly 3, 1987	47	51336 34863			2892 ⁸ 1400	39 27	
une 19, 1988	77	25780	335	+	599	22	
une 20, 1988	31	7742	240			16	
une 24-25, 1988	289	201642			1091	39	
uly 4, 1988	24	32141			4242a	25.	

a calculation excludes capelin in traps

Table 3. Comparison of three indices for estimating trends in relative spawning biomass. The catch/day index was based on capelin trap and purse seine data from logbook surveys (Nakashima and Harnum 1989), the mature biomass index originated from NAFO Scientific Council Reports (Anon. 1982-87), and the school surface area index came from this study.

	Catch (t)/day			
Year	Purse seine	Trap	Mature biomass (t)	School surface area (m²)
1982	16.4	3.1	2346,000	223,150
1983	18.8	3.4	648,000	367,280
1984	14.3	2.9	384,000	216,500
1985	16.4	4.6	596,000	357,270
1986	19.0	4.6	1,300,000	283,150
1987	18.1	0.6	2,830,000	762,953
1988	20.7	6.2	900,000	447,851

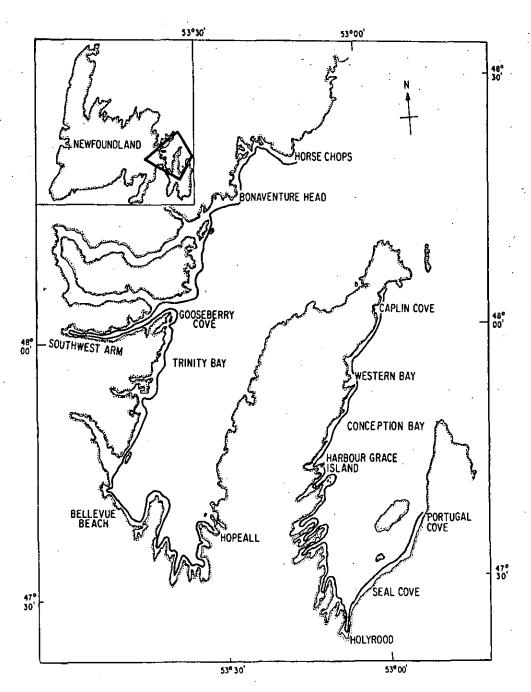


Fig. 1. Aerial survey track.