

Fisheries Organization

Serial No. N1780

NAFO SCR Doc. 90/59

SCIENTIFIC COUNCIL MEETING - JUNE 1990

Capelin School Surface Area Index for NAFO Div. 31 during the 1989 Spawning Season

· by

Brian S. Nakashima

Science Br., Department of Fisheries and Oceans P. O. Box 5667, St. John's, Newfoundland AIC 5X1

Abstract

The 1989 aerial survey utilized 26.0 flying hours and provided repeat coverage of at least three times for three out of four transects. No surveys were conducted between June 19 and June 26 due to poor weather conditions. The maximum total school surface area was observed on June 17 in Trinity Bay and on June 16 in Conception Bay. The estimate of total school surface area of 635,863 m² was the second highest in the series. Comparison of relative abundance among four indices suggested that the 1989 spawning biomass was higher than in 1988 and very near the highest level estimated in 1987.

Introduction

Background information on the use of the surface area of capelin schools estimated from aerial photographs as an index of relative abundance was documented in previous reports (Nakashima 1985, 1986). This manuscript reports on the methods and results of the aerial photographic survey conducted in 1989 along the shorelines of Conception Bay and Trinity Bay in NAFO Div. 3L (Fig. 1). The index of total school surface area of capelin schools is compared to other indices of relative abundance.

Materials and Methods

Particulars of previous aerial surveys including aircraft type, camera and film used, survey time, and altitudes flown are listed in Table 1. Since 1982 the survey has covered four transects as often as possible during the spawning season. The four transects were the outside of Trinity Bay from the Horse Chops to Gooseberry Cove, the inside of Trinity Bay from Gooseberry Cove to Hopeall, the outside of Conception Bay from Caplin Cove to Harbour Grace Islands, and the inside of Conception Bay from Harbour Grace Islands to Portugal Cove (Fig. 1). The best photographic conditions were in the morning when the sun angle was less than 50° and winds were light. Afternoon photography was usually stopped when the sun angle declined to 20°. Photography in the afternoon was more likely to be negatively influenced by winds and land shadowing.

In each photograph, capelin'schools were identified and their outlines traced on clear plastic sheets. The surface area of each school was measured with a compensating polar planimeter, corrected for altitude and expressed in m^2 . For each transect flown, the mean and median school surface areas, the number of schools, and the total surface area of all schools observed were estimated. Small schools, generally less than 55 m^2 , were not measured on photographs taken at 457 m because they were less than the resolving power of the planimeter used. The school index for each year was estimated by summing the highest total school surface area observed on each of the four transects. I assumed that a peak in school surface area was indicative of maximum inshore abundance for each transect for that year. The trend in the index derived from 1982-89 was compared to trends in catch rates from capelin traps and purse seines (Nakashima and Harnum 1990) and to projections of mature biomass from acoustic surveys (Anon. 1982, 1983, 1984, 1985, 1986, 1987, 1988). Assumptions relevant to the interpretation of aerial photographic data were discussed by Nakashima (1985, 1986).

ι,

L.

Results and Discussion

Coverage of the four transects was variable. The inside transect of Conception Bay was surveyed five times (Table 2d), the outside transects of both Trinity Bay and Conception Bay were covered three times (Table 2a, c) and the inside transect of Trinity Bay was photographed only twice (Table 2b). Due primarily to coastal fog no flights were conducted between June 19 and June 26. On June 27 we were able to fly between Bull Arm and Hopeall in Trinity Bay and between Bryants Cove and Portugal Cove in Conception Bay. Very few schools were observed in both areas, however no photographs were taken due to variable coastal fog conditions and low light levels at the time. Because we were experimenting with a new airborne sensor (the Compact Airborne Spectrographic Imager) to image capelin schools (see Nakashima et al. 1989), we moved our operations late on June 27 to Note Dame Bay where capelin schools were arriving and present in high concentrations. Approximately 12 hours of flight time were utilized for the CASI experiments. After collecting sufficient digital data were returned to Trinity Bay and Conception Bay on June 30 to continue the capelin school survey (Table 1).

The highest number of schools, the largest school sizes, and the maximum total surface area of capelin schools were observed between June 16 and June 18 in both bays (Tables 2a, b, c, and d). The peak occurrence in Conception Bay was on June 16 and in Trinity Bay on June 17. The size and prevalence of schools had already declined in Conception Bay by June 18 (Tables 2c, d). Although we were unable to survey Trinity Bay again until June 27, it was assumed that the same pattern had occurred there. It is likely that the peak occurrence of schools in Trinity Bay may have been underestimated. Evidence from examining capelin egg deposition on several beaches in Conception Bay (unpublished data) supported the assumption that the main spawning had occurred on June 16-18. Compared to 1988 when peak abundance as observed from aerial survey data was June 19-22 in Trinity Bay and June 24-25 in Conception Bay (Nakashima 1989), the highest total school surface areas estimated in 1989 were earlier, especially so for Conception Bay. From the non-photographic flight on June 27 and later photographic missions between June 30 and July 4 capelin schools had dramatically declined in number and in size since the June 16-18 flights.

The school surface area index was compared to the commercial catch rate series from the trap and purse seine fisheries and the projected mature biomass derived from Canadian acoustic surveys. The projected mature biomass for 1989 was estimated to be 3,345,000 t, the highest in the 1980's. The purse seine catch rate in 1989 was 24.3 t per day, the highest in that series, and continued a trend of increasing catch rates since 1987 (Table 3). The trap catch rate in 1989 was 6.7 t per day which was second to the 1987 rate of 8.8 t per day (Table 3). The school surface area index measured in 1989 was also the second highest in its series at 635,863 m², however unlike the trap catch rate the school surface index was 40% higher than the 1988 estimate (Table 3). It was noted by Nakashima and Harnum (1988) that the 1987 trap catch rate may have been biased up and the purse seine catch rate biased down. Despite the differences in the indices as to whether the spawning biomass in 1989 was the highest or second highest observed between 1982 and 1989, the indices do indicate that the mature biomass of capelin in Div. 3L in 1989 was higher than in 1988 and one of the highest in the 1980's.

The 1990 aerial survey will be conducted largely with the Compact Airborne Spectrographic Imager (CASI) and supported by aerial colour photography (Nakashima et al. 1989). This technique which records digital data will allow us to view the data following each flight, will permit us to collect data during less than ideal light conditions for aerial photography, and should reduce the time to analyze the data.

Acknowledgments

The 1989 photographic survey was conducted by Geomatic Technologies Ltd. N. Duggan assisted in recording observations. M. Y. Hynes assisted in the preparation of the manuscript.

References

Anon. 1982. NAFO Scientific Council Reports. p. 33-35.

1983. NAFO Scientific Council Reports. p. 52-54.

1984. NAFO Scientific Council Reports. p. 58-66.

1985. NAFO Scientific Council Reports. p. 74-77.

1986. NAFO Scientific Council Reports. p. 73-75.

1987. NAFO Scientific Council Reports. p. 73-75.

1988. NAFO Scientific Council Reports. p. 71-73.

Nakashima, B. S. 1985. The design and application of aerial surveys to estimate inshore distribution and relative abundance of capelin. NAFO SCR Doc. 85/84, Ser. No. N1058. 11 p.

1986. School surface area of capelin schools from aerial photographs as an index of relative abundance. NAFO SCR Doc. 86/14, Ser. No. N1126. 7 p.

1989. Capelin school surface area index for NAFO Div. 3L. NAFO SCR Doc. 89/44, Ser. No. N1621. 6 p.

Nakashima, B. S., G. A. Borstad, D. A. Hill, and R. C. Kerr. 1989. Remote sensing of fish schools: early results from a digital imaging spectrometer, p. 2044-2047. <u>In</u> Proc. of IGARSS '89, 12th. Canadian Symposium of Remote Sensing, Vancouver, B.C., July 10-14, 1989.

Nakashima, B. S., and R. V. Harnum. 1988. The inshore capelin fishery in NAFO Div. 3L in 1987. NAFO SCR Doc. 88/9, Ser. No. N1445. 16 p.

1990. The inshore capelin fishery in NAFO Div. 3L in 1989. NAFO SCR Doc. 90/60, 16 p.

¥•∗ r	Aircraft	Camera	Lens (≡m)	Filter	Film	Radar altimeter	Survey period	Altitude (m)	Survey flight time (hrs)
1982	Piper Aztec	RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	No	June 18- July 5	152-160	
1983	Aero-Commander 5008	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 19- July 9	457	21.8
1984	Cessna 310	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	¥es	June 17- July 7	457	38.5
1985	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 18− July 3	290-610	28,6
1986	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 19 July 5	381-579	13.4
1987	Piper Aztec	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	¥es	June 16→ July 3	457	37.0
1988	Piper Navajo Piper Aztec	Zeis5 RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	June 15- July 5	305-488	33.0
989	Piper Navajo	Zeis3 RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Y⊕s	June 16-27 June 30- July 4	434-732	26.0

Table 1. Summary of aerial surveys conducted from 1982 to 1989.

Table 2a. Schooling data for the outside part of Trinity Bay from Norse Chops to Gooseberry Cove, 1982-89.

		No. of Total surface		School area (m*)		
Date	No. of schools	area (mª)	Mean	± SD	Mediar	
June 19, 1982	7	2963	423	± 502	12	
June 26, 1982	0	0				
July 3, 1982	1	522	522		522	
June 23, 1983	7 ·	11330		± 1315	128	
June 24, 1983	10	13671		± 1260	108	
June 25, 1983	7	11662		± 2151	72	
June 29, 1983	8	2288		± 228	19	
June 30, 1983	13	18470		± 1613	1110	
July 1, 1983	3	6417	2139	± 2176	1173	
June 18, 1984	9	3236		± 423	22	
June 19, 1984	8	3962		± 703	27	
June 25, 1984	22	30467		± 1959	50:	
June 26, 1984	38	37219		± 1718	16	
June 29, 1984	9	2790		± 223	27	
July 3, 1984	48	43412		± 3010	. 22	
July 6, 1984	34	16015	471	± 485	16	
June 21, 1985	0	0				
June 25, 1985	0	* 0				
June 29, 1985	18	15536		± 983	31	
July 1, 1985	32	48808		± 1622	89	
July 2, 1985	24	49216		± 2965 ·	94	
July 3, 1985	9	2498	278	± 183	27	
June 18, 1987	59	41348		± 985	39	
June 22, 1987	81	45421		± 780	27	
June 28, 1987	15	5189		± 384	22	
July 3, 1987	9	12220	1358	± 3042	27	
June 19, 1988	41	45812		± 2569	27	
July 5, 1988	13	10714	824	± 617	50	
June 17, 1989	76	97325		± 2664	43	
June 30, 1989	4	1334	333	± 307	20	
July 3, 1989	0					

Table 2b. Schooling data for the inside part of Trinity Bay from Gooseberry Cove to Hopeall, 1982-89.

	No. of	Total surface	School area (m²)		
Date	schools	area (m ²)	Mean <u>t</u>	SD	Median
June 19, 1982	31	12724	411 +	712	149
June 26, 1982	29	35607	1228		299
June 29, 1982	11	62397		8378	592
July 2, 1982		31365	3921		705
July 3, 1982	2	1920	960 1		960
June 23, 1983	11	69583		6299	4241
June 24, 1983	26	39004		1880	753
June 25, 1983	30	174487		12759	781
June 29, 1983	35	152557		11139	781
June 30, 1983	46	199373		6927	556
July 1, 1963	25	189497	7580 ±	19791	2288
Fune 19, 1984	13	15624	1202 +		335
June 23, 1984	, 9	8314	924		502
June 25, 1984	96	31526	328 <u>+</u>		117
lune 26, 1984	96	40510	422 3		223
June 29, 1984	47	12053	256		167
July 3, 1984	57	23827	418 :		167
July 7, 1984	77	43245	562 4	1124	223
June 21, 1985	13	7041	542		270
June 25, 1985	35	22459	642		211
June 26, 1985	30	16540	551 -		214
July 1, 1985	125	60245	482	963	161
uly 2, 1985	130	195659	1503 4	6046 ⁸	179
June 28, 1986	59	95898	1625 <u>+</u>	4502	340
une 17, 1987	45	167567	3724 ქ	17727	223
une 19, 1987	91	399026		31197	167
une 27-28, 1987	37	59315		5612	446
July 3, 1987	5	1786	357	322	279
lune 16, 1988	27	18749		902	391
Sune 19, 1988	50	104179	2084 1		502
une 22, 1988	67	112863	1685 1		391
June 25, 1988	20	87103		15287	474
fuly 5, 1966	23	32252	1402 ±	3199	223
June 17, 1989	60	84349	1398 🛓	5040 ^a	191
July 3, 1989	0				

~

a -calculation excludes capelin in traps

Table 2c. Schooling data for the outside of Conception Bay from Caplin Cove to Harbour Grace Talanda, 1982-89.

			School erem (m*)			
Date	No. of schools	Total surface area (m ¹)	Mean	+ 5D	Median	
				1 00		
luna 29, 3982	10	6517	658	± 366	642	
Tuly 2, 1982	2	1 157	679	± 554	679	
tune 23, 1983	34	51838	1174	1 7266	530	
fune 24, 1983	16	10658	666	5 823	447	
tume 25, 1983	4	4408	369	1 184	734	
July 1, 1983	5	5413	1083	± 3884	112	
June 18, 1984	. 1	391	391			
June 19, 1984	0	0				
June 25, 1984	49	63779		± 2674	391	
Jone 26, 1984	67	65956		± 1091	279	
June 30, 1984	21	22320		± 1509	223	
July 3, 1984	4	1786	446	± 599	195	
June 20, 1985	0	0				
June 24, 1985	0	0				
June 27, 1985	30	8840	268		120	
June 28, 1985	125	50837	368		132	
June 29, 1985	22	19253	875	± 1169	291	
July 1, 1985	28	28036	991	± 1616	264	
July 2, 1985	66	69166	914	± 2064	223	
June 19, 1986	8.8	132455	1462	± 2853	279	
Jupe 16, 1987	139	184307	1322	± 2974	391	
June 19, 1967	143	112660	766	± 1516	279	
June 27, 1967	21	12164	539	± 559	391	
June 30, 1987	37	29462	790	± 1461	279	
June 20, 1988	54	36993		± 1099	223	
June 22, 1988	64	18916	230	± 324	112	
June 25, 1988	116	87534	676	± 1331	279	
July 4, 1988	51	39785	578	± 805	279	
June 16, 1989	180	266878	1483	± 5512	335	
June 18, 1989	162	197372	1132	± 3607	335	
July 1, 1989	8	6140	730	± 1359	198	

calculation excludes capelin in treps

Table 26. Schooling date for the inside of Conception Bay from Herbour Grace Islands to Portugal Cove, 1982-89.

	No. of	Total surface	School are	n (m')
Date	achaola	ates (m²)	Mean t SD	Hedla
une 26, 1982 AM	33	19408	571 ± 907	13
une 26, 1982 FM	20	36513	1826 ± 1914	208
une 27, 1982	48	151214	3134 ± 6015	52
une 29, 1982	27	30275	1121 ± 1707	41
uly 4, 1982	3	13042	4347 ± 4951	140
uly 5, 1982	7	5127	732 ± 582	59
une 23, 1983	• 53	97595	1787 ± 2754	55
une 24, 1983	30	56860	1819 ± 2965	55
une 25, 1983	29	/3301	2677 ± 3725	76
une 30, 1983	7	6091	1156 ± 1181	55
uly 1, 1983	1	2009	2009 *	ı ,
une 18, 1984	0	0.		
une 23, 1984	8	17689	2085 ± 2556	94
une 25, 1984	70	63891	879 ± 1789	22
une 26, 1984 une 30, 1984	33	23603	703 ± 1708 508 ± 467	22
uly 3, 1984	29 18	16852	508 ± 467 329 ± 254	33
uly 5, 1984	0	. 9040 0	329 ± 254	22
une 20, 1985	0	0		
une 24, 1985	2	1600	800 ± 834	80
une 26, 1985	17	10124	596 ± 1145	31
une 27, 1985	76	16552	214 ± 426	7
une 28, 1985	120	33858	274 ± 938	6
uly 1, 1985	16	43228	2702 ± 5140	30
uly 2, 1985	17	13436	676 ± 1872	19
une 19, 1986	39	31574	706 ± 1105	35
ione 20, 1986	4	3515	698 ± 769	36
une 22, 1986	86	30930	343 ± 616	13
uly 2, 1986	10	5019	502 ± 600	• 35
une 17, 1987	196	53066	263 ± 350	16
une 19, 1987	365	205846	556 ± 1482	16
une 21, 1987	• 179	74128	393 2 699	16
une 27, 1987	130	94747	681 ± 2389	16
une 26, 1987	63	68969	1036 ± 2402	, 16
une 30, 1987 uly 3, 1987	41	51336	1226 ± 2892	39
uly 3, 1487	• • • •	34863	742 ± 1400	27
une 19, 1988	77	25780	335 ± 599	22
une 20, 1988 une 24-25, 1988	31 289	7742	240 ± 256	16
uly 4, 1988	289	201642 32341	602 ± 1091 1295 ± 4242	39 25
une 16, 1989	186	107311	991 ± 2032	31
une 18, 1989	113	66283	686 ± 1422	27
une 30, 1989	0	VVLUJ	200 I 1461	21
	22	13905	587 ± 512	39
uly 1, 1969				

ż

.

a calculation excludes capelin in traps

. -

Table 3. Comparison of indices for estimating trends in relative spawning biomass. The catch/day index was based on capelin trap and purse seine data from logbook surveys (Nakashima and Harnum, 1990), the mature biomass index originated from NAFO Scientific Council Reports (Anon., 1982-88), and the school surface area index came from this study.

	Catch (t)/day				
Year	Purse seine	Trap	Mature biomass (t)	School surface area (m²)	
1982	16.4	3.1	≥346,000	223,150	
1983	18.8	3.4	648,000	367,280	
1984	14.3	2.9	384,000	216,500	
1985	16.4	4.6	596,000	357,270	
1986	19.0	4.6	1,300,000	283,150	
1987	18.1	8.8	2,830,000	762,953	
1988	20.7	6.2	900,000	447,651	
1989	24.3	6.7	3,345,000	635,863	

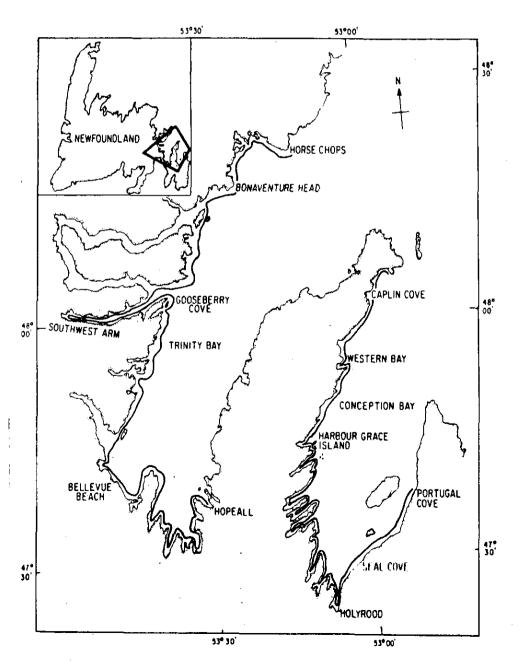


Fig. 1. Aerial survey track.