Northwest Atlantic

c

Fisheries Organization

Serial No. N1764

NAFO SCR Doc. 90/47

SCIENTIFIC COUNCIL MEETING - JUNE 1990

Northern Prawn (Pandalus borealis) Stock in Flemish Cap

by

J. L. Escalante, J. Vázquez and I. Mena

Instituto de Investigaciones Marinas Eduardo Cabello, 636208 Vigo, Spain

During a survey on R/V "Cornide de Saavedra" in July 1988, 120 trawl hauls (see fig. 2) were performed in Flemish Cap following the NAFO specifications for these surveys (Doubleday, 1981).

The gear used was a "Lofoten" sith a mesh size of 35 mm. It was trawled for thirty minutes in every location with a speed of 3.5-4 knots.

Random samples of shrimp were collected during the research survey in the strates 9, 10, 11, 12, 14, 15 and 19 (see fig.1).

Oblique carapace length (Rasmussen, 1953) was measured to the nearest 0.5 mm. Shrimps were classified into male and female by characteristics of the endopod of the first pleopod. Thus, we established the length-frequency in absolute figures and in values per thousand (see table I and figure 3).

The said specimens (subsamples) were kept frozen for subsequent observation at the laboratory. They were measured to the nearest half mm. The length measured was the so-called oblique carapace length (denoted CL). After measuring each specimen this was placed on tissue paper for draining for a few minutes whereupon the animal was weighted to the nearest 0.1 g. and then sexed.

Likewise, during a survey on R/V "Cryos" in July-August 1989, 129 trawl hauls (see fig.2) were performed in the same area with the same gear and technical characteristics. From the hauls which significant quantities of Northern prawn were detected in, we took a subsample of 1-1.5 kg. that was immediately frozen for further research at the laboratory.

In the two above-mentioned surveys a subsample of females was classified into primiparous (first time spawners) and multiparous (spawned previously) groups basing ourselves on the condition of sternal spines (Mc Crary, 1971). Then, we established the proportion between primiparous and multiparous (see table II).

It is very well known that <u>P.</u> borealis, due to the protandric hermaphroditism, has a distribution by sex according to depth. For the figures of 1989 we established three different depth ranges: d< 350, 350 <d< 450 and d> 450 m. The mean catch by hour

observed in these depth zones are 0.3, 4.7 and 8.3 Kg respectively, all of them below minimum levels for commercial fishing interest. The observed proportion males/females is shown in the figure 4.

The total biomass estimated following the swept area method was 2.164 t. in 1988 and 1.865 t. in 1989 (see table IV).

The BMDP 6D programme was used to calculate the regression lines of the length-weight relationships that we showed separately for males, all females, primiparous females, multiparous females and all the specimens in table III.

We realized that the gear design used was not the most appropriate to study the shrimp, but we will try to make one with more suitable characteristics for next years.

REFERENCES

Doubleday, W.G. (1.981).- "Manual of Groundfish surveys in the Northwest Atlantic". <u>NAFO Sci.Counc.Stud.</u>2 55 pp.

Mc Crary, J.A. (1.971).- "Sternal spines as a characteristic for differentiating between females of some panda lidae". J. Fish.Res.Bd.of Canada, 28: 98-100.

Ramussen, B. (1.953).- "On the geographical variation in growth and sexual development of tha deep-sea prawn (Pandalus borealis Kr.)". Norwg.Fish. and Mar.Invest.Rep. 10(3).

Table I	Length	frequencies	in	absolute	figures	and	in 🤅	%

•	[ma]				ales	198		19	
CL	1988	1989		1988	1989	total	%	total	%
4	· <u> </u>	1		_		÷		1	+
1.5	-	. 2		-	-	-	•	2	1
5	-	1		-	-	-	-	1	+
5,5	-	-			-	-	-	-	-
5 ·	 – 	1		-	-	-	-	1	+
5.5	· -	· •		-		-	-	-	-
,	32	4			-	32	3	4	2
.5	27	7			-	27	3	7	3
3	46	17		-	-	46	4	17	6
•5	101	21		-	-	101	10	21	8
) <u> </u>	161	62		. - .	-	161	15	64	24
• 5	303	79		-	_	303	29	81	30
	409	135		-	÷2.	409	39.	128	52
.5	346	128		1.	2	347	33	135	51
_	285	109		16	.3	285	27	114	43 22
.5	156 79	52 31		10	6	172 79	16 8	59 35	13
	79 91	- 47		-	. 4 3		9	50	19
•5	91 75	47 56		32		91 107	10	68	26
i. 1.5	141	91		1	10	142	13	101	38
	131	117	÷.,	26	10 19,	157	$15 \\ 15$	137	52
.5	117	72		81	47	198	19	119	45
, J	291	50		215	46	506	48	97	36
5.5	277	24		324	50	601	57	74	28
,.J i	190	20 -		596	44	786	74	66	25
5.5	107	23		592	5€	699	66	80	30
,,	21	-16		730	168	751	71	88	33
.5	11	24		-464	101	475	45	125	47
•	5	12		766	137	771	73	154	58
.5	4	4		444	140	448	42	146	55
) · · ·	- 8	2	-	695	138	703	66	140	53
.5	2	1		453	139	455	43	140	53
)	-	_		716	91	716	68	91	34
.5	1	_		181	68	182	17	68	26
	_	-		329	68	329	31	68	26
.5	-	-		106	48	106	10	48	18
2		23		146	-11	146	14	-11	15
2.5	-	· -		106	26	106	10	26	10
3	_ '	-		56	28	56	5	28	10
3.5	-	-		45	8	-45	4	8	3
ţ	-	-	· · ·	13	6	13	1	6	2
4.5	_	-		18	4 -	18	2	4	2
5	-	· _		15	_	15	1	_	_

total 3417 1209

1413

<u>CL</u>	Primipa	rous	Multiparous		
	1988	1989	1988	1989	
20.5		1			
21	-	1	. –	-	
21.5	-	1	-		
22	-	1			
22•5	1	1	-	-	
23	-	-	-	-	
23.5	2	2	-	-	
24	5	6	-	-	
24.5	8	11	-	-	
25	33	10	-	2	
25.5	55	10	5	4	
26	60	12	2	6	
26.5	65	13	1	14	
27	54	7	4	33	
27.5	43	15	6	48	
28	44	19	10	44	
28.5	27.	23	10	36	
29	42	15	- 15	48	
27.5	18	12	15	42	
30	22	7	13	42	
30.5	6	-	13	38	
31	Ċ	-	9.	26	
31.5	2	-	6	34	
32	1		4	18	
32.5	2	-	-	12	
33	· -	-	1	18	
33.5	-	-	7	2	
34		ur; ■ == == = = = = = = = = = = = = = = = =	1		
		167			

 \cdot

Table II.-Length frequencies of a subsamples of females separated into primiparous and multiparous.

	Year	a.	. p	r	p	N	x	sd(x)	у	sd(y)
Males	1988	0.0086	2.76	0.957	0.001	88	1.336	0.054	1.619	0.156
mates	1989	0.0079	2.77	0.971	0.001	1084	1.371	6.049	1.624	0.141
Females (prim.)	<u>1988</u> 1989	0.0066	2.86	0.974	0.001	61	1.441	0.038	1.941	0.110
	1989	C.001	2.87	0.942	-0.001	154	1,4306	0.033	1.8951	0.1010
Fémales	1988	0.0032	3.07	0.702	0.001	41	1.465	0.037	2.001	0.104
(multi)	1989	0.001	2.86	0,919	0.001	216	1.466	0.027	1.996	0.084
TOTAL	1988	0.0056	2.91	0.952	0.001	102	1.451	0.037	1.967	0.112
females	1989	0.0066	2.85	0.960	0.001	1245	1.450	0.039	1.954	0.115
TOTAL	1988	0.0049	2.94	0.983	0.01	190	1.3)8	0.073	1.806	0.220
	1989	0.0046	2.96	0.987	0.001	2358	1.400	0.070	1.800	0.203

Table III.- Length-weight relationships.

year	average catch by mile.	estimated biomass
1988	1.48 + 1.48	2 164 t.
1989	1.33 + 0.33	1 865 t.
		· · · · · · · · · · · · · · · · · · ·

Table IV.- Estimation of total biomass.

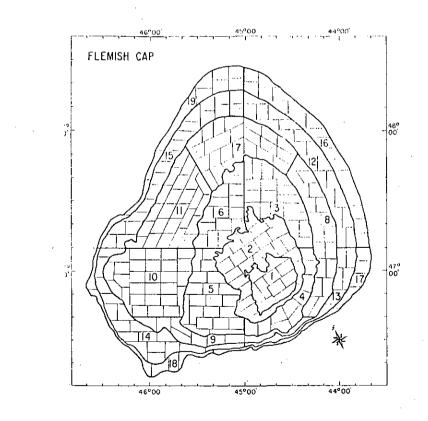


Figure 1.- Stratification of Flemish Cap.

- 4 -

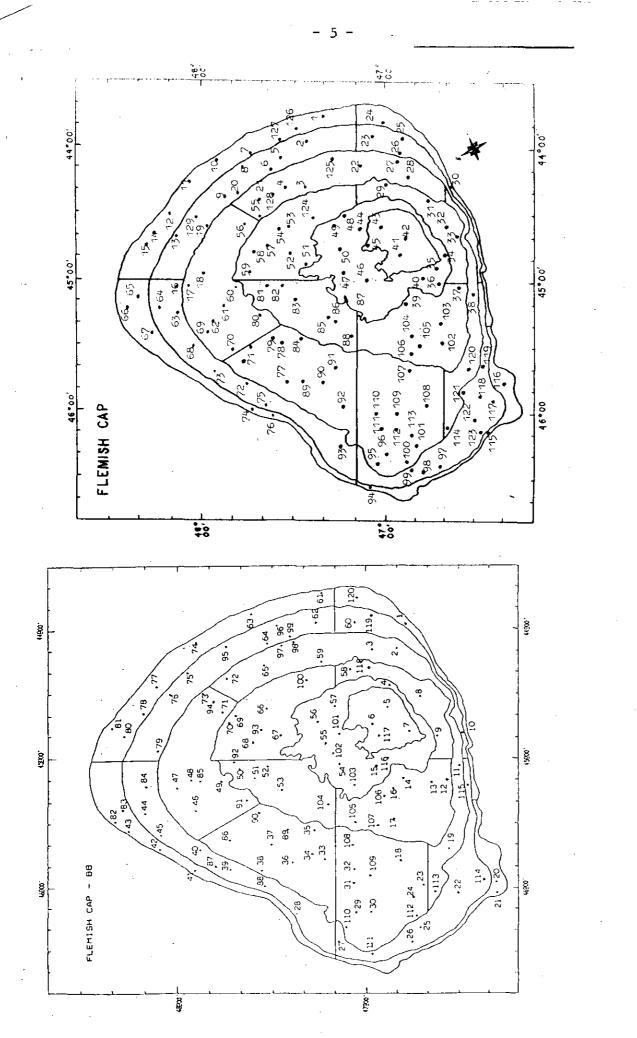
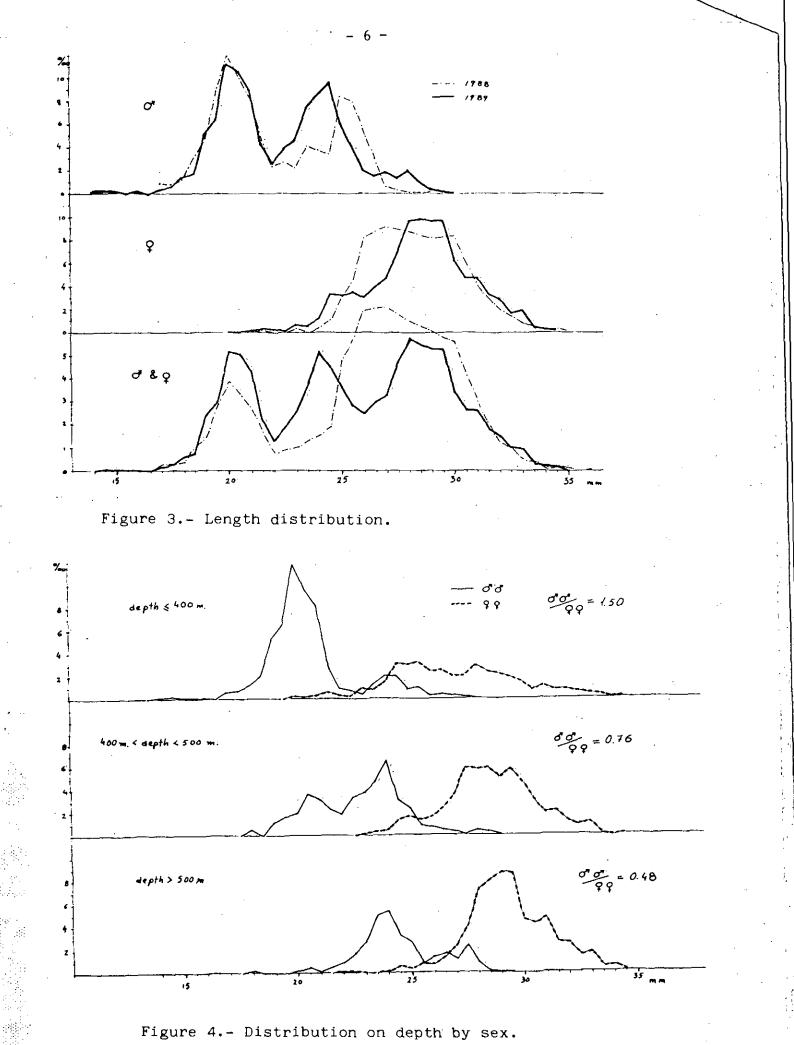



Figure 2.- Trawl hauls performed in 1988 and 1989.

* +

ie i