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Abstract 

The biological reference point F01  is used with yield-per-recruit models as a conservative 

alternative to fishing at Fina„ i.e., to maximizing yield per recruit at a given age of entry. As 

with other management benchmarks based on dynamic pool models, estimation of F0 I  requires 

estimates of growth parameters obtained from size-at-age data. Those parameter estimates have 

variability arising from sampling error and the intrinsic variability in growth itself. Using Monte 

Carlo methodology and size-at-age data from several Chesapeake Bay fisheries, we examined the 

effects of that variability on resulting estimates of F01 . The bias in estimating F0 I  was small in 

most cases, but the variance of the estimate was sometimes large. We also noted that many of 

the age data collected for Chesapeake Bay species do not seem to fit the von Bertalanffy growth 

model very well, and that growth during the ages sampled could equally well he described by a u-/ 

straight line. 
w 

(4 a Introduction in 
cn 

rn 	 Estimating the ages of samples from a fish population, or aging, is a fundamental step in 

N o 	quantifying growth. The aging of fish, like any laboratory procedure, is subject to both error 

(lack of accuracy) and variability (lack of precision). The result is that growth parameter o 

estimates derived from aging will themselves contain error and variability. Even . length-based 

2 PA 	 models that do not involve aging (e.g., Pauly 1987; Fournier et al. 1990) produce growth 

parameter estimates with nonzero variance and possible bias. Moreover, parameter estimates 
1-4  
CO 14 
C/C H 	 from length-based models are generally less certain than those from aging-based models, since 
‘al  

under any but the most restrictive assumptions, the former must contain subjective elements 

(Fournier et al. 1990). Because estimates of growth parameters are imprecise, estimates of 
ru. 

management benchmarks that rely upon the parameter estimates are also imprecise, and may be 

biased, even when the original parameter estimates are unbiased. 

We conducted a Monte Carlo study to examine the propagation of aging uncertainty 

(variability) on the Beverton and Holt (1957) yield-per-recruit (YPR) model when used with the 

' Address as of October 1, 1990: Southeast Fisheries Center, National 
Marine Fisheries Service, 75 Virginia Beach Drive, Miami, Florida 33149, USA. 
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management measure F01  (Gulland and Boerema 1973). Size-at-age data from several 

anadromous fish species found in Chesapeake Bay (eastern USA) provided examples. While these 

particular species are not managed by F01 , and indeed may not be particularly well suited to 

management by F", the simulations based on their growth data serve to illustrate the issues 

involved. 

The management benchmark Fo , was proposed to obtain relatively high yields while 

avoiding overfishing (Gulland 1983). The unique estimation of For  for any age at entry c is 

possible because a curve of YPR against instantaneous fishing mortality F exhibits a 

monotonically decreasing slope; i.e., for all F, (32YPR <  0. Fo. , is defined as the value of 
af-2  

F at which the slope of such a curve is 0.1 times its slope at the origin. (Deriso 1987 gives the 

equivalent mathematical definition.) Because F0.1  is defined in terms of the Beverton-Holt yield-

per-recruit model, it requires estimates of the three von Bertalanffy (1938) growth parameters W,„„ 

to , and K, making it vulnerable to variability in the underlying size-at-age data. The purpose of 

this study was to characterize the sensitivity of F0 1  to variability in aging, using representative 

example data sets. 

We are aware of two previous studies that examined the effects of error and variability 

in size-at-age data on dynamic pool models. Lai and Gunderson (1987) compared age estimates 

made from otoliths, dorsal and pectoral fin rays, and scales of walleye pollock (7heragra 

chalcogramma). Although Lai and Gunderson described theirs as a study of the effects of aging 

error, and in some ways it was, they made no attempt to verify the absolute accuracy of any age 

determinations, but arrived at their estimates of error by comparing age determinations made by 

different readers and methods. Thus they used lack of precision, rather than lack of accuracy, 

as their basis for estimating the general magnitude and distribution of aging errors and their 

effects. 

In their simulation study, Lai and Gunderson (1987) showed that the effects of aging error 

on estimated growth and survival parameters of walleye pollock can range from insignificant to 

substantial. In the presence of aging error, the average mean length at age was typically 

overestimated for ages I through 4 and underestimated for older ages. The bias increased with 

increasing aging error and appeared to arise from misallocation of younger fish to older age-

classes and vice versa. From a management point of view, the most serious biases occurred from 

underaging. When ages are underestimated, the optimal fishing mortality F„,a, for a given te  is 

overestimated, and the optimal value of k. for a given F is underestimated. Either error results 

in a less conservative management regime that could encourage growth overfishing or even reduce 

the expected recruitment of the stock. 

In a Monte Carlo study, Restrepo and Fox (1988) examined the effects of parameter 

uncertainty on a three-parameter relative yield-per-recruit model (Holt 1962, Beverton 1963). 

The study randomly drew sets of parameters from predetermined probability distributions chosen 

to reflect the relative importance of uncertainties in the parameters. The equilibrium relative yield 

per recruit I', was given by 

Yt 	
3 	Um - Cr i  

E;(I - Cd (hin°1 E 	 
" 0  I + n(MI KV I  (I - (I) 

where E is the exploitation rate (the ratio of fishing to total mortality, FIZ); C is the ratio of the 



mean length at first capture, 	to the asymptotic length, L.; hfIK is the ratio of the rates of 

natural mortality and von Bertalanffy growth; and i indexes the current set of three parameters 

(E, C, and M/K). 

Restrepo and Fox (1988) repeatedly made random changes to E, C, or both and computed 

corresponding values of relative YPR. The percent change in yield-per-recruit for the ith set of 

values was then computed as 

PCY, = 100 (Y7 — Y',) / Y,' 	 (2) 

where Y7 is the equilibrium relative yield per recruit after the parameters are changed., A non-

negative change in YPR always occurred when C was increased by 0.0 to 0.1 and E remained 

constant. Other results demonstrated that improving knowledge of E could reduce the coefficient 

of variation of PCY significantly, while improved knowledge of M/K and C, did not result in a 

substantial reduction. The degree to which the results could be generalized beyond the examples 

used by Restrepo and Fox was not stated. 

In the present study, we examined the effects of intrinsic variability in the size-at-age data 

when estimating F01  for several actual sets of growth data. We used the full Beverton-Holt 

(1957) seven-parameter yield-per-recruit model and examined estimates both of Fo , and of yield 

at Foi , which we designate Y01 . 

Methods 

Length-at-age data were supplied by colleagues at the Maryland Department of Natural 

Resources and the Virginia Institute of Marine Science (VIMS) as part of a survey to determine 

the availability of such data for Chesapeake Bay species (Prager et al. 1990). The only species 

with substantial bodies of aging data were American shad (Alosa sapidissima), alewife (Alosa 

pseudoharengus), bluehack herring (Alosa aestivalis), and striped bass (Morone saxatilis). 

Population and management parameters (other than growth parameters) for these species are 

summarized in Table 1. Because of substantial sex-related differences in growth, analyses of 

alosid stocks were performed using both pooled data and data separated by sex. The data for shad 

were collected geographically; results were computed separately for data from each geographical 

area. The stock structure of these alosid species is at present not well known. 

The simulation procedure for each data set began with estimation of a reference set of von 

Bertalanffy growth parameters (Le„, K, and to; Table 2) and their covariance matrix. Estimation 

was by nonlinear least-squares (Marquardt 1963) as implemented in the FISHPARM computer 

program (Prager et al. 1989). Parameter estimates for several data sets did not converge within 

the 150 iterations allowed (Table 2), but since the parameter estimates at that stage seemed to 

characterize mean growth well, the analysis was continued. To compute asymptotic weight (W,e ) 

from asymptotic length (Lo,), we assumed that weight was proportional to length and divided by 

200 as a scaling factor. Because Woo  appears in the yield-per-recruit equation as a constant only, 

its absolute magnitude was not important in this study, where the main concern is change in yield, 

rather than its central value. 

The second step of the analysis was to estimate a reference value of F, y , based on 

management and growth parameters (Table I; Table 2). We estimated Fo , with an iterative 

bisection method, chosen for robustness and simplicity. Because growth in some of the example 

data sets appeared quite linear, it was important that final estimates of F0.1  did not imply 
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substantial harvest beyond the oldest age present in the data. We verified that, under the 

postulated values of mortality, no more than I% of an initial population would survive to the 

oldest observed age. This confirmed that estimates of F0.1  were not based on artificially large size 

estimates for unrealistically old fish. 

The next step in the analysis was simulation of the natural variability in aging and 

parameter estimation. For each data set, 1000 random triplets (3-vectors) of the growth 

parameters (1,„„, K, and t0) were generated from a trivariate normal distribution whose mean 

vector was the reference set of growth parameter estimates and whose covariance matrix was their 

estimated covariance matrix. Trivariate normal random numbers were generated by the algorithm 

of Fishman (1978). A scatterplot of 1000 pairs of simulated values of K and La, for American 

shad demonstrates the elliptical shape typical of bivariate normality (Figure la). In some data 

sets, the growth parameter estimates were very highly correlated (Figure lb). When the estimates 

of K and Lm  were correlated in the extreme (r > 0.999), the random number generator failed, 

and random triplets could not be generated. The simulation procedure was abandoned for these 

stocks, identified in Table 2. In the few instances where a negative growth rate (K) was 

generated, the vector of three growth parameters was discarded. In addition, we truncated the 

normal distribution at ±3.5 standard deviations to ensure numerical stability. Because of this, 

some simulations included slightly fewer than 1000 realizations. 

The final step in the simulation was estimation of F0.1  for each of the approximately 1000 

vectors of growth parameters. This was done using the same bisection algorithm used for the 

reference value; the resulting F01  and Y0.1  were recorded for each vector. Analyses of the 

variability and bias of Fin  and Y01  were then made for each data set. The bias was defined as 

the difference between the mean simulated F01  and the reference value. To judge whether 1000 

random vectors of growth parameters would adequately describe the results, several additional 

simulations were conducted using 5000 random vectors. 

Results and Discussion 

The growth data collected for these Chesapeake Bay species are very variable. In many 

cases, the range of sizes within an age is as large as the range of mean sizes for all ages. Despite 

this variability, many of the data sets can still define a model of mean size at age fairly well. 

However, not all of the. data sets support unique estimation of a three-parameter model like the 

von Bertalanffy. This is indicated by the large coefficients of variation on the parameter estimates 

(Table 2) and the very high estimated correlations between parameters. This phenomenon was 

associated with a pattern of nearly linear growth in the observed data and fitted growth models. 

The problems we encountered with apparent linear growth violate an important assumption 

in yield-per-recruit modeling, and such data should be analyzed cautiously. Of the 29 data sets 

that we originally analyzed, 12 exhibited this pattern, and 8 could not be examined by Monte 

Carlo simulation as a result. While this was not a study on the quality of age data collected in 

Chesapeake Bay, the topic deserves further investigation. 

The relationship of simulated growth parameters to the resulting est incites Of /r;, varied  

considerably. (Since the three growth parameters were highly correlated, this discussion is in 

terms of K only.) In the striped bass data, the estimated F01  was positively correlated to K, but 

in the alosid data the opposite pattern was observed (Figure 2). The major difference between 

these groups is that the alosids have a ratio of M to K of somewhere between 10 and 100, while 

in striped bass, this ratio is believed to be around 3. 
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The relationship of the simulated values of K to those of Yo. , were very similar in all data 

sets, exhibiting a maximum at or near the reference value of K (Figure 3). The explanation for 

this is that the growth equation describes growth during the exploited years similarly, even with 

simulated growth parameters that are quite far from the reference values. In addition, the 

reference value of F0 .1  is close to F„,,,„ so that the reference value of Y0.1  is close to Thus 

a simulated value of K any significant distance from the reference value implies an estimated 

value of yield lower than the reference value. 

The observed frequency distributions of simulated values of F01  and }In  included 

unimodal, bimodal and some highly skewed distributions. In most cases, the shapes of the 

distributions of F0.1  and Y01  were dissimilar. The distribution of F01  for the striped bass data 

collected in 1983 is approximately symmetrical, while the distribution of Y0.1  is skewed to the left 

(Figure 4). The distribution of F0.1  for shad in 1987 is highly skewed to the left, while the 

distribution of Y0 I  is bimodal (Figure 5). 

For evaluation of bias and variability, we introduce two quantities, relative bias and 

relative range. The relative bias in F0.1  is the bias divided by the reference estimate of F0.1  and 

expressed as a percentage. A relative bias of 5%, e.g., means that the bias is 5% of the reference 

estimate of F01 . The relative range is the interquartile range (the 75th percentile minus the 25th 

percentile) divided by the reference estimate and expressed as a percentage. A relative range of 

10% would indicate that half of the simulated values fell within ±5% of the reference estimate 

of F0.1 . Similar quantities were defined for Y01 . 

The simulations using 5000 realizations of the growth parameter vector showed patterns 

of Fni and I'0.1  very similar to the simulations using 1000 sets. The irregularly shaped 

distributions of F01  and 10.1  remained irregular with the larger number of realizations. In a few 

cases, the relative bias in F01  or Yo, decreased slightly. For example, the bias for the female 

shad (1987) data decreased from -7.3% to -6.7%, and the relative range decreased from 13.9% 

to 13.1%. However, these quantities increased slightly in other cases. Because the differences 

were inconsequential, the results of the longer simulations are not discussed further. We judged 

that they demonstrated the adequacy of 1000 realizations for the simulations. 

The biases resulting from growth variability were surprisingly small, typically of the order 

of -0.02/yr in the estimate of F01 . The relative bias for all 21 data sets analyzed was negative, 

and usually smaller than 1% ("Fable 3), but had a highly skewed distribution (Figure 7a); the mean 

was -2.6%, and the median was -1.3%. The examples for which the growth parameters failed 

to converge were not associated with larger biases, and in fact are concentrated among the 

examples with little bias (Figure 7), although this distribution is likely to be due to chance. 

In only one example was the relative bias in F01  more extreme than -10%; this was the 

analysis of female shad from the Nanticoke river in 1989. This analysis, with a bias of -16.9%, 

exhibited several warning signs. During the simulation, the algorithm failed to converge on F0 , 

37 times out of 1000. Although the corresponding trials were discarded (and thus did not affext 

the results directly), they suggest that the data are pathological. The relative range of simulated 

values of F01  for these data was among the highest of all analyses, at 26.0%, and the histogram 

of these values (Figure 6) reveals an extremely skewed distribution. The simulation indicates the 

necessity for caution in developing management models that might use such growth data. 

The second-largest bias (-7.7%) occurred in the analysis of 1988 data on female shad 

from the Nanticoke river. The relative range of 29.1%, the highest of all data sets, demonstrates 
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that variability in growth can propagate through dynamic pool models to create a broad 

distribution of possible outcomes. Here, also, the simulations suggest a cautious approach to 

using these growth data for management purposes. 

Compared to the very small biases, the variability in F0.1  was larger but usually moderate 

(Table 3). The mean relative range was 10.2%; the median, 6.9%. The distribution was highly 

skewed, with four of the 21 analyses having a relative range over 20% (Figure 7b). For these 

stocks, half the simulated values of F01  were more than 10% different from the reference 

estimate, still not a very large error. 

The simulated estimates of Y01  exhibited more bias and variability than the estimates of 

F0.1  (Table 4). Biases were generally negative, and the examples whose growth parameters did 

not converge had larger relative biases and larger relative ranges (Figure 8). That bias in yield 

should be larger than bias in F is not unexpected, because most of the simulated growth vectors 

for a particular example resulted in estimates of yield lower than the reference value (Figure 3). 

The relationship of F01  to the optimum yield was discussed earlier as being instrumental in this 

phenomenon. 

The alosid stocks we examined, which have a very high ratio of M to K and a large 

spawning mortality, are unlikely candidates for management by F 01 . The striped bass data 

probably provide more representative examples. In those examples, we saw very small relative 

biases in F0.1  (less than 1%) and relatively small relative ranges (less than 20%). However, 

estimates of yield were biased downwards as much as 40% (the figures for alosids are worse). 

A reasonable question is how the simulation results are related to specific parameters such as the 

correlation between L., and K or the ratio MIK. We are initiating additional simulations aimed 

at answering this question for a range of reasonable parameter values, but those simulations are 

not complete at this time. 

It is likely that our methods certainly underestimate the actual bias and variability that 

would be expected in using these data for YPR modeling. This is because we considered only 

the variability in the growth data as collected, without considering such other sources of error and 

variability as gear selection and other non-random sampling or systematic aging errors. That the 

Beverton and Holt YPR model assumes weight proportional to length cubed is another source of 

potential error. Deviations from this assumption would probably increase the variance of the 

results. 

Although the methods described here could readily be used to examine the effects of 

systematic errors, we looked only at variability. The reason for this was that we could estimate 

variability from the data at hand. Estimating the magnitude and structure of aging errors is best 

done by a validation study, a major undertaking. Nonetheless, it is logical to expect that aging 

error is more important than variability. The results of Lai and Gunderson (1987) indicate that 

substantial bias can be introduced into yield-per-recruit models by the presence of nonsymmetric 

aging error. Since aging error frequently involves systematic averaging or underaging, it is likely 

to be nonsymmetric. We expect that such errors would tend to bias estimates of F n I . Although 

we found that random variability caused only negative biases in F0.1 , there is no reason to believe 

that systematic errors cause only negative biases. This is important because negative bias implies 

a more conservative management scheme; conversely, positive bias in the estimate would suggest 

less conservative management. Another reason that the detection and correction of systematic 

errors is particularly important is that the bias and variability caused by systematic errors are not 

reduced by increased sampling intensity. 



The technique presented in this study illustrates a method that could be used to examine 

similar issues, such as maintaining a particular level of eggs per recruit (Prager et al. 1987) or 

spawning stock per recruit (Goodyear 1989, Sissenwine and Shepherd 1987). Since the simulation 

approach is flexible, it could he modified to investigate the effects of systematic errors, random 

variability, or a combination of the two; the variability can follow any empirical or theoretical 

distribution. In addition, the method is not limited any particular biological reference point or 

management benchmark. We chose F0.1  for this study as a representative measure in common 

use. However, it might not be appropriate, e.g., for a species exhibiting large discontinuous 

mortality, such as spawning mortality. In such a case, a numerical simulation model would be 

more appropriate, as it could incorporate the discontinuous mortality. For stocks at low 

population levels, a management benchmark related to reproductive success might be preferable 

to (or used in conjunction with) one based on yield. However, any model that uses growth 

parameters can be analyzed by the methods shown here. They can also be used together with 

aging validation studies to apply any growth-based management scheme with better awareness of 

the uncertainties involved and the likely outcomes. 
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Table 1. Fixed biological and management parameters for the examples used in this study. 
Parameters are 4, age at first capture; M, instantaneous rate of natural mortality; r,, oldest age 
captured (here set arbitrarily high); 4., age of recruitment to parent stock (not important to this 
study). 

Species 4., yr M, yr -1  4, yr 4., yr 

Alewife 3 1.1 50 2 

American shad 2 1.1 50 

Blueback herring 3 1.1 50 2 

Striped bass 2 0.2 50 1 
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Figure 6. Histogram of F0.1  values for female American shad collected in the Nanticoke River, 

1989, revealing an extremely skewed distribution. 
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Figure 7. (a) Relative bias and (b) relative range in simulated values of F01  for the 21 growth 

data sets analyzed by Monte Carlo simulation. Relative bias is the bias divided by the reference 

value of F01 ; relative range is the interquanile range divided by the reference value. Shading 

indicates whether the reference von Bertalanffy growth parameter estimates converged or not. 
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Figure 8. (a) Relative bias and (b) relative range in simulated values of Y01  for the 21 growth 
data sets analyzed by Monte Carlo simulation. Relative bias is the bias divided by the reference 
value of Yo t;  relative range is the interquartile range divided by the reference value. Patterns 
indicate whether the reference von Bertalanffy growth parameter estimates converged or not. 
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