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We present a method for simultaneously analyzing multiple length frequency data 
sets. The method utilizes a robust likelihood-based estimation procedure which 
provides an objective criterion for hypothesis testing. The ability to simultaneously 
analyze multiple samples permits the method to exploit the extra information not 
available when analyzing samples one by one. The computer program maintains 
a database of fits to the data which enable the user to organize the results of 
the analysis. Graphical displays permit the user to view any of the fits, and an 
interactive graphics routine aids the user in finding good initial parameter estimates. 
The method is applied to length frequency data from the pink shrimp Pandalus 
jordani. The best fit to a collection of fifteen length frequency data sets spanning 
a three year period is presented. Several alternative fits to the data and their 
implications for fisheries management are explored. It is concluded that policy 
formulation is insensitive to the number of significant age classes assumed to be 
present in the data. 



The MULTIFAN system of length frequency 
analysis was introduced in Fournier et al (in press) 
where it was applied to length frequency data from 
southern bluefin data (Manaus macoyii). South-
ern bluefin tuna are a slow growing relatively long—
lived species. MULTIFAN is a robust likelihood 
based method which simultaneously analyzes mul-
tiple length frequency data sets. The extra infor-
mation made available by simultaneously analyz-
ing multiple length frequency data sets enables the 
model to perform hypothesis tests to distinguish be-
tween different models for fitting the data. In par-
ticular it is possible to estimate the number of sig-
nificant age classes which are present in the data. 
To illustrate the flexibility of MULTIFAN it is in-
teresting to apply it to a fast growing, shorter—lived 
species with a very different life history from south-
ern bluefin tuna. 

At the Pacific Biological Station in British 
Columbia Canada aging of shrimp involves analy-
sis of length frequency data with no independent 
method of aging. Over the past years the length fre-
quency analysis used was that describe by Schnute 
and Fournier (1980). This method basically in-
volved determining the mean length at each age, the 
distribution of lengths and the distribution of ages. 
As is pointed out by Schnute and Fournier (1980) 
the principle motive for length-frequency analysis 
has been to determine the distribution of ages of 
animals which also gives information on the length 
at age. Using other methods of length-frequency 
analysis the distribution of ages is determined and 
then a growth curve is then constructed from this 
information as a separate problem. The Schnute 
and Fournier analysis introduced a single procedure 
which gives the percentage of animals at each age, 
mean length and standard deviation in length at 
each age of the stock and parameterizes the growth. 
Another way that this method differs from other 
methods is that instead of allowing arbitrary mean 
lengths and standard deviations, constraints are set 
such that the means and or standard deviations con-
form to a growth pattern. It was generally felt that 
more biological structure leads to less ambiguity. 
Unconstrained methods often lead to many possi-
ble solutions but by restricting population charac-
teristics (such as mean lengths at age) so that they 
have some relationship to one another on biological 
grounds it is felt that one can perhaps eliminate a 
significant number of solutions. 

In 1988 the MULTIFAN system of length fre-
quency analysis was introduced. This system is de-
scribed in Fournier et al (in press) where it is applied 
to length frequency data from southern bluefin tuna  

data. The system evolved from the theory devel-
oped in Schnute and Fournier (1980) and Fournier 
and Breen (1983). with some significant differences. 
Some of these differences include: an integrated 
data analysis system for simultaneously analyzing 
multiple sets of fisheries length-frequency samples, 
2) estimation of seasonal variation in growth rates, 
3) correcting for bias due to selectivity, 4) estima-
tion of total mortality, 5) a new robust likelihood 
estimation procedure developed by Fournier et al. 
(in press), and 6) the use of interactive graphics rou-
tines for obtaining initial parameter estimates and 
evaluating the results of the analysis. 

Model Formulation 

The following notation is introduced to describe the 
MULTIFAN model: 

	

i 	subscript indexing the length frequency in- 
tervals. 

	

j 	subscript indexing the age classes. 

	

a 	subscript indexing the length frequency 
data sets. 

	

N., 	the number of age classes present in the 
data sets. 

NA the number of length frequency data data 
sets. 

	

N1 	the number of length intervals in each 
length frequency data set. 

Sa  the number of animals in the a th length 
frequency data set. 

 

fia 
 the number of animals whose lengths lie in 

the i th length interval in the a th length 
frequency data set. 

	

Pj a 
	the proportion of age class j animals in the 

a th length frequency data set. 
the probability that an age class j animals 
picked at random from the animals which 
were sampled to get the ath length fre-
quency data set has a length lying in length 
interval i. 

	

Qia 	the probability that an animal picked at 
random from the animals which composed 
the ath length frequency data set has a 
length lying in length interval i . 
the proportion of animals in the a th 
length frequency data set having a length 
lying in length interval i . 
the mean length of the age class j animals 
in the ath length frequency data set. 

cri a  the standard deviation of the length dis-
tribution of the age class j animals in the 
ath length frequency data set. 

Copyright © Otter Software 1989 



the midpoint of the i th length frequency 
interval. 
the width of the length frequency intervals. 
the mean length of the first age class on 
the von Bertalanffy curve in month 1. 
the mean length of the last age class on the 
von Bertalanffy curve in month 1. 
the von Bertalanffy K parameter. 
the Brody growth coefficient 
(K = — log e  (p)). 
parameters determining the standard de-
viations (Ti c,. 
parameters determining the overall vari-
ance of the sampling errors in the ath 
length frequency data set. 
parameters determining the relative vari-
ances of the sampling errors within the ath 
length frequency data set. 
parameter determining the variance of the 
sampling errors in all the length frequency 
data set. 
parameter determining the amount of size 
selectivity for the first age class. 
parameters determining the amount of the 
seasonal component of the growth curve. 

Assume that the Qia  depend on a set 
O = ... , Or ) of parameters. The exact form and 
number of the parameters depends on the specific 
model formulation which we do not wish to specify 
at this stage. We denote this dependence by writing 
Qia(e)• 

If the length frequency data arose from random 
samples where the probability of each animal in the 
a th data set having a length lying in length inter-
val i is Qia (6) , the probability of obtaining the ob-
served length frequencies La  is equal to a constant 
times the expression 

NA NI 
(1 . 0) 	 11 1Qia(6) 1 'a 

a=1 1=1 

Robust Estimation 

The method of maximum likelihood has long 
enjoyed a pre-eminent position among statistical 
estimation procedures. Recently it has been real-
ized that, although maximum likelihood estimates 
have good properties when the model's assumptions 
are satisfied, their performance can degrade rapidly 
when departures from the model's assumptions oc-
cur. The property of a statistical estimator which 
permits it to behave well over a range of deviations 
from the statistical assumptions is called robustness. 

In real applications, robustness considerations 
often are more important than the theoretical opti-
mal properties of the conventional maximum likeli-
hood estimates. Our goal in this paper is to retain 
the advantages of maximum likelihood estimation, 
but to incorporate into the model's structure the 
possibility of a few large deviations from the model's 
hypotheses and to construct a robust likelihood—
based estimation scheme which can provide an ad-
equate description of the data. In order to provide 
an adequate statistical model for performing hy-
pothesis tests to analyze the length frequency data, 
Fournier et al. (in press) introduced a new robust 
likelihood function for length frequency analysis. 

Two different types of deviations from a model's 
hypotheses can occur in length frequency analysis. 
A length may be recorded in a region where the 
model predicts that there is almost no probability 
of observing such an animal. An example is an an-
imal whose length is much longer than that of any 
other animal. Such an observation may arise from 
an error in transcribing data or simply represent an 
unusual event. We shall call the occasional occur-
rence of an event of very low probability a type I 
deviation. 

The other type of deviation occurs in a region 
where the probability of observing a fish length is 
high. In this case, the frequency observed in a length 
interval is either much higher or much lower than it 
should be considering the accuracy of the majority 
of the observations. This will be termed a type II 
deviation. Our goal is to make the model insensitive 
to a small number of type I or type II deviations. 

If the Qia  are derived from a random sample 
of size Sa , they would be random variables with 
means Q,,„ and variances (1 — Qia )Qia /S„„. Set 
eia  = (1 — Qia) Qia The pia  determine the relative 
variances of the Qia  within a sample while the Sa  
can be regarded as a scale factor determining the 
overall size of all the variances of Qi a  in a sample. 

As Qi a tends to zero, the corresponding ei a 
 tends to zero as well. This reflects the fact that for 

random sampling an event with very small proba-
bility will almost never occur. For real world data, 
however, highly unlikely events seem to occur quite 
often: To render the model less sensitive to the oc-
currence of unlikely events, a lower bound is put on 
the relative variances of the Qi a . The scale factor 
Se  is replaced by a parameter ra  to be estimated 
within the model. 

We assume that the variance of the random 
variable Qia  is equal to (&,,,-1-.1/Nr)ra2  where the Ta  

are parameters to be estimated. The term .1/Ni is 

xi 

w 
Li 

LN, 

K 

A1, A2 

`

ra 

 

Oh 02 
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[ ✓27r(ei a  .1/N1) 7-„ 

( 	Qia) 2   11 
2(eia, + .111Vi)rg 

NA NI 

II II 
a=1 1=1 

1 

x exp 

included so that the expression for the relative vari-
ance does not tend to zero as the corresponding Qic, 
tends to zero. This renders the model insensitive to 
type I deviations. 

If the Qi c, were independent, normally dis-
tributed random variables, their likelihood function 
would have the form 

This likelihood function, based on a normal distri-
bution, is too sensitive to large deviations from the 
expected value Qi c,. It lacks robustness. To make 
(1.1) more robust, we assume that there is a small 
uniformly distributed contamination of the normal 
distribution. This will render the model insensitive 
to type II deviations. The likelihood function be-
comes 
(1.2) 

NA lir r  
II II 	 
a.' 	✓2w(ei. +.1/N1)ra 

x (exp{ 	Wic Ciiar  
2(ei c, + .1/N1)7-3 

The reason for picking the value .01 in (1.2) is hat 
for a normal distribution one usually begins to con-
sider an observation to be a candidate for outlier 
status when it is about three standard deviations 
removed from the mean. For the moment let a 
denote the standard deviations of a normally dis-
tributed random variable, and let u = 3a. Then 
exp(-u2 /2a2) 0.011, so that the use of .01 in 
(1.2) ensures that the influence of observations on 
the parameter estimates decreases rapidly as their 
distance from the mean grows greater than three 
standard deviations. Taking the logarithm of (1.2) 
we obtain the log-likelihood function 
(1.3) 

NA Nr 

-1/2 E > loge  (27r(ei a  + .1/Nr) ) 
a=1 1=1 
NA — E N, loge  (ra ) 
a=1 

NA Nt 
-( 	- Qi.) 2   1 + .01} + E E log e  [exp 

2(ia + .1/Ni) rg J 
a=1 1=1 

There are severa possibilities for reparameterizing 
the ra  which represent different assumptions about 

the relative accuracies of the observed length fre-
quencies composing the different length frequency 
data sets. In this paper we have assumed that all 
samples are equally accurate. Let b be a model 
parameter which determines the overall size of the 
variances in the sampling errors. The assumption 
that all samples are equally accurate is implemented 
by setting ra  = 6 for all a. 

Expression (1.3) forms the basis for the ro-
bust likelihood-based estimation scheme we have 
adopted, that is, the parameters are estimated by 
maximizing expression (1.3). 

The Main Assumptions of the Model 

At this point, there are far too many indepen-
dent parameters in the model to obtain useful pa-
rameter estimates. Most of the model structure in-
volves some biological assumptions which are made 
to reduce the number of independent parameters. 
The main structural assumptions are: 

1. The lengths of the animals in each age class are 
normally distributed around their mean length 
(see 2.1). 

2. The mean lengths at age lie on (or near) a von 
Bertalanffy growth curve (see 2.3). 

3. The standard deviations of the actual lengths 
about the mean length at age are a simple func-
tion of the mean length at age (see (3.4)). 
If the lengths of the age class j fish in the ath 

length frequency data set are normally distributed 
around their mean pi a  with standard deviations 
ai a  , the Di a  can be expressed in terms of pia  and 
cri a  by 
(2.1) 

gij a(pj a 	a) = 
1 _+w/ 	

P{ 
 exp{ 

2 or 
(r Pi n)

2 
dx 

As long as crj a  > w the integral can be approx-
imated sufficiently well by setting 
(2.2) 

w 
qii a (Pi cries) = 	exp 

This approximation has been used in the model. 
If the mean lengths pi a  lie on a von Bertalanffy 

curve then 

(2.3) Pja = 	 - L1 
(1 - 71+(rn( 0 ) -1 )/ 12 ) 

1 - 

where L1 , the mean length of the first age class, 
, the mean length of the last age class, and p, 

0 o 

1/ 71 .7.  Cj a fr i-w / 2 

I 	/liar  
47r aj, 	2o?a  
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the Brody growth coefficient, are the three parame-
ters which determine the form of the von Bertalanffy 
curve, and m(a) — 1 is the number of months after 
the presumed birth month of the animals in the a th 
length frequency data set. This parameterization of 
the von Bertalanffy growth curve is from Schnute 
and Fournier (1980). 

Including seasonal variation in growth 

Seasonal growth is an important consideration 
for an animal like a shrimp because the animal can 
not grow continuously it is restricted to growth dur-
ing periods of molt. 4q can be seen in the his-
tograms of the pra‘n)P.indalus platyceros, the fe-
males prawns begin carrying their eggs in August 
and September and will continue carrying these un-
til hatching occurs in March. The version of the 
MULTIFAN model used in this paper allows for the 
estimation of a seasonal component of growth. 

To include seasonal variation into the growth 
curve we have used the form proposed by Pauly and 
Gasch6tz (1979). 
(3.1) 
Pjn = L1 + (LN, — L1) 

( 1 — pi+(m(a)-1)/12-1-Pr  sin (2r(m(a)/12-03)) 

1 — p^' 

where 0 < 01 < 1 and 0 < 02 < 1 . 
The parameter 0 1  determines the magnitude 

of the seasonal effect. If 0 1  = 0 there is no sea-
sonal effect. If 01 = 1 the animals actually stop 
growing at time 6 + 1202 mod 12 months after the 
month which the user has designated as month 1. 
(Note that mod12 means divide by 12 and take 
the remainder so that for example if 02 = 0.9 then 
6+ 12.0.9 mod 12 = 6+10.8 rnod 12 = 4.8 months.) 

The seasonally oscillating growth curve for the 
best fit to the data is shown in Figure 2. 

Sampling bias 

An additional complication in parameterizing 
the mean length at age is due to the fact that for 
some length frequency data sets, the sampling pro-
cedure or the fishery does not select the smallest 
animals in the first age class. The effect of this size 
selectivity is that the mean length of the animals 
in the first age class in the length frequency data 
set is larger than the mean length of the animals in 
the first age class in the population. If this sam-
pling bias is not accounted for, biased parameter 
estimates may be produced. 

With the integrated data analysis which al-
lows simultaneous analysis of multiple sets of length-
frequency samples, biases can also arise if the sam-
ples are not taken in a consistent manner, but the 
method can also lead to valuable insights which are 
not always evident when the samples are analyzed 
in isolation. As an example pink shrimp samples 
off the west coast of Vancouver Island are collected 
either from a synoptic research biomass survey or 
through sampling of the commercial fleet. 

The length frequency histograms for the pinks 
shrimp data are shown in Figure 1. The mean 
lengths at age of the first age class are consider-
ably shorter in samples 1, 7, 8, 9, 10, and 13 than 
they are for the other samples. Samples 1,7, and 
13 are research cruise samples where an effort was 
made to sample smaller animals. The other samples 
are derived from commercial samples where smaller 
shrimp are generally avoided. Although length fre-
quencies 8, 9, and 10 were composed of commercial 
samples, they were taken in a year when there was 
great competition for shrimp. This could have led 
to smaller shrimp being included in the commercial 
catch in that year. 

We assume that size selective bias only affects 
animals in the first age class in those length fre-
quency samples for which it occurs, and that it de-
creases linearly with age until the shrimps reach the 
second age class. For those length frequency sam-
ples where size selectivity is assumed to occur the 
equation (2.3) becomes 
(4.1) 

(1  _ 01+(m(a)-1)/12 )  
Pla = LI + ( 	 ) Lig,/ — LI 	  

1 — pNJ 

+61(12 — m(a))/12 

We have assumed that there is size selective 
bias operating in samples 2, 3, 4, 5, 6, 11, 12, 14, 
and 15. 

Parameterizing the standard deviations 

The standard deviations op, are parameterized 
as a simple function of length involving two param-
eters Al  and A2. 

(5.1) 

{ 	
1 _ cji-(m(a)-1)/12 ) I } 

Cri er  = AI exp A2 [-1 + 2 (  	
1 — pNi 

where the term enclosed in square brackets ex-
presses the length dependency of the standard devi-
ations independently of the numerical values of the 
parameters L 1  and L,v, (cf. 2.3). The two coeffi-
cients, A l  and A2, transform the resealed length to 
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the standard deviations. Al determines the magni-
tude of the standard deviations, and A2 determines 
the length—dependent trend in the standard devia-
tions. If A2 = 0 , the standard deviations are length—
independent. 

The parameters pi a , L1, 	K, A 1 , A2,e, and 
b for 1 < j < Nj form the fundamental set of 
parameters in terms of which all the other param-
eters can be expressed and the log—likelihood func-
tion (1.3) can be calculated. 

Note that the Clia  satisfy the relationship 

Nj 

(5.2) 
	

Qia = 
j=1 

The steps in the calculation of the model pa-
rameters are: 

1. Calculate the cli c, from (5.1) using the funda-
mental parameters A1, A2, and K. (Recall that 
p = exp(—K) ). 

2. Calculate the pi a  from (2.3) using L1, LN,, 
and p. 

3. Calculate the qua from (2.2) using Pia  and of a . 
4. Calculate the Qi a  from (5.2) using qii,a  and pi a . 

Estimating the Covariance Matrix of the Param-
eter Estimates 

After choosing the model which best describes 
the data it remains to estimate how well the re-
sulting parameter estimates are determined by the 
data. One method for doing this is to calculate an 
estimate for the covariance matrix of the parameter 
estimates. 

Let 0 denote the maximum likelihood esti-
mates for the parameters 0. As an approximation 
to the covariance matrix for the parameter estimates 
0 we have employed the inverse of the matrix of sec-
ond derivatives of the log—likelihood function 
(6.1) 

02 	NA NI 

[3488,1 1/2 E E in(27,-(eic,(6)+ A/N,)) 
a=1 1=1 

Qin(6))2 ,, 	+ .01) 
a=11=1 	2(eia (6)-1- .invi)rg(e) 

NA 

— EN/ ln (ra (6)) IJ a=1 

It should always be kept in mind that these 
variance estimates are in general only accurate to 
an order of magnitude. They do, however, allow the 
user to verify that the minimization procedure has 
indeed found a local minimum of the log—likelihood  

function. This is an important point. In a large 
model with many parameters it can be difficult to 
determine whether the putative minimum value of 
the parameters is indeed a minimum or whether the 
model has simply located a flat area of the log—
likelihood function. If the matrix of second deriva-
tives is positive definite, the point determined by 
the values of the parameters is located at a mini-
mum rather than simply at a flat area. 

An extensive discussion of the parameter search 
techniques used in the MULTIFAN model and the 
manner in which hypothesis testing is carried out is 
given in Fournier et al (in press). 

The main unit of the search is a two dimen-
sional grid search of the parameter space. The 
points in the grid are determined by the value of the 
von Bertalanffy K and the number of age classes as-
sumed to be in the population. A systematic search 
is carried out for each model hypothesis, such as 
the hypothesis that there exists a length-dependent 
trend in the standard deviations of the distribution 
of the lengths at age or that there is a seasonal com-
ponent to growth. 

The accuracy of the parameter estimates which 
can be obtained by MULTIFAN depend in a com-
plex fashion on many different characteristics of the 
data including between sample contrast in the pro-
portions at age and modal separation. It is diffi-
cult to make any general statements about MULTI-
FAN's performance, but other factors being equal, 
the accuracy of the parameter estimates is very sen-
sitive to the regularity of growth of the species being 
examined. If the mean lengths at age lie exactly on a 
von Bertalanffy curve, we have determined from an 
analysis of simulated data that it is often possible to 
obtain good parameter estimates without imposing 
constraints on the mean lengths. However, we have 
never encountered any actual fisheries data which 
exhibits this kind of regularity. For the pink shrimp 
data, while there are very well defined modes, the 
apparent mean lengths at age are somewhat irregu-
lar. It is important therefore that the user carefully 
inspect the data and impose bounds on the mean 
lengths of different age classes where appropriate. 

The user should generally set quite wide bounds 
on the mean lengths. Fish growth is always some-
what irregular, and the mean lengths at age will not 
in general lie exactly on a von Bertalanffy growth 
curve. If the bounds are made too tight, the model 
may not be able to find any growth curve which sat-
isfies the constraints. This will put the estimation 
scheme under considerable tension and distort the 
results obtained. Also, one irregular mode may ex-
ercise undue influence on the fit to the data. The 

Copyright © Otter Software 1989 



bounds are set sufficiently tight to insure that the 
correct age class is associated with a mode btit not 
so tight as to require that the mean length at age 
lies exactly over a mode. 

If the initial search for possible fits to the data 
does not cover a large enough region of parameter 
space, a local minimum of the objective function 
may be mistakenly accepted as the global minimum. 
To reduce the probability of incorrectly accepting a 
local minimum, the parameter space is partitioned 
into partially overlapping subregions and the log—
likelihood function is minimized within each subre-
gion. The variables used to set up such a systematic 
search are the number of age classes assumed to be 
present in the data sets and different user selected 
initial values for the von Bertalanffy K. This pro-
cedure also provides an objective method for deter-
mining the number of age classes presumed to be 
present in the data sets. A more detailed discussion 
of the systematic search estimates is presented in 
the description of the application to shrimp below. 

Hypothesis testing 

The problem. of determining how many age 
classes are represented in the data illustrates the 
combined use of systematic searches and hypothesis 
tests in the MULTIFAN model. For each initial es-
timate of K, models with increasing numbers of age 
classes are fit. The increase in the maximum value 
of the log—likelihood function obtained by adding 
each age class is calculated. If the increase is large 
enough the extra age class is included in the model. 
This process is repeated until adding an extra age 
class doesn't lead to a significant increase in the 
maximum value of the log—likelihood function. 

A x 2  test is used to determine what constitutes 
a significant increase in the maximum value of the 
log—likelihood function. We have employed the stan-
dard theory which states that under the hypothesis 
that the present model is the correct one (and the 
additional age class is superfluous), if r parameters 
are added to the model, then twice the increase in 
the maximum value of the log-likelihood function is 
asymptotically distributed as a x 2  random variable 
with r degrees of freedom. 

Two types of errors can be made when making 
a decision based on a significance test. We could 
accept an extra age class into the model description 
when the present number of age classes is correct 
(type 1 error) or we could reject the extra age class 
when it is actually present in the mixture (type 2 
error). 

Rosenberg and Beddington (1987) have investi-
gated the performance of Sparre's model using sim-
ulated data. They reported that better estimates 
of the von Bertalanffy K parameter were obtained 
when the number of age classes in the mixture was 
overestimated rather than underestimated. There- 
fore, when determining the number of age classes, 
a type 2 error is more serious than a type 1 error. 
To reduce the probability of occurrence of a type 
2 error, we have employed the 0.90 point of the x2  
random variable rather than the more conventional 
0.95 point. 

We do not recommend using the 0.90 point for 
testing the significance of the inclusion of other pa-
rameters such as the parameter for length-dependent 
standard deviations into the model. We have used 
the 0.95 level for all other parameters. 

Setting up the Initial Systematic Search 

The following discussion contains many refer-
ences to the parameter estimates which are obtained 
by fitting the model with many different hypotheses 
to the data. For convenience we shall refer to the 
parameter estimates and associated log—likelihood 
function value obtained when fitting the model as-
sociated with a particular hypothesis to the data as 
a "fit". 

Some of the most important user inputs to the 
MULTIFAN model occur at the initial stages of the 
analysis. Decisions, based on biological considera-
tions, are made which affect the whole subsequent 
estimation process. In particular it is important to 
find the month in which the first age class enters 
into the data and number it month 1. The impor-
tance of this renumbering is discussed in Fournier 
et al (in press). 

Another important user input involves setting 
constraints on some of the the mean lengths to in-
sure that the model fits the obvious modes properly. 

Even when the mean lengths at age are (cor-
rectly) constrained, the model can still fit the 
data incorrectly. It does this by estimating the 
proportion-at-age corresponding to a constrained 
mean to be very small and fitting that portion of the 
data with another age class. To avoid this problem, 
lower bounds can be placed on the proportions-at-
age for the constrained age classes. 

The horizontal lines over the modes in Fig-
ure 1 represent the constraints which have been 
placed on the mean lengths of the correspond-
ing age class. these constraints were used 
in the first four length frequency data sets 
to "tell" the model to follow the progression 



of the first and second modes in the data. 

Results of the analysis 

Fournier et al (in press) discuss in detail the 
procedures used for hypothesis testing in the 
model. We shall not repeat this discussion here, 
but note that the hypotheses tested were: 

1. The existence of a length-dependent trend 
in the standard deviations of the distribu-
tion of the lengths-at-age. (A2 A 0) 

2. The existence of a seasonal component to 
growth. (01 0 0) 

3. The existence of size selective bias in the 
first age class. (bi 0 0) 
and as always 

4. The number of significant age classes 
present in the data. 

the results of the hypothesis tests were: 
1. No evidence of a length-dependent trend in 

the standard deviations of the distribution 
of the lengths-at-age. 

2. Evidence of a seasonal component to 
growth. 

3. Evidence of a size selective bias in the first 
age class. 

4. The number of significant age classes 
present in the data is 6. 

The report of the parameter estimates of the 
"best" (6 age class) fit to the pink shrimp data is 
given in Table la in the form in which it is produced 
by the MULTIFAN program. For comparison the 
best fits for 5 and 4 age classes are also included in 
Tables lb and lc. 

Table la Parameter estimates for the 6 age class fit to the shrimp data. 

Multiran v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 

Fit: BI 
Objective function value = 5531.74121; total penalty = 4.15326 

Maximum gradient component = 0.01472 
Number of non-empty length intervals: 309; Number of estimated parameters: 82 

Approximate number of degrees of freedom: 227 
Number of age classes: 6 
Parameter Estimates: 

von Bertalanffy K = 0.554 (1/year); L infinity = 22.8 
First Length = 12.414; Last Length = 22.176; Brody rho = 0.575 (1/year). 

Estimated age of the first age class = 1.42 years. 
First month mean length sampling bias for first age class: 2.126 

Mean length at age in month 1: 

12.33 16.79 19.36 20.83 21.68 22.17 

Standard Deviations of length at age in month 1: 

	

0.85 	0.85 	0.85 	0.85 	0.85 	0.85 
Average Standard Deviation = 0.851; ratio of first to last S.D.= 1.000 
Seasonal Growth Amplitude = 0.787; Seasonal Growth Phase = 0.102 

Instantaneous Total Mortality Rate = 0.53 (1/year). 

Selectivity Coefficients: 

	

0.18 	1.00 	1.00 	1.00 	1.00 	1.00 

_ Copyright 0 Otter Software 1989 
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Table lb Parameter estimates for the 5 age class fit to the shrimp data. 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 

Fit: AC 
Objective function value = 5503.62598; total penalty = 3.72740 
Maximum gradient component = 0.00667 
Number of non-empty length intervals: 309; Number of estimated parameters: 67 
Approximate number of degrees of freedom: 242 
Number of age classes: 5 
Parameter Eistimatea; 

von Bertalanffy K = 0.560 (1/year); L infinity = 23.4 
First Length = 12.247; Last Length = 22.168; Brody rho = 0.571 (1/year). 
Estimated age of the first age class • 1.33 years. 
First month mean length sampling bias for first age class: 	2.191 
Mean length at age in month 1: 

12.13 16.94 19.69 21.26 22.16 
Standard Deviations of length at age in month 1: 

	

0.88 	0.88 	0.88 	0.88 	0.88 
Average Standard Deviation = 0.880; ratio of first to last S.D.= 1.000 
Seasonal Growth Amplitude = 0.719; Seasonal Growth Phase = 0.110 
Instantaneous Total Mortality Rate = 0.71 (1/year). 
Selectivity Coefficients: 

	

0.13 	1.00 	1.00 	1.00 	1.00 

Table lc Parameter estimates for the 4 age class fit to the shrimp data. 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 
Fit: AS 
Objective function value = 5475.91016; total penalty = 3.58871 
Maximum gradient component = 0.01495 
Number of non-empty length intervals: 309; Number of estimated parameters: 52 
Approximate number of degrees of freedom: 257 
Number of age classes: 4 
Parameter Estimates: 

von Bertalanffy K = 0.472 (1/year); L infinity = 24.9 
First Length = 12.324; Last Length = 21.811; Brody rho = 0.624 (1/year). 
Estimated age of the first age class = 1.45 years. 
First month mean length sampling bias for first age class: 2.222 
Mean length at age in month 1: 

12.20 16.96 19.93 21.78 
Standard Deviations of length at age in month 1: 

	

0.91 	0.91 	0.91 	0.91 
Average Standard Deviation = 0.907; ratio of first to last S.D.= 1.000 
Seasonal Growth Amplitude = 0.689; Seasonal Growth Phase = 0.113 
Instantaneous Total Mortality Rate = 0.67 (1/year). 
Selectivity Coefficients: 

	

0.13 	1.00 	1.00 	1.00 

Copyright © Otter Software 1989 
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Table 2 Correlation matrix and estimated standard deviations of the parameters estimates for the 6 age class fit to 
the shrimp data. 

MultiFan v2.20.a 	Length-Frequency Analyzer 	Copyright (c) 1989 Otter Software 
Standard Deviations of Parameter Estimates: 	 Page 5 

L[1] L[2] 	Rho 	b1 S_Ampl S_Phas Ave SD 	Age 1 	L_inf 	K 	Z 
0.0536 0.0536 0.0055 0.1026 0.0581 0.0111 0.0213 0.0048 0.0816 0.0096 0.0370 

Correlation Coefficients between Parameter Estimates: 

	

L[1] 	L[2] 	Rho 	bl S_Ampl S_Phas Ave SD 	Age 1 	L_inf 
L[2] -0.076 

	

Rho -0.000 	1.000 

	

bl 	0.654 	0.476 	0.527 

	

S_Ampl 	0.186 -0.726 	0.076 -0.224 

	

S_Phas 	0.068 	0.224 -0.126 	0.289 -0.476 

	

Ave SD -0.144 	0.912 	0.020 	0.382 -0.676 	0.127 
Age 1 -0.049 -0.083 -0.152 -0.421 -0.028 -0.020 -0.074 

	

L_inf 	0.094 	0.442 -0.710 	0.222 -0.311 	0.383 	0.339 -0.163 

	

K -0.593 -0.440 	0.851 	0.441 	0.418 -0.104 -0.410 -0.216 -0.641 

	

Z 	0.540 -0.476 -0.527 -1.000 	0.224 -0.289 -0.382 	0.421 -0.222 -0.441 

As stated above, the covariance estimate for the 
parameter estimates (equation 6.1) should always be 
calculated to insure that the parameter estimates re- 
ally do determine a maximum of the log-likelihood 
function. The estimated correlation matrix and the 
estimated standard deviation of the parameter esti-
mates are shown in 2 in the form in which 
they are produced by MULTIFAN. 

An interesting comparison can be made be-
tween the hypotheses that there are four, five and 
six age classes. Although the six age class fit to the 
data produces the "best" fit according to the signif-
icance /tests, biological considerations suggest that 
there may be as few as four significant age classes 
in the data. From the point of view of scientific fish-
eries management the real question of interest is not 
how many significant age classes are present in the 
population, but rather whether the parameter esti-
mates for the four and six age class fits to the data 
lead to significantly different management regicrie4. 

Yield per recruit estimates were calculatedNr 
the best fit of the model for 

each of the different age class categories in 
Table 3. If one looks at a annual instantaneous nat-
ural mortality value of .43 for four, five and six age 
classes, one sees that maximum yield per recruit val-
ues occur between relatively equal Fishing mortality 
values (between 1.6 and 1.8). 

When one also looks at the relatilie proportions 
of the age classes in the different samples for best 
calculated fits of four, five and six age classes (Table 
4), one sees that the proportions of the first two age 
classes are relatively stable. In British Columbia 
these are the major two year classes used in pre-
dicting the relative strength of the next year fishable 
shrimp stock ij u-rni c4 ,40.10.1  Yon ,-00/4=4-  . 

Since there are not any independent methods 
of age validation, the next step to pursue would be 
to combine the results in a catch at age model and 

Agee which if any results can provide a consistent ex-
planation of the survey results and commercial sam-
pling information. 

- 	 Copyright (E)_Otter Software 1989 



Table 3a Yield per recruit table for 6 age class solution 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 

Yield Per Recruit 	Using estimated selectivities WL coff•0.0007 

Fishing 	Annual Instantaneous Natural Mortality 

Page 4 

Mort. 0.08 0.16 0.25 0.34 0.43 0.51 0.60 0.69 0.77 0.86 

0.03 0.686 0.508 0.382 0.292 0.227 0.179 0.142 0.115 0.094 0.078 

0.14 2.389 1.806 1.386 1.080 0.853 0.683 0.554 0.454 0.377 0.315 

0.26 3.264 2.515 1.967 1.560 1.253 1.019 0.838 0.697 0.584 0.495 

0.37 3.684 2.892 2.302 1.855 1.513 1.248 1.039 0.874 0.741 0.633 

0.48 3.860 3.082 2.492 2.038 1.685 1.407 1.185 1.006 0.861 0.741 

0.59 3.906 3.167 2.598 2.153 1.801 1.519 1.292 1.107 0.954 0.828 

0.71 3.884 3.194 2.653 2.224 1.879 1.601 1.373 1.185 1.029 0.899 

0.82 3.830 3.188 2.678 2.267 1.934 1.661 1.435 1.247 1.090 0.957 
0.93 3.762 3.165 2.684 2.293 1.971 1.705 1.483 1.297 1.139 1.005 

1.05 3.689 3.134 2.680 2.307 1.997 1.739 1.521 1.337 1.180 1.046 

1.16 3.617 3.098 2.670 2.313 2.015 1.764 1.551 1.370 1.215 1.081 
1.27 3.548 3.061 2.655 2.315 2.027 1.784 1.576 1.397 1.244 1.111 

1.38 3.484 3.024 2.638 2.312 2.035 1.798 1.595 1.420 1.269 1.137 

1.50 3.423 2.988 2.620 2.307 2.040 1.810 1.611 1.439 1.290 1.160 

1.61 3.367 2.954 2.602 2.301 2.042 1.818 1.624 1.455 1.308 1.179 

1.72 3.314 2.921 2.583 2.293 2.042 1.824 1.635 1.469 1.324 1.197 
1.83 3.265 2.889 2.565 2.284 2.041 1.829 1.644 1.481 1.338 1.213 
1.95 3.220 2.859 2.547 2.275 2.039 1.832 1.651 1.491 1.351 1.227 

2.06 3.177 2.830 2.529 2.266 2.036 1.834 1.656 1.500 1.362 1.239 
2.17 3.137 2.803 2.511 2.256 2.032 1.835 1.661 1.507 1.371 1.250 

Table 3b Yield per recruit table for 5 age class solution 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 
Yield Per Recruit 	Using estimated selectivities WL coff=0.0007 	Page 4 
Fishing 	Annual Instantaneous Natural Mortality 

Mort. 0.08 0.17 0.26 0.34 0.43 0.52 0.61 0.70 0.78 0.87 
0.03 0.596 0.457 0.354 0.278 0.220 0.176 0.142 0.116 0.095 0.079 
0.15 2.136 1.661 1.305 1.036 0.830 0.672 0.548 0.452 0.375 0.314 
0.26 3.036 2.391 1.903 1.529 1.240 1.015 0.838 0.697 0.585 0.494 

0.37 3.542 2.826 2.276 1.851 1.518 1.256 1.047 0.879 0.744 0.633 
0.49 3.809 3.076 2.507 2.061 1.708 1.426 1.200 1.017 0.867 0.743 
0.60 3.933 3.212 2.646 2.197 1.838 1.549 1.314 1.122 0.963 0.831 

0.72 3.971 3.278 2.727 2.286 1.929 1.639 1.400 1.203 1.040 0.903 
0.83 3.961 3.301 2.771 2.342 1.992 1.704 1.466 1.268 1.101 0.961 

0.94 3.923 3.299 2.792 2.378 2.036 1.753 1.517 1.319 1.152 1.010 
1.06 3.871 3.281 2.797 2.398 2.067 1.790 1.557 1.361 1.194 1.051 
1.17 3.812 3.254 2.793 2.410 2.088 1.818 1.589 1.395 1.228 1.086 

1.29 3.752 3.223 2.783 2.414 2.103 1.839 1.615 1.423 1.258 1.116 
1.40 3.692 3.191 2.769 2.414 2.112 1.855 1.635 1.446 1.283 1.142 

1.51 3.635 3.157 2.754 2.411 2.118 1.867 1.652 1.466 1.304 1.164 

1.63 3.580 3.124 2.737 2.405 2.121 1.877 1.665 1.482 1.323 1.184 
1.74 3.529 3.092 2.719 2.399 2.122 1.884 1.676 1.496 1.339 1.201 
1.86 3.480 3.061 2.701 2.391 2.122 1.889 1.686 1.508 1.353 1.216 

1.97 3.434 3.031 2.684 2.382 2.120 1.892 1.693 1.518 1.365 1.230 
2.08 3.392 3.003 2.666 2.373 2.118 1.895 1.699 1.527 1.376 1.242 
2.20 3.351 2.976 2.649 2.364 2.115 1.896 1.704 1.535 1.385 1.253 

Copyright © Otter Software 1989 
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Table 3c Yield per recruit table for 4 age class solution 

MultiFan v2.20.a 	Length-Frequency Analyzer 	Copyright (c) 1989 Otter Software 
Yield Per Recruit 	Using estimated selectivities WL coff=0.0007 	Page 4 
Fishing 	 Annual Instantaneous Natural Mortality 
Mort. 0.05 0.13 0.20 0.28 0.35 0.43 0.51 0.58 0.66 0.74 
0.02 0.321 0.264 0.218 0.180 0.150 0.125 0.105 0.089 0.075 0.064 
0.12 1.589 1.312 1.088 0.906 0.759 0.638 0.539 0.458 0.390 0.334 
0.21 2.477 2.057 1.716 1.438 1.210 1.024 0.870 0.742 0.636 0.548 
0.31 3.092 2.582 2.166 1.825 1.545 1.314 1.122 0.963 0.829 0.717 
0.41 3.508 2.946 2.485 2.106 1.792 1.532 1.315 1.134 0.982 0.853 
0.50 3.781 3.193 2.708 2.307 1.974 1.697 1.464 1.268 1.103 0.963 
0.60 3.953 3.356 2.862 2.451 2.108 1.820 1.578 1.373 1.200 1.052 
0.70 4.052 3.458 2.965 2.552 2.205 1.913 1.666 1.456 1.278 1.125 
0.79 4.100 3.517 3.030 2.621 2.275 1.983 1.734 1.522 1.340 1.184 
0.89 4.113 3.546 3.069 2.666 2.325 2.035 1.787 1.574 1.392 1.234 
0.99 4.101 3.552 3.088 2.695 2.360 2.073 1.827 1.616 1.433 1.275 
1.08 4.073 3.544 3.094 2.711 2.383 2.102 1.859 1.649 1.468 1.310 
1.18 4.035 3.525 3.090 2.718 2.398 2.122 1.883 1.676 1.496 1.339 
1.28 3.990 3.500 3.080 2.718 2.406 2.137 1.902 1.698 1.520 1.364 
1.38 3.942 3.470 3.064 2.714 2.410 2.146 1.917 1.716 1.540 1.385 
1.47 3.892 3.438 3.046 2.706 2.411 2.153 1.928 1.730 1.556 1.403 
1.57 3.842 3.405 3.026 2.696 2.408 2.157 1.936 1.742 1.570 1.419 
1.67 3.792 3.371 3.005 2.685 2.404 2.158 1.942 1.751 1.582 1.432 
1.76 3.744 3.338 2.983 2.672 2.399 2.158 1.946 1.759 1.592 1.444 
1.86 3.697 3.305 2.961 2.659 2.392 2.157 1.949 1.765 1.601 1.455 

Table 4a Estimated proportions at age for the 6 age class fit to the shrimp data. 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 
Proportions at Age: 	 Page 2 

Sample 
Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.06 0.20 0.27 0.45 0.25 0.21 0.03 0.05 0.15 0.26 0.07 0.14 0.01 0.02 0.02 
2 0.24 0.18 0.06 0.06 0.06 0.18 0.52 0.67 0.41 0.55 0.27 0.36 0.44 0.48 0.54 
3 0.24 0.32 0.26 0.19 0.19 0.09 0.16 0.16 0.24 0.13 0.49 0.41 0.44 0.29 0.17 
4 0.34 0.02 0.02 0.07 0.22 0.34 0.15 0.06 0.04 0.00 0.11 0.04 0.08 0.19 0.26 
5 0.02 0.02 0.03 0.13 0.17 0.12 0.09 0.05 0.09 0.00 0.04 0.02 0.02 0.02 0.02 
6 0.10 0.26 0.35 0.09 0.10 0.06 0.05 0.02 0.08 0.05 0.03 0.03 0.02 0.00 0.00 

Table 4b Estimated proportions at age for the 5 age class fit to the shrimp data. 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 
Proportions at Age: 

Sample 
Page 2 

Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0.06 0.19 0.27 0.45 0.25 0.22 0.03 0.05 0.15 0.29 0.06 0.13 0.01 0.02 0.03 
2 0.26 0.19 0.09 0.07 0.08 0.17 0.54 0.69 0.46 0.59 0.62 0.53 0.47 0.49 0.49 
3 0.38 0.33 0.26 0.22 0.27 0.22 0.18 0.15 0.21 0.06 0.18 0.29 0.46 0.38 0.33 
4 0.18 0.07 0.05 0.16 0.32 0.37 0.18 0.08 0.09 0.01 0.13 0.04 0.04 0.10 0.15 
5 0.11 0.21 0.32 0.09 0.07 0.02 0.06 0.03 0.09 0.05 0.01 0.01 0.02 0.01 0.00 

Copyright © Otter Software 1989 
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Table 4c Estimated proportions at age for the 4 age class fit to the shrimp data. 

MultiFan v2.20.a Length-Frequency Analyzer Copyright (c) 1989 Otter Software 

Proportions at Age: 	
Page 2 

Sample 

Age 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.06 0.19 0.28 0.45 0.25 0.23 0.03 0.05 0.15 0.29 0.07 0.13 0.01 0.02 0.03 

2 0.26 0.23 0.10 0.09 0.10 0.17 0.55 0.71 0.49 0.61 0.69 0.62 0.48 0.51 0.50 

3 0.47 0.34 0.26 0.30 0.47 0.47 0.23 0.17 0.22 0.04 0.20 0.24 0.47 0.42 0.42 

4 0.21 0.24 0.35 0.16 0.18 0.13 0.19 0.07 0.14 0.05 0.04 0.01 0.04 0.04 0.05 
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Figure I. Pinks shrimp 8 age class fit 
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Figure 1. Pinks shrimp 6 age class fit continued 
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