NOT TO BE CITED WITHOUN PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N1831

NAFO SCR Doc. 90/96

SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1990

(Revised)

Consistency of Some Northwest Atlantic Groundfish Stock Assessments

by

Alan Sinclair and Dominique Gascon

Fisheries Research Division, Dept. of Fisheries and Oceans Maurice Lamontagne Institute, C. P. 1000, Mont-Joli, Quebec, Canada G5H 3Z4

and

Robert O'Boyle

Marine Fish Division, Dept. of Fisheries and Oceans Bedford Institute of Oceanography, P. O. Box 1006, Dartmouth, Nova Scotia Canada B2Y 4A2

and

Denis Rivard

Fisheries Research Branch, Biological Sciences Directorate Dept. of Fisheries and Oceans, Ottawa, Ontario, Canada KIA 0E6

and

Stratis Gavaris

Marine Fish Division, Dept. of Fisheries and Oceans Biological Station, St. Andrews, New Brunswick, Canada E0G 2X0

A. Acknowledgements

This report presents the results of a workshop held by the Statistics, Sampling, and Surveys Subcommittee of the Canadian Atlantic Fisheries Advisory Committee, and the meeting was attended by several Atlantic Canadian stock assessment scientists (Annex 1). While the authors coordinated the individual working groups and presented background material, the participants carried out many of the analyses and participated in the drafting and review of the report. Without this cooperative effort the work would not have been possible. We would also like to thank F. Savoie for help in preparing the figures and F. Melanson for helping to type the manuscript.

B. Abstract

The consistency of population estimates from seven northwest Atlantic groundfish stock assessments was investigated using a combined case study and simulation approach. The stocks investigated were 2J3KL cod, 3Pn4RS cod, 4TVn cod, 4VsW cod, 4TVW haddock, 4X haddock, and 5Z haddock. For each stock a series of assessments were performed using an objective and automated calibration technique (ADAPT). The assessments contained progressively shorter time series of input data and yielded several estimates of the same populations. The variability of the resulting estimates of the same population was investigated in terms of both range and trend when compared to those obtained from the assessment with the longest data series (the reference). For several stocks there was a tendency for the annual estimates to be higher than the reference estimates. Different formulations of the calibration model were attempted to eliminate this trend in selected case studies. Simulations of model error and statistical errors were also used to investigate possible causes for the observed trends. The tendancy for annual assessments to overestimate the reference estimates was reproduced in cases of catch misreporting and misspecification of natural mortality in the presence of a trend in fishing mortality.

I Introduction

Virtual population analysis (VPA) (Gulland 1965) and cohort analysis (Pope 1972) have been used extensively for estimating fish stock size for management purposes. The method basically consists of adding up the catches of a cohorts of fish while adjusting for non-fishing or natural mortality (M) during the life of the cohort (Ulltang 1977). An estimate of the number of surviving fish in the last year of the time series is required to begin the process. We have called this process sequential population analysis (SPA). These estimates can be derived by calibrating the analysis with an independent index of stock size. Calibration consists of choosing the set of survivor estimates that produce the best match between the SPA population estimates and the index. While the SPA estimates from the most recent time are highly sensitive to the assumed number of survivors, those from earlier years are not, provided that fishing mortality is high enough (Pope 1972). Thus the population estimates are said to converge to values that are insensitive to the input values. After doing assessments for several years it is possible to compare the most recent estimates of the populations in years gone by to those that were obtained annually in previous assessments. This is what we have called retrospective analysis.

A working group was formed in 1986 by the Canadian Atlantic Fisheries Scientific Advisory Comittee (CAFSAC) to investigate the consistency of the northwest Atlantic finfish stock assessments which used SPA. It was noted that, for several stocks, the yearly assessments generated population estimates more optimistic than those from the reference year (i.e. the most recent assessment) (Gascon 1988, Annon. 1987). The pattern was age structured with the deviations from the current assessment increasing with age. However, the assessments of the day employed a wide variety of ad hoc calibration techniques, too many to allow the systematic examination of the assessment deviations in relation to assessment method.

Thus a more objective calibration framework was developed and this has become the main analytical tool of recent Atlantic Canadian stock assessments. We like to call it the adaptive framework, or ADAPT for short (Gavaris 1986 a). With ADAPT one treats the independent index as observed values and SPA is used as a model produce predicted values. Functional relationships between the observations and the model results are defined, usually in the form of linear relationships on an age-by-age basis. The calibration process consists of defining an objective function, usually in terms of minimizing residuals between observed and predicted values, and then using non-linear techniques to choose the set of input parameters for SPA and the regression coefficients that satisfy the objective function. The residuals may be treated in different ways to account for scale, relative error of the observation, and their distribution. Two common treatments are a log transformation and standardization by the inverse standard error of the observation, and standardization by the basis for choosing the best estimate, determination of functional relationships, appropriate treatment of errors).

CAFSAC then directed its Statistics, Sampling, and Surveys Subcommittee to evaluate the use of retrospective analysis as a tool for measuring the accuracy of past stock size estimates. A workshop was held in Halifax, N.S. in February 1989. Two main issues were considered, how reliable are the reference (those obtained from the most recent SPA for the complete time series) and the assessed (all other) stock size estimates, and what is the best way to do a retrospective analysis. The discussions centered on population size estimates and did not consider catch projections. This was done in order to focus attention on the SPA. Population estimates are important to the accuracy of catch projections, but other factors such as target fishing mortality, weights at age, and partial recruitment in the projection years are also important.

II Previous Use of Retrospective Analysis. D. Gascon

SPA is a composite of at least three independent models: 1)A model relating population numbers, fishing mortality (F), and catch (the Baranov catch equation). This model includes a major assumption about natural mortality (M), which is a rather untractable parameter. 2) A model about age specific susceptibility (or relative catchabilities) to the fishery: the partial recruitment. 3) A model relating other independent indicies of stock size to those obtained from model 1.

The problem with model 1, is that one has n observations to estimate n+1 independent parameters (the n+1th parameter being F or population numbers in the last year: therefore, model 3 is used to estimate the absolute value of F or population numbers in the last year, whereas model 2 is used to partition F amongst ages. The latter model may not be required if age specific indicies are available, although it is usually included in one form or another to estimate terminal fishing mortalities of historical cohorts.

In spite of its widespread use, SPA has received little attention of either theorists of field biologists, with perhaps the exception of the so-called tuning techniques (see review in Anon. 1988a), whose aim is to relate the three models. The use of "Retrospective Analysis" in assessing the performance of SPA is examined in this section of the report.

Gascon (1988) has examined the ratios between average F estimated in the final year of SPA with the F's in the converged part of the most recent SPA, for

ч I

1

several gadoid stocks assessed at CAFSAC, NAFO, and ICES. It was found that the range was quite large (x0.4 and x2.0 of converged F), but also that there was a definite bias toward underestimating F (6 overestimates vs 44 underestimates after 3 years) and therefore overestimating population size.

- 3 -

Rivard (1981) did a similar analysis but on a shorter data set. No bias was visible from his data; however, since he was working on a much shorter time series (in the unconverged part of the SPA), bias may not have yet become apparent. Rivard and Foy (1987) undertook the most comprehensive study of errors in catch projections in which they attempted to partition errors amongst the various source of input. In all cases, initial stock size in the projections was the most important source of error, followed by partial recruitment and target fishing mortality, and by weights at age in projected years. Variation in stock size was estimated by means of retrospective analysis: they found an average absolute difference of 42.7% in the stock sizes estimated for 1980 and of 49.8% for 1982 versus the reference estimates (as of 1985 assessments). There again, there is an evident bias toward overstimating stock sizes (26 overestimates vs 9 underestimates), and amongst the underestimates, 4 occured for stocks which have a poor or inappropriate database (i.e. 3NO cod, 4RST redfish). Population estimates (4 under/3 over). For gadoids and pleuronectids, bias toward overestimating is systematic (19 over/3 under).

Similar analyses have appeared in Anon. (1984), describing the errors in assessments of the ICES and have been produced systematically in some assessments (Anon 1985, 1988b), but owing to the difficulty of their interpretation, these analyses have tended to disappear recently.

Pope and Gray (1983) examined the precision of catch projection of North Sea groundfish stocks using Monte Carlo simulations. The relative importance of the sources of variation (i.e. fishing effort, recruitment, and catch at age) varied from stock to stock. Coefficients of variation were smaller when F in the projection year was set equal to F in the previous year (ie. the status-quo), than when F is set to a specific target, since in the first case, errors in F tend to cancel out. Brander (1987) compared nominal catches to status-quo projections made by various ICES working groups. He found a 14% error for one year projections and a 21% error for two year projections with no bias. However, nominal catches may be taken at different F's than the one used in projections, adding another source of variability. These studies may be of limited relevance in the context of Atlantic Canadian stock assessments where status-quo TAC's are not used. Rather, projections are made at a specific target fishing mortality (Fe.1) and thus the precision and accuracy of population estimates is of greater importance.

In SPA, there are three majors assumptions postulated or required: 1) That catch estimates are unbiased. 2) That catches and population numbers are related according to model 1. 3) That natural mortality is known (and error free). We briefly examine some studies that attempt to assess the impacts of biases in these assumptions.

Catch at age.

Catch at age is usually the only measured parameter that intervenes in the SPA sensus stricto, and the variation (in the population or due to sampling) can be dealt with by standard statistical techniques. Pope (1972) and Sampson (1987) have derived variance formulas for population numbers given the variances in catch and F.

In addition, systematic errors can be introduced by misreporting, discarding, or unrepresentative sampling. Mesnil (1980) was unable to assess the effect of such biases, but he emitted serious doubt about the usefulness of the technique under such circumstances. Sampson (1988) has shown that convergence (i.e. stability in the initial estimate of cohort size) was not maintained when errors in catch at age were added simultaneously to errors in other parameters.

Model errors.

Ulltang (1977) extended the catch equation to incorporate migration, but migration rates are nearly impossible to measure in a systematic manner; therefore they are not considered in most assessments. Sims (1982) has examined analytically and by simulations the assumption of the model that mortality occurs as an exponential function. He found moderately large departures (in the order of 20%) in the worst case scenarios (fishing restricted in the first or last month of the year), under very high M and F's. The bias was usually much lower under more usual circumstances.

Natural mortality.

Natural mortality for groundfish is likely to be dynamic, depending on fish age, the abundance of predators, prey, and other factors. However, M is usually not estimated on a routine basis in SPA. Attempts have been made to estimate M due to predation in the North Sea (Anon. 1989) but this was based on several years of extensive stomach contents analysis and on the existance of fisheries which sample both predator and prey populations at juvenile and adult life history stages. This latter condition is not present in Atlantic Canadian fisheries. Nevertheless, the North Sea model has indicated substantial variation in predation mortality and has yielded some interesting conclusions. Specifically, it was suggested that increased mesh size in cod fisheries from 80mm to 120mm would actually decrease yield in other fisheries by increasing the predation of juveniles by cod and whiting (Anon. 1989). In other cases a "reasonable" value for M is assumed (0.2 or 0.3). Consequently, it is an additional assumption in the model, rather than a real parameter, and it is better treated as such.

- 4 -

Agger et al. (1973), Ulitang (1977), Mesnil (1980), Sims (1984), Sampson (1988), Hilden (1988) have discussed various aspect of the effects of M on SPA. All concur to say that higher M lead to higher estimates of initial population numbers, and that errors in M could yield substantial errors in the estimate of population numbers. Sims (1984) found that on 10 and 20 year spans, errors of M (mean =0.18) of +56, +11%, -11% and -56% yielded errors in population numbers of +91%, +13%, -11% -42% and +261%, +26%, -20% and -62% respectively. Vetter (1988) has thoroughly reviewed the methods of estimating M and the effects of the assumptions about it on fishery models. He concluded that the effects of errors in M were complex, and dependent on the errors in other parameters: in general, the effects were generally a function of the relative values of F and M. He provided strong evidence that M varied both from age to age, and from year to year.

If a bias in M exists, the effects will not be uniform throughout the VPA. The most recent years are all composed of incomplete cohorts, which will suffer smaller cumulative effects of the errors in M, than the more ancient, complete cohorts.

So far, no one has attempted a full analysis of the effects of M on the assessment process (Vetter, 1988), from the SPA to the tuning, projections and yield per recruit. A higher M would result in higher estimate of historical population size, thus changing the slopes of the tuning relationships, yielding a lower (at least relative to the past) current estimates of population size, lower projected catches, but a higher F_{max} (Vetter, 1988). These effects may or may not cancel out, and it is difficult to say for the time being.

III Report of Group 1.

This working group carried out case studies on seven stocks; 2J3KL cod (Baird and Bishop 1988), 3Pn4RS cod (Fréchet 1988), 4TVn cod (Chouinard and Sinclair 1988), 4VSW cod (Fanning et al. 1988), 4TVW haddock (Zwanenburg and Fanning 1988), 4X haddock (O'Boyle et al. 1988), and 52 haddock (Gavaris 1988 b). The retrospective analysis for each stock commenced by first re-doing the 1988 assessment. This analysis served as the reference to which all subsequent runs were compared. Next, the assessments were conducted with progressively shorter catch and abundance index data sets. The population estimates from each assessment were compared to the reference estimates. Based on previous observations that systematic deviations from the reference estimates varied with age, comparisons were again done by age groups. The years used and the age groupings in the analyses are given in Table 1. All population estimates are given in Annex II.

An index of deviation $(D_{ijt,i})$ was calculated as the ratio between the population estimates $(N_{ijt,i})$ for age group i, stock j, population year t, and assessment year a, and the corresponding reference estimate $(N_{ijt,ref})$. The distribution of these ratios were examined among stocks and age groups. The index was calculated as

 $D_{ijta} = \frac{N_{ijta}}{N_{ijt,ref}}$

Plots of population size by age class from the retrospective assessments indicate that of the seven stocks examined, 4RS3Pn cod and 5Z haddock had consistent patterns of estimates from one year to the next for all age groups, that is to say that by dropping one year of data there was not a tendency for the subsequent estimates of the same population to increase (Figure 1). The pattern for 4TVn cod was also consistent for the partially recruited ages. For 2J3KL cod, 4VsW cod, and 4TVW haddock there was a distinct tendency for the estimates in the assessment year to be higher than those in the following years. This was also the case for 4TVn cod and 4X haddock in the older 2 age groups.

Box and whisker plots (Tukey 1977) of D_{ijt} in Figure 2 give the distribution of these ratios for all stocks by age group. For 2J3KL cod and 3Pn4RS cod the deviations for all age groups are the smallest and the ratios are close to 1. The largest deviations were found for 4VW haddock and 5Z haddock. When compared among age groups (Figure 3), it is apparent that over 75% of the population estimates are greater than the reference estimates. The deviations were slightly higher for the recruitment estimates than for the other two ages. If the ratios are plotted against the lag between the assessment year and the population year, one can see the effect of convergence of the SPA's (Figure 4). After a lag of three years 50% of the population estimates for partially and fully recruited ages are within +- 10% of the reference estimates. However, for estimates of recruitment, the same degree of convergence was not evident until a lag of five to six years. For the population estimates from the last year of the assessment series (ie. lag=0) the range of ratios was 0.3 to 3.9 and the middle 50% of the ratios was estimates as more data were added to the assessments.

We considered whether the source of abundance index data, either from a research survey or commercial catch rates, could be related to the pattern of population estimates. The assessment of 2J3KL cod uses both indices in its calibration. Two series of assessments were conducted using survey and commercial catch rates separately in the calibration. The results are presented in terms of fully recruited fishing mortality (Table 2). The calibrations with survey indices alone gave consistently higher fishing mortalities, and thus lower population estimates, than calibration with the commercial index although the two converged to virtually the same reference estimate by 1983. The commercial catch rate series generated assessed fishing mortalities 40-70% lower than the reference. The research survey index generated F's 30-40% larger than the current estimates in the 1983-85 period, but similar estimates in the last 2 years. A significant change in the pattern occured in 1986, the year of what now appears to be an anomalously high survey estimate (Baird and Bishop 1989).

How general this was for other stocks could not be determined due to time constraints. However, a similar comparisons could be made for other stocks where both research survey and CPUE time series are available.

ī

T T

IV Report of Group 2.

This group developed alternative formulations within ADAPT in an attempt to eliminate systematic deviations in the restrospective analyses. The alternative formulations which were considered are those related to 1) structural changes in the underlying population dynamic model, 2) the formulation of the objective function for the minimization, or 3) the choice of the index (or combination of indices) for the calibration. The list of alternative formulations that were investigated is as follows:

allowing temporal changes in catchabilities for the commercial fleet;
 allowing exploitation patterns to be dome-shaped rather than assuming full recruitment for older ages;

full recruitment for older ages; - allowing natural mortality (M) to be estimated within the framework (i.e. M as a parameter) or assuming that M is something else than 0.2; - using alternative indices of abundance or a different combination of them (relative weighting)

- using alternative formulations of the objective function (e.g. logarithmic transformations, weighting by inverse of standard error for indices, etc.);

- using age disaggregated indices from the commercial fleet rather than a single global index.

It was not possible to extensively explore the area of "alternative indices" within the time available. Similarly, the question of stock definition and its implication for the various formulations was not addressed. The questions of relative weighting of multiple indices and of using multiple indices in a single formulation or in separate formulations of the adaptive framework (combine estimates within or combine them after) were not considered extensively.

Cod in the southern Gulf of St. Lawrence (4TVn) and haddock on the eastern Scotian Shelf (4TVW) were used as case studies. The purpose of the exercise was to compare the retrospective analysis obtained by Group 1 with the retrospective view obtained from the "new" formulation. The aim was to find a formulation that provided the "most consistent" analysis. <u>Consistency, while a desirable property, must not be confounded with the "truth" and there is no quarantee that the "most consistent formulation" corresponds to the "truth".</u>

Cod in 4TVn

The results for this stock ar summarized in two figures, the ratios of assessed and reference estimates (Figure 5) and a comparison of absolute population estimates from the different options (Figure 6).

<u>Research index at age using log transformations.</u> In this formulation, only the research index at age was considered for the calibration. Rather than weighting the residuals by the inverse of standard error as was done in the original analysis, a logarithmic transformation was applied to the residuals. The results are comparable to those of the original analysis both in terms of deviations and absolute estimates. This is not surprising since the original formulation (Chouinard and Sinclair (1988)) gave very little weight (1/9) to the commercial catch rates. The estimates for partially recruited ages were generally less consistent and more dispersed using the RV data alone. The interannual changes in estimates of recruitment were less using the RV data alone.

<u>Age-disaggregated commercial catch rates.</u> In this formulation, only commercial catch rates at age (from otter trawlers) were used for the calibration. This. formulation lead to a systematic underestimation of recruitment and partially recruited ages relative to the reference (Figure 5). However, for the fully recruited ages, the stock size estimated each year was closer to the reference than those based on the surveys. Consequently, the commercial catch rates might be better for estimating the fully recruited ages but the research survey information provides a more satisfactory index for estimating recruitment and partially recruited ages.

Time-varying catchability for the commercial fleet. In this formulation, the following modifications were used:

-logarithmic transformation was applied to the residuals; -commercial catch rates were disaggregated by age (this implies a relative weighting of 1:1 for the commercial index and the research index); -the catchability coefficients (q) for the commercial fleet were arbitrarily assumed to be time dependent, increasing at 5% per year. The population estimates for fully recruited ages are systematically higher than the reference with this formulation but to a lesser extent than the results obtained using a formulation based on surveys only. The opposite was true for the partially recruited and recruitment estimates. This is similar to the pattern obtained when only the CPUE index was used. This option produced the lowest absolute population estimates.

Forcing exploitation patterns to be dome-shaped. Input parameters for VPA are usually given as fishing mortalities (F) for all ages in the last year and for the oldest ages for all other years. It has been our experiance that there are insufficient data to estimate all these parameters. Instead, the oldest age F's are estimated by assuming a relationship between F at younger ages in the same year and that at the oldest age. In the original formulation for this stock, F at the oldest age was assumed to be equal to the mean (weighted by popularion numbers) fully recruited F (ages 9 and 10), a so called flat-topped recruitment pattern. An alternative formulation was used where the pattern was assumed to be dome-shaped, that is where the oldest age F was set at 25% the fully recruited F. Only the research vessel index was used for calibration. This formulation produced a much more consistent retrospective pattern for the oldest age group and a slight improvement for the recruitment estimates. This option produced the highest absolute population estimates.

<u>Defining M as a parameter</u>. When M was introduced as an additional parameter, it was estimated to be 0.37. However, all values of the correlation matrix of the parameters became relatively large which would indicate that while there is some information in the data to estimate M, there is insufficient information to estimate simultaneously M and F (through the survivors and the calibration coefficients).

Haddock in 4TVW

Forcing exploitation patterns to be dome-shaped. Fishing mortality on the oldest age group was set at 50% of the fully recruited fishing mortality in each year. This formulation did not improve the retrospective analysis for any age group (Figure 7).

<u>Defining M as a parameter.</u> When M was introduced as an additional parameter it was estimated to be 0.27. The standard error was relatively small, i.e. 0.09, but all values of the correlation matrix of the parameters were relatively large. Again, as was the case for 4TVn cod, there is insufficient information to estimate simultaneously M and the other parameters.

<u>Assuming M=0.4.</u> There was no consistency of the restrospective analysis when M was assumed to be 0.4. The analysis could not be completed for 1986 and 1987.

<u>Assuming M is age-specific.</u> In this formulation, M was assumed to take the following arbitrary values for each age:

AGE												
м	.9	.54	.36	.18	.18	.18	.18	.18	.18	.27	.324	

With this pattern, no improvement in the consistency of the retrospective analysis could be detected (Figure 7).

General Comments

Adding parameters in an attempt to develop new/alternative formulations often led to an overspecification of the model. This was apparent by examination of the correlations among parameter estimates, a useful diagnostic tool available in ADAPT. Under these conditions, there is insufficient contrast in the data to allow estimation of all parameters simultaneously. This observation is consistent with the general experiance in stock assessments, for example the inability to estimate F on the oldest age groups.

For one of the two stocks for which dome shaped partial recruitment was assumed, the retrospective analysis provided a more consistent picture than the formulation which assumes full recruitment for the oldest age. However, by assuming a dome, the results imply an abundance of older fish in the population that are not found either by the research surveys or the commercial fishery. In addition, when a dome shaped pattern is assumed there is not complete convergence of estimates of abundance of the oldest age groups.

The question of relative weighting of multiple indices in a single formulation and of using multiple indices in separate formulations of the adaptive framework (combine estimates within or combine them after) were only addressed in two new formulations for the 4TVn cod stock. The commercial catch rates provided a more consistent estimation for the fully recruited ages but the research survey information proved more consistent for estimating recruitment and partially recruited ages. This should be explored further.

V Report of Group 3.

The general approach of this group was to use simulated data to investigate the effects of model misspecification on population estimates, both reference and in the assessment year. Input data for an assessment were generated with the set of parameters: initial numbers at age, recruitment, fully recruited F, partial recruitment, and natural mortality at age. Population numbers (N) at age i and year t were then projected using the standard equation:

 $N_{i+1,t+1} = N_{i,t} \Theta^{-(M_{i,t}+F_{i,t})}$

Catch at age i and in year t was also generated using the Baranov catch equation:

- 7 -

 $C_{i,t} = \frac{F_{i,t} N_{i,t} (1 - \theta^{-(M_{i,t} + F_{i,t})})}{M_{i,t} + F_{i,t}}$

The simulated population numbers were used as the index of abundance for calibration. For the analyses, either the input data (catch at age or index of abundance) or the parameters used in the SPA (M, partial recruitment) were adjusted to mimic systematic errors in the analytical models. The specific deviations investigated were;

Т

- Differences between assumed and actual natural mortality.
- Changes in the catchability of the survey.
- Errors in partial recruitment assumptions (domed or flat topped).
- Misreporting of catches.

Populations with two age spans were used, ages 1-5+ and 1-10+. Catches and population numbers for older ages were combined. The formulations of ADAPT had the following in common.

Parameters Estimated

-Survivors in the last year, either 1-4 or 1-8 depending on the age span of the simulated population. -Slopes (k's) for the calibration relationships (to beginning of the year).

-Slopes (k's) for the calibration relationships (to beginning of the year). The relationships used the population estimates from SPA to predict the index, in the form;

$f_{i,t} = k_i N_{i,t}$

Structure Imposed

For the short age span, F at age 5+ in the final year was set equal to age 4.
This was consistent with the partial recruitment used to generate the numbers.
F on the oldest age was set equal to age 4.
For the long age span F at age 9+ in the final year was set equal to the mean

- For the long age span F at age 9+ in the final year was set equal to the mean of ages 5-7, as was F on the oldest age.

- M assumed to be .2 in all cases.

- Error in catch at age was assumed to be negligible and thus the abundance index was treated as the dependent variable in the calibration regressions. (see report of group 4 for details)

Differences between assumed and actual M at age.

Four scenarios of deviations of M were investigated: true M declining, true M U-shaped, true M lower than assumed, and true M higher than assumed. In all cases M was assumed to be 0.2. The actual values used are given in Table 3.

The effects of these deviations between the true and assumed M on the resulting population estimates are demonstrated by the estimated slopes of the calibration relationships (Table 4). Since the true population abundance was used as the calibration index for each age, the true calibration slopes were 1.0. Higherestimated slopes indicate an underestimate of the true population (on average) while slopes less than 1.0 indicate an overestimate of the true population.

In the case with declining M, the older age groups were correctly estimated (slope = 1.0) (Table 4) since the assumed and true M's matched. The SPA underestimated the true abundance for younger ages because the true M was higher than the assumed value. The population estimates were lower than the true values when the true M was higher than the assumed value (M=0.3 and U-shaped), while the opposite was true when the true M was lower than that assumed (M=0.1). The residuals in the calibration were negligable (less than 0.5%) meaning that the differences between the estimated population sizes and the index were almost totally explained by the calibration regressions. This is probably because the deviations between true and assumed M as well as the fully recruited fishing mortality were constant for all years. Consequently, there was no divergence between the reference and assessed estimates and there was no retrospective pattern.

This was verifed by using different M's while generating the simulated data. In a 10 year simulation with M=0.2 for 5 years and M=0.4 for 5 years the calibration produced residuals, and these were autocorrelated with time.

We also investigated whether a trend in F accompanied by a misspecification of M could generate a retrospective pattern similar to that observed by group 1. Population and catch numbers were generated using M=0.1 and M=0.3 and either continuously increasing or decreasing F for a 20 year period. Fishing mortality trends were from 0.05 to 1.00 in steps of 0.05. The data were analysed assuming an M of 0.20. Examination of the deviations between the reference and assessed population estimates indicated retrospective paterns (Figure 8). When M was underestimated and F decreased there was a tendency for the assessed values to exceed the reference values. The same was true when M was overestimated and F

increased. It was reported by Lapointe, et al. (1989) that such a situation created spurious trends in recruitment estimates. Many groundfish stocks in the northwest Atlantic have experianced lower fishing mortalities since the extension of fisheries jurisdiction in 1977.

Changes in Catchability of the Index

As mentioned above, the simulated true population numbers were used as the calibration index. Thus, the true values were used in a manner analogus to having an abundance survey with a catchability of one. A change in catchability was simulated by changing the index either by year or by age before carring out the calibrations. When the calibration index was doubled after 5 years this generated a discontinuous pattern in the residuals of the calibration regressions with respect to time. If the calibration index was adjusted in an age dependent manner the calibration regressions were perfect (no residuals) and the calibration slopes accurately estimated the simulated catchabilities.

Partial Recruitment

In this case the true population was generated with a dome shaped PR and analysed with a flat-topped PR (Table 5). The results indicated no deviation between the reference and assessed estimates. However, the population estimates were consistently lower than the true values. The resulting estimates of F indicated an increasing trend with age (Table 5). In a standard assessment, such a trend might be interpreted as a continually increasing partial recruitment to the fishery rather than the real dome shaped pattern. The estimated k's also increased with age (Table 5). The largest errors were for the oldest ages and there was a convergence of the estimated and true population values toward younger ages. However, such a pattern of k in a standard assessment might be interpreted as an increasing trend in catchability to the survey. Only if a dome shaped PR was assumed or if F was high (close to 1.0) did a dome appear in the F matrix. The lack of residuals in the fits made diagnosis of the misspecification of PR very difficult. Based on these observations, the interpretation of a dome-shaped pattern in an F matrix is unclear.

The same catch at age matrix was analysed with SVPA (Pope and Shepherd 1982) and the dome shaped PR was detected.

Misreporting

In this case a simulation of annual assessments was used on a population with a 5 year age-span over a 30 year period. Two cases were examined; in one misreporting began after 10 years, in the second misreporting occured throughout the period. The first simulation began with 10 years of perfect data. Beginning in year 11 only half of the actual catch at age was used, thus simulating a situation where only half of the catch was reported. An assessment was done each year and catches for the next year were projected at F=0.2. The fishery then caught twice the TAC, and the catch at age necessary to achieve this was estimated. But for the next year's assessment only half the catch numbers were used since only half the catch was reported.

The annual assessments of population size were consistently higher than the reference estimates when misreporting began at year 11 (Figure 9). The assessed values were higher than the true values in the years immediately following the beginning of misreporting and the assessed estimates were always closer to the truth. However, the assessments consistently indicated increasing trends in population size contrary to the actual trends. This pattern in the retrospective analysis was similar to that observed for several cases studied by Group 1.

When misreporting always occured the reference and assessed estimates were equal but half the real values. Thus the retrospective pattern described above was due to a change in simulated reporting practices.

VI Report of Working Group 4.

There are two fundamentally different types of data available for the estimation of stock size, commercial catch at age and information from abundance indicies. It is currently popular to use the catch at age with cohort analysis to estimate the population. An alternative approach is to use the abundance index scaled by age specific catchabilities to estimate the population. The choice of approach may be based on the relative uncertainty in the two types of data. This working group used simulated data to investigate the effects of error misspecification on the resulting population estimates.

Three formulations of ADAPT were considered to take into account the relative importance of the uncertainty in these data.

Model I	no-catch-error; assumes that the error in the catch at age can be ignored
Model II ·	no-index-error; assumes that the error in the abundance index can be ignored
Model III	full-error; account for the error in both types of data in ad-hoc sequential manner.

Model I is similar to the standard assessment approach. The cohort equations (Pope 1972) were used to generate the population matrix. ADAPT was used to estimate the survivors in the final year and the calibration constants between the population estimates and the abundance index. The calibration criterion used was to minimize the residuals between the observed abundance indicies and those predicted from the population estimates. The survivors for the oldest age were calculated by assuming that the F on that age was equal to the F on fully recruited ages. This assumption was consistent with the way the simulated data were produced.

Model II calculated the population as the product of the abundance indicies and age specific calibration constants. The catch at age was then predicted given the estimated population by estimating the total annual mortality (2) for each cohort, substracting the natural mortality to obtain annual fishing mortality, and using this to estimate annual catch at age using the Baranov equation. ADAPT was used to estimate the calibration constants using the criterion of minimizing the residuals between the observed and predicted catch at age.

Model III used both methods to sequentially estimate the population and produced two estimates of the population.

A single population matrix was generated and the resulting true catch at age and abundance index were calculated for the given exploitation pattern and the index catchability. The catch at age and index were decomposed into proportions and total numbers before lognormal error similar to that calculated for these stocks was added. Ten data sets were then generted for each of the three data classes described below. Each data class was analysed with each model.

Data Class I	True catch at age, abundance index with error
Data Class II	True abundance index, catch at age with error
Data Class III	Both data types with error

The results are summarized below. Model I performed well even when the data violated model assumptions, i.e. there was error in the catch at age. There was also a slight tendancy to underestimate the population size in the most recent years when there was error in the catch at age. Model II performed poorly. When the model assumptions were met, i.e. no error in the index, the estimates were unbiased but highly variable. When there was error in the index, the estimates from this models I and II. The poor performance of model II was reflected in the results of model III. Consequently, model III did not perform as well as model I.

	Data Class				
Model	: I	II	III		
I	good	acceptable	acceptable		
II	biased severely	unbiased but highly variable	biased severely		
III	poor	acceptable	poor		

It appears that random errors in catch at age of a magnitude similar to what has been calculated for several finfish stocks can safely be ignored. That is, the performance of Model I was not severely degraded when there were errors in the catch at age. All models performed relatively well when there was no error in the index. Random error in the catch at age is easily handled if the abundance index is precise and accurate. However, attempts to estimate the survivors for the oldest age with Model I were unsuccessful with the level of error used in these simulations.

The CVs of the survivor estimates from Model I and 10 replications of Data Class III ranged from 34% to 55% (Table 6). A comparison of these to the model estimates showed that the model underestimated standard error by approximately 30%. This could be due to the model misspecification, i.e. the model estimates assume that there is no error ... the catch at age. Further simulations matching Model I and Data Class I would provide a clearer answer.

It is noteworthy that Model I, the standard model now used, performed well if errors are random.

VII . Summary and Conclusions

The workshop concentrated on the use of retrospective analyses for examining the consistency and accuracy of population estimates. While Rivard and Foy (1987) estimated that population estimates accounted for 2/3 of the error in catch projections used for TAC advice, this is only part of the input data. Partial recruitment, weight at age, and recruitment in the projection year are also important. One must be careful to interpret the results presented here only for estimates of population size. It is expected that errors made in assumptions of M and PR for estimates of stock size may cancel when catch projections are made. The effects of errors in these assumptions although important, were not examined at this meeting and further investigation may be warrented.

Most of the groundwork for this meeting was laid by the CAFSAC Working Group on the Accuracy of Analytical Assessments (1986). Since then significant progress has been made in several areas as recommended in that unpublished report. This includes;

- the development of more objective assessment approaches

- simulation studies of the effects of input on the converged part of SPA - quantification of the sources of variability in SPA

Indeed the conclusion of Group 1 are consistent with the earlier observations that there is a tendency to overestimate the converged population estimates for the stocks investigated. We were unable to determine a common factor responsible for this pattern. Some improvement in the retrospective analysis was attained for 4TVn cod if a dome shaped PR was used for assigning F to the cldest ages. However, this was not the case for 4TVW haddock. A misspecification of M in concert with a trend in F produced the desired pattern. It is generally accepted that northwest Atlantic groundfish stocks have undergone a reduction in F since the extension of fisheries jurisdiction in 1977. Simulations of catch misreporting also generated the desired pattern of estimates if the reporting practices changed from full to partial reporting. However, these findings need further study before conclusions may be drawn regarding probable causes in the case studies.

Given the present state of assessment methodology, it was generally concluded that the precision of stock size estimates in the final year will only be as good as the precision of the abundance index. For current abundance surveys age-by-age estimates have coefficients of variation of 30% or more. Coefficients of variation for aggregated age groups are less. While estimates of commercial catch rates have lower CV's, there is considerable uncertainty about changes in catchability and for several stocks such indices are currently not available. In addition, Group 4 found, following simulations of realistic errors in basic input data, that CV's of 35% or more on population estimates should be expected. Thus, the development of more reliable abundance indicies is called for if fisheries management plans require more precise population estimates.

The question of accuracy is another matter altogether. We must make assumptions about several important parameters. Natural mortality is commonly assumed to be fixed through time and at age. However, there is a dearth of information regarding the dynamics of M. Data are usually inadequate to estimate the fishing mortality (or survivors) of the oldest age classes. However, faulty assumptions regarding the F on older fish can significantly bias estimates of population size and F in the past (Table 3). Other assessment methods such as SVPA (Pope and Shepherd 1982) may be useful for estimating the PR of older fish. Nominal catch data are often taken at face value when in fact there are no programs in place to measure its accuracy on a routine basis and there are substantial allegations that the reported values are far from the truth, particularly for the Scotian Shelf, Georges Bank area. The simulation studies presented here have indicated that population estimates may be biased in complex ways by faulty assumptions of these parameters. Furthermore, it was seen that in some cases the yearly assessed population sizes may be closer to the truth than the reference estimates from the most recent assessment. The use of diagnostic plots (residuals) may be useful in detecting deviations between assumed parameters and reality, however further simulation studies are needed. Thus it is clear that <u>estimates of population size</u> <u>from the converged part of the SPA do not necessarily represent the true population size for those years.</u>

This meeting was asked to address three questions:

1. Are retrospective analyses worth doing?

It was agreed that analyses of the type carried out here are useful for two purposes. First they indicate the variability, both in terms of range and direction, of population estimates depending on the number of years of data used. They are also useful for examining different assessment formulations which may improve the consistency of estimates. Once an improvement is attained the implications of the new formulation in terms of population dynamics and biology of the resource should be investigated.

2. How should they be done?

The general approach taken here was to repeat the assessments using a common formulation and sequentially dropping years of data. Then the variability of estimates of the same population were examined in relation to the time span of the analysis. Other factors not considered were trends in calibration coefficients and the interpretation of residuals. While not available for this meeting, the development of objective measures of variability, including direction, of the estimates is warrented.

3. Can we use retrospective analyses to improve assessments?

To the extent that retrospective analyses generate questions and promote investigations, one may say that they may improve assessments. They do indicate the sources of variability in population estimates. However, this exercise alone will not necessarily give more reliable estimates of true population size.

VIII References

- Agger, P., I. Boetius, and H. Lassen, 1973; Error in virtual population analysis: the effects of uncertainties in the natural mortality coefficient. J. Cons. int. Explor. Mer, 35(1):93
- Anon., 1984: Report of the Working group on methods of fish stock assessments. ICES CM. 1984/Assess. 19.
- Anon., 1985: Report of the North Sea flatfish Working group. ICES C.M. 1985/Assess. 13.
- Anon. 1987. Advice on the management of groundfish stocks in 1988. CAFSAC Advisory Document 87/16.
- Anon., 1988a. Report of the workshop on methods of fish stock assessments, Reykjavik, 6-12 July 1988. C.M. 1988/Assess. 26.
- Anon., 1988b. Report of the North Sea roundfish Working group. ICES C.M. 1988/Assess. 21.
- Anon., 1989. Report of the multispecies assessment working group. ICES C.M. 1989/Assess, 20.
- Brander, K., 1987: How well do working groups predict catches? J. Cons. int. Explor. Mer, 43:245-252.
- Chouinard, G.A. and A.F. Sinclair, 1988. Assessment of the 4T and 4Vn (Jan. Apr.) cod stock for 1988 CAFSAC Res. Doc. 88/28.
- Fanning, L.P., S.J. Smith, K.C. Zwanenburg, and D. Beanlands. 1988. Assessment of 4VsW cod in 1987. CAFSAC Res. Doc. 88/47.
- Fréchet, A. 1988. Evaluation du stock de morue de la subdivision 3Pn et des divisions 4R et 4S de l'OPANO en 1987. CAFSAC Res. Doc. 88/24.
- Gascon, D., 1988: Catch projections. pp. 135-146, in D. Rivard, [ed.], Collected papers on stocks assessment methods. CAFSAC Res. Doc 88/61.
- Gavaris, S. 1988 a. An adaptive framework for the estimation of population size. CAFSAC Res. Doc. 88/29.
- Gavaris, S. 1988 b. Assessment of haddock in NAFO Division 52. CAFSAC Res. Doc. 88/64.
- Gulland, J.A., 1965: Estimation of mortality rate. ICES, CM 1965/3 9pp. (Mimeo).
- Hilden, M., 1988: Error in perception of stock and recruitment due to wrong choices of natural mortality rate in Virtual Population Analysis. J. Cons. int. Explor. Mer, 44:123-134.
- Lapointe, M.F., R.M. Peterman, and A.D. MacCall. 1989. Trends in fishing mortality rate along with errors in natural mortality rate can cause spurious time trends in fish stock abundances estimated by virtual population analysis (VPA). Can. J. Fish. Aquat. Sci. 46: 2129-2139.
- Mesnil, B., 1980: Théorie et pratique de l'analyse de cohortes. Rev. Trav. Inst. Pêches marit. 44:119-155
- O'Boyle R., J. Simon, and K. Frank. 1988. An evaluation of the populations dynamics of 4X haddock during 1962-88 with yield projections to 1989. CAFSAC Res. Doc. 88/72.
- Peterman, R.M., and M.J. Bradford, 1987: Statistical power of trend in Fish Abundance. Can. J. Fish. Aquat. Sci. 44:1879-1889.
- Pope, J.G., 1972: An investigation of the accuracy of Virtual Population Analysis using Cohort Analysis. Res. Bull. ICNAF. 9:65-74.
- Pope, J.G. and J.G. Shepherd. 1982. A simple method for the consistent interpretation of catch-at-age data. J. Cons. int. Exp. Mer. 40: 176-184
- Pope, J.G., and D. Gray, 1983: An investigation of the relationship between the - precision of assessment data and the precision of total allowable catches. pp. 151-157 in W.G. Doubleday and D. Rivard [eds.], Sampling commercial catches of marine fishes and invertebrates. Can. Spec. Publ. Fish. Aquat. Sci. 66.
- Rivard, D., 1981: Catch projection and their relation to sampling error of research surveys. pp. 93-109 in W.G. Doubleday and D. Rivard [eds.], Bottom trawl surveys. Can. Spec. Publ. Fish. Aquat. Sci. 58.
- Rivard, D. 1983: Effects of systematic, analytical, and sampling errors on catch estimates: A sensitivity analysis. pp 114-129 in W.G. Doubleday and D. Rivard [eds.], Sampling commercial catches of marine fishes and invertebrates. Can. Spec, Plub. Fish. Aquat. Sci. 66.

tivard, D., and M.G. Foy, 1987: An analysis of errors in catch projections for canadian Atlantic fish stocks. Can. J. Fish. Aquat. Sci. 44:967-981.

- ampson, D.B., 1987: Variance estimator for virtual Population Analysis. J. Cons. int. Explor. Mer, 43:149-158.
- ampson, D.B., 1988: The stability of Virtual population analysis cohort size estimates. J. Cons. int. Explor. Mer, 44:135-142.
- ims, S.E., 1982: The effect of unevenly distributed catches on stock-size estimates using Virtual Population Analysis (Cohort Analysis). J. Cons. int. Explor. Mer, 40:47-52.
- Sims, S.E., 1984: An analysis of the effect of errors in the natural mortality rate and stock-size estimates using virtual population analysis (cohort analysis). J. Cons. int. Explor. Mer, 41:149-154.
- Tukey, J.W. 1977. Explatory data analysis. Addison-Wesley Publishing Company. Reading Mass. 688 pp.
- Jlltang, O., 1977: Sources of error in and limitation of Virtual Population Analysis (Cohort Aanlysis). J. Cons. inter. Explor. Mer, 37:249-260.
- /etter, E.F., 1988: Estimation of natural mortality in Fish stocks: a review. Fish. Bull. 86:25-43.
- Vinters, G.H., 1988: The development and utility of sequential population analysis in stock assessments. pp. 111-134, in D. Rivard, (ed.], Collected papers on stocks assessment methods. CAFSAC Res. Doc. 88/61.
- Zwanenburg, K. and P. Fanning. 1988. Haddock in 4TVW population status and catch projections for 1989. CAFSAC Res. Doc. 88/76.

Stock	Abundance	Time Span		Age Gr	oups in Comp	arisons
Index Used		SPA	Retro.	. Recruits	Partially Recruited	Fully Recruited
Cod						
2J3KL	RV/CPUE	1978-88	1983-86	4	5,-8	9-13
3Pn4RS	CPUE	1974-87	1980-85	4	5-9	10-15
4TVn	RV/CPUE	1971-87	1978-85	3-4	5-9	10-15
4VsW	RV	1971-87	1979-85	3	4-6	7-15

Table 1: Data characteristice of groundfish stocks used in retrospective analyses. For the abundance index used, RV indicates the results of research vessel surveys while CPUE refers to commercial catch per unit effort.

Table 2: Comparison of terminal F's (age 13) obtained for the 2J3KL cod stock when either research vessel or commercial CPUE indicies were used to calibrate the SPA.

1980-85

1980-85

1982-85

1-3

1 - 3

1

4-6

4-6

2-3

RV

RV

RV

4TVW 4X

5z

1970-87

1970-87

1963-87

7-11

7-11

4-8

Year	Calibration with RV			Calibration with CPUE			
	Reference	Assessed	Deviation (%)	Reference	Assessed	Deviation (%)	
1983	0.472	0,627	32.8	0.470	0.202	-57.0	
1984	0.507	0.707	39.4	0.475	0.174	-63.3	
1985	0.545	0.758	39.1	0.552	0.147	-73.4	
1986	0.484	0.480	-0.80	0.422	0.165	~60.9	
1987	0.552	0.516	-6.50	0.361	0.223	-38.2	
1988	0.566			0.305			

	True Natural Mortality						
Age	Decline	U-Shaped	M = 0.1	M ≕ 0.2			
1	1.00	0.50	0.10	0.30			
2	0.80	0.40	0.10	0.30			
3	0.60	0.30	0.10	0.30			
4	0.40	0.20	0.10	0.30			
5	0.20	0.10	0.10	0.30			
6	0.20	0.10	0.10	0.30			
7	0.20	0.20	0.10	0.30			
8	0.20	0.30	0.10	0.30			
9	0.20	0.40	0.10	0.30			
10	0.20	0.50	0.10	0.30			

Table 3: Natural mortalities at age used to generate simulated data used by working group 3.

• 2

t

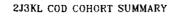
i

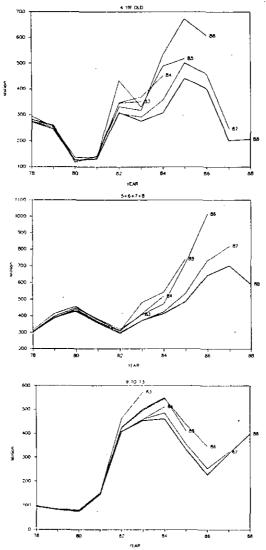
Table 4: Slopes of calibration relationships as determined for population simulations of 20 years where various errors in M occured. M was always assumed to be 0.2 while the true M is indicated in the table.

	Slopes of Calibration relationships						
Aqe	M Decline	M U-Shaped	M = 0.1	M = 0.3			
1	6.61	1.87	0.38	1.95			
2	3.08	1.39	0.42	1.78			
3	1.74	1.15	0.45	1.64			
4	1.20	1.05	0.49	1.53			
5	1.00	1.05	0.50	1.49			
6	1.00	1.19	0,50	1.49			
7	1.00	1.40	0.50	1.50			
8	1.00	1.53	0.50	1.50			

.

Table 5: Fishing mortality and calibration constants (k) estimated using catch at age generated with a dome shaped partial recruitment but assuming a flat-topped partial recuitement.


Age	Fishing Mc	ortality	Calibration	Calibration Slope (k)		
	Estimated	True	Estimated	True		
1	0.01	0.04	1.48	1.00		
2	0.03	0.08	1.49	1.00		
3	0.09	0.12	1.51	1.00		
4	0.23	0.16	1.56	1.00		
5	0.37	0.20	1.70	1.00		
6	0.46	0.20	2.02	1.00		
7	0.49	0.16	2.61	1.00		
8	0.53	0.12	3.63	1.00		
9	0.54	0.08				
10	0.42	0.04				


- 13 -

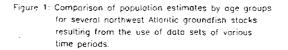

1

Table 6. Comparison of coefficient of variation for the replications and model estimates.

Age	Coefficient	of Variation
	Replication Estimates	Model Estimates
1	0.55	0.45
2	0.39	0.33
3	0.39	0.28
4	0.40	0.28
5	0.34	0.26
6 ·	0.51	0.32
7	0.48	0.33
8	0.42	0.35

.

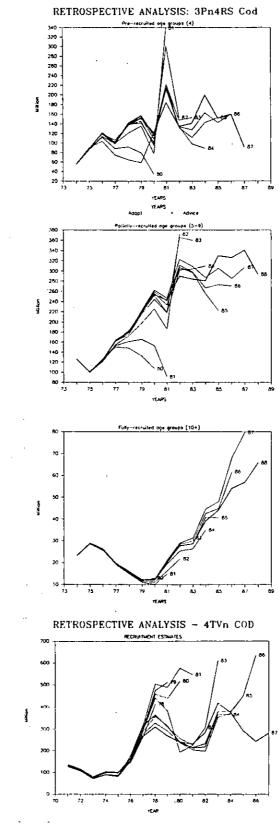
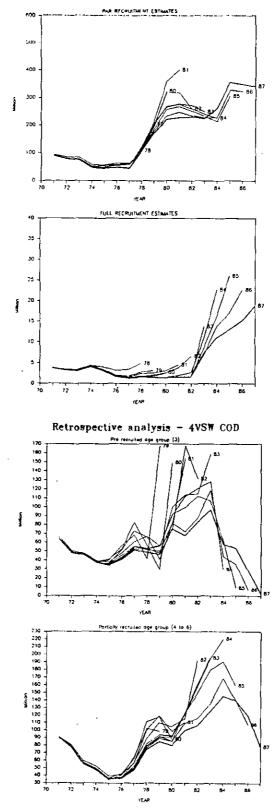
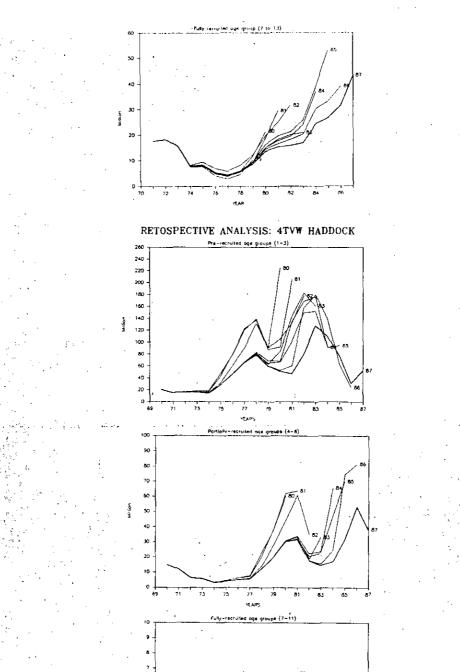



Figure 1: con't

- 15 -

٠,


•

.

į

- 16 -

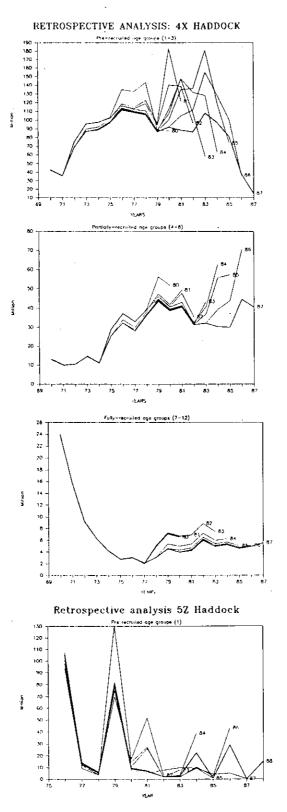
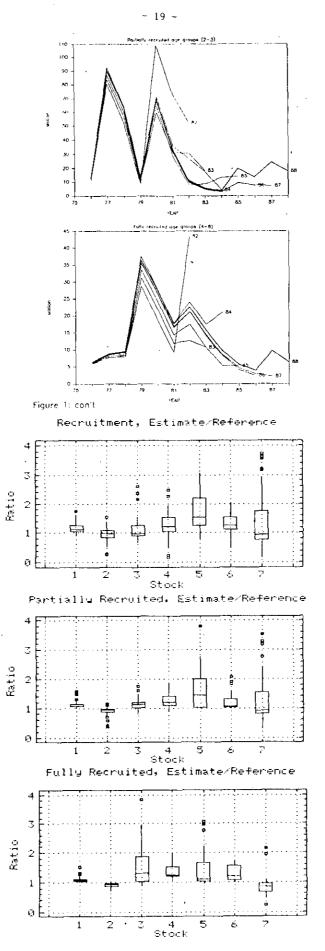
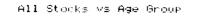
- 17 -

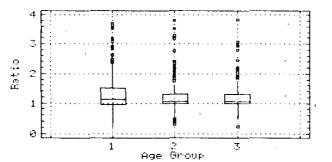
Figure 1: con't

0 |

 YEARS

۰.


Figure 1: con't

2: Box and whisker plots of the distribution of the ratios between assessed and reference population estimates for seven northwest Atlantic groundfish stocks. The stocks are 1- 2J3KL cod, 2- 3Pn4RS cod, 3- 4TVn cod, 4- 4VsW cod, 5- 4TVW haddock, 6- 4X haddock, 7- 5Z haddock.

The distributions of ratios between assessed and reference population estimates for all seven stocks combined, but separately by age groups (1- recruitment, 2- partially recruited, 3- fully recruited).

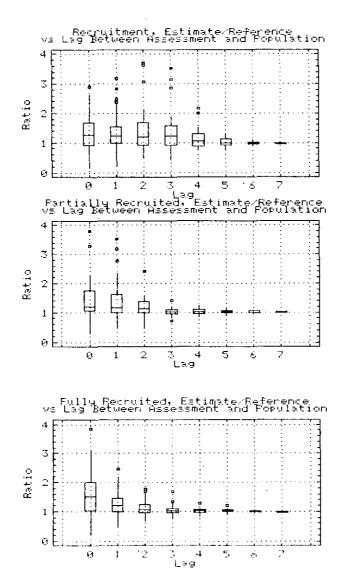
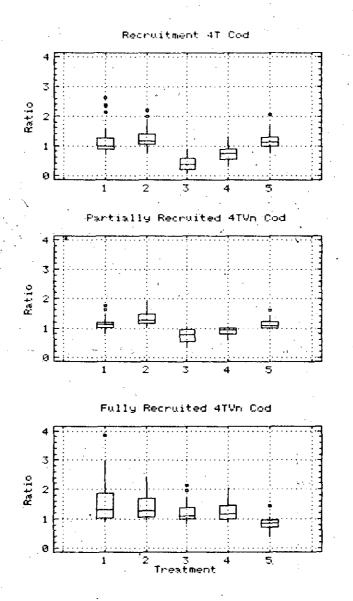
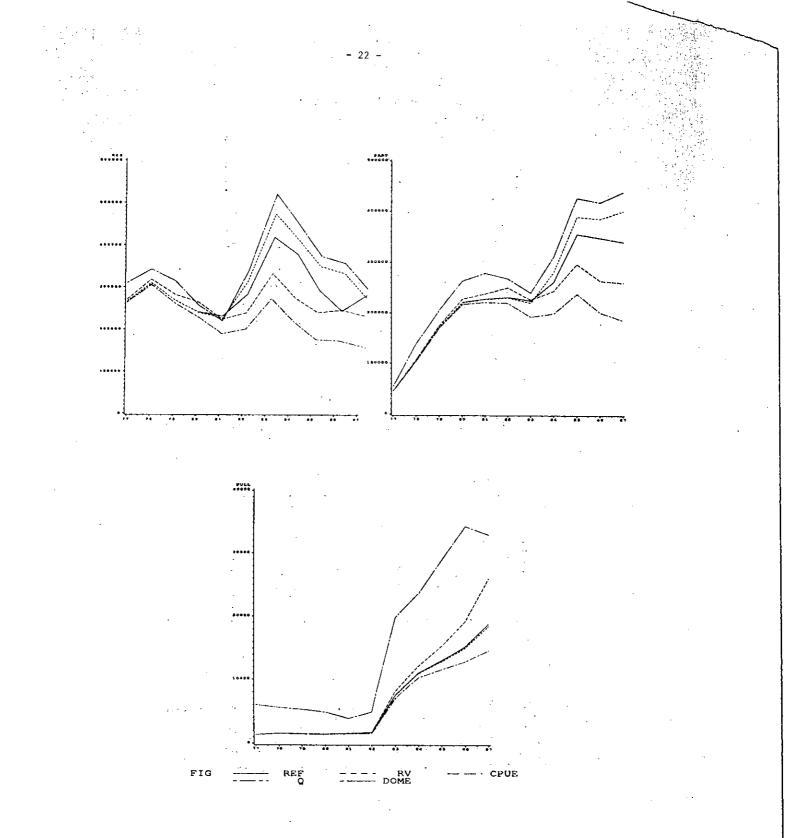
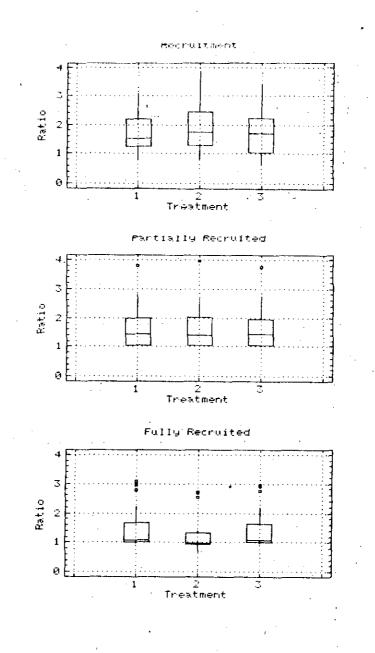



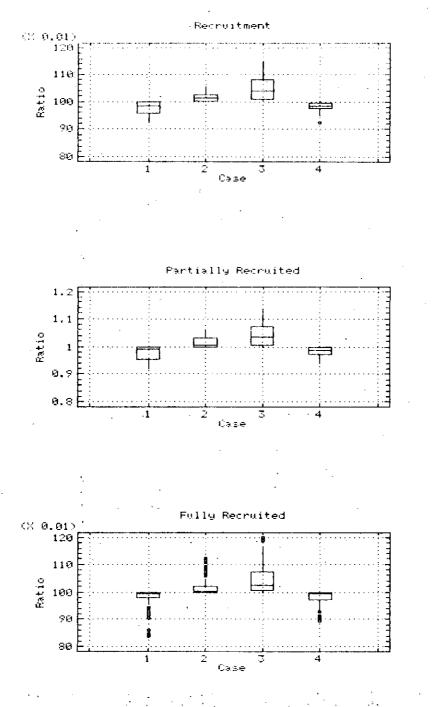
Figure 4:

Distribution of ratios between reference and assessed population estimates as a function of the lag between the last year in the SPA and the population year.

- 21 -

Effects of changes in the ADAPT formulation on the ratios between assessed and reference population estimates for 4TVn cod. Treatments were: 1- the standard assessment, 2- calibration with RV data only, 3- calibration with CPUE data only, 4- calibrated with RV and CPUE data and assuming a 5% annual increase in efficiency of the commercial fishery, 5- calibrated with RV data only and forcing a dome shaped partial recruitment pattern.


Figure 6: Effects of changes of the ADAPT formulation on the absolute population estimates of 4TVn cod.

- 23 -

Figure 7:

Effects of changes in the ADAPT formulation on the ratios between assessed and reference population estimates for 4TVW haddock. Treatments were: 1- the standard assessment, 2- calibration with a dome shaped partial recruitment, 3- calibrated with age dependent natural mortality.

Distributions of ratios between assessed and reference population estimates for simulated data where M is misspecified and there is a trend in F. In all cases M=0.2 was used in SPA. In cases 1 and 2 the true M was 0.3 and in cases 3 and 4 the true M was 0.1. In cases 1 and 3 F increased while F decreased in cases 2 and 4.

- 24 -

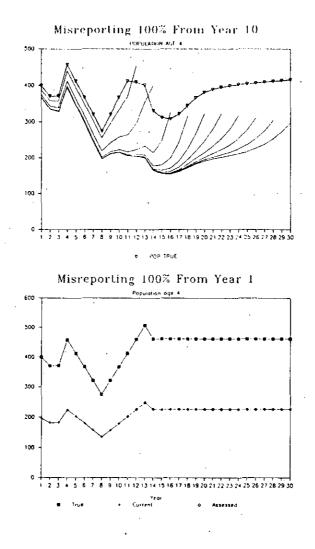


Figure 9: Population estimates for two simulated misreporting situations. In the upper graph only half the catch was reported after year 10. In the lower graph only half the catch was reported for the entire time series.

- 25 -

Annex 1

Participants	
Name	Region
A. Sinclair (Chairman, Leader Group 3) I. McQuinn C. Annand P. Fanning K. Zwanenburg C. Bishop W.R. Bowering D.B. Atkinson W.B. Brodie D. Power	Gulf Quebec Scotia Fundy, Dartmouth Scotia Fundy, Dartmouth Newfoundland Newfoundland Newfoundland Newfoundland Newfoundland Newfoundland
 K. Brander R. O'Boyle (Leader Group 1) R. Mohn G. Chouinard D. Rivard (Leader Group 2) S. Gavaris (Leader Group 4) D. Gascon E. Laberge A. Fréchet G. Nielsen D. Clay 	Scotia Fundy, Dartmouth Scotia Fundy, Dartmouth Scotia Fundy, Halifax Gulf Headquarters Scotia Fundy, St. Andrews Quebec Quebec Quebec Gulf Gulf

1

Annex "ll:

;

<u>.</u>

Population estimates from retrospective analyses of seven Atlantic Canadian groundfish stocks. Population year refers to the year of the population estimated while Assessment year refers to the last year in the assessment time series. The age groups are stock specific, and these are given in Table 1 of the report. Population numbers for 2J3KL cod are expressed as 10⁻⁵ and for other stocks as 10⁻³.

- 27 -

2

ر	· Ye	ar		Age Group	
Stock	Population	Assessment	Recruitment	Partially Recruited	Fully Recruited
2J3KL	78	83	2946	3131	99
2J3KL	78	84	2750	3013	98 99
2J3KL	78	85	2829 2821	3050 3049	96
2J3KL	78 78	86 87	2821	3013	95
2J3KL 2J3KL	78	. 88	2736	3013	96
233KL 233KL	79	. 83	2547	4145	85
2J3KL	79	84	2591	3886	84
2J3KL	79	85	2598	3981	86
2J3KL	79	86	2591	3974	85 .
2J3KL	79	87	2516	3887	82
2J3KL	79	88	2463	3877	83
2J3KL	80	83	1167	4590 4417	83 81
2J3KL	80	84	1228 1267	4417	83.
2J3KL	80 80	85 86	1349	4488	81
2J3KL 2J3KL	`80	87	1250	4355	78
2J3KL	80	88	1250	4304	77
2J3KL	81	83	1411	3758	154
2J3KL -	. 81	84	1386	3668	149
2J3KL	81	85	1315	3766	154
2J3KL	81	86	1389	. 3822	154
2J3KL	81	. 87	1316	3644 - 3594	149 147
2J3KL	81	88	1298	3138	463
2J3KL	82 82	83 84	3456 3467	3093	403
2J3KL 2J3KL	82	85	4326	3102	427
2J3KL	82	86	3317	3209	424
2J3KL	82	87	3058	3015	409
2J3KL	82	88	3095	2961	409
2J3KL	83	83	3509	4093	574
2J3KL	83	84	-3686	4137	460
2J3KL	8 3	85	3310	4818	502
2J3KL	83		3173	4084 3738	498
2J3KL	83,	87 88	2910 2766	3738	455
2J3KL 2J3KL	- 83 84	84	4523	5195	512
2J3KL	84	85	4893	5440	550
2J3KL	84	86	5330	4730	546
2J3KL	84	87	3576	4259	486
2J3KL	84	88	3087	4154	462
2J3KL	85	85	5183	7401	411
2J3KL	85	86	6728	7147	438 355
2J3KL	85	87	5016	5358 4875	333
2J3KL 2J3KL	85 86	88 86	4419 6071	10152	346
203KL 2J3KL	86	87	4569	7314	253
2J3KL	86	88.	4016	643 <u>6</u>	228
2 3 3KL	67	87	2466	8202	323
2J3KL	87	88	2017	7017	317
2J3KL	88	88	2069	5912	399 228
3Pn4RS	74	78	535	1227 1256	228
3Pn4RS	74	79 80	563	1230	230
3Pn4RS	74	81	553	1254	231
3Pn4RS 3Pn4RS	74	82	558	1265	232
3Pn4RS	74	83	554	1262	232 -
3Pn4RS	74	84	556	1265	232
3Pn4RS	74	85	557	1266	232
3Pn4RS	74	86	557	1267	233
3Pn4RS	74	87	927	1029	296
3Pn4RS	75	78	908	971 1014	280 288
3Pn4RS	75	. 79	902 856	996	288
3Pn4RS	75	80 81	866	1004	285
3Pn4RS	75	81	887	1016	289
3Pn4RS 3Pn4RS	. 75		. 881	1011	288
II JE114KS			884	1014	289
	/ 5	84			
3Pn4RS 3Pn4RS	75 75		. 885	1015	c 289 289

28	-

!

			•		
		- 28 -			
	Year			Age Group	
Stock	Population Assessme	ent Rec	ruitment	Partially Recruited	Fully Recrui
3Pn4RS	75	87	824	1303	
3Pn4RS 3Pn4RS	7 6 76	78 79	982 1040	∍ 1243 1270	
3Pn4RS	7.6	80	1123	1219	
3Pn4RS 3Pn4RS	76 76	81	1137	1233	
· 3Pn4RS ·	76	82 83	1197 1192	1259 1250	
. 3Pn 4RS	76	84	1213	1256	
3Pn4RS 3Pn4RS	76 76	85 86	1218 1224	1258	4.
3Pn4RS	76	87	503	1342	
3Pn4RS	77	78	599	1435	
3Pn4RS 3Pn4RS	77 77	79 80	751 883	1504 1534	
3Pn4RS	77	81 .	992	1554	
3Pn4RS	77	82	1062	1624	
3Pn4RS 3Pn4RS	77 77	83 84	980 1001	1614 1634	
3Pn4RS	77	85	1012	1640	
3Pn4RS	* 77 77	86	1019	1647	
3Pn4RS 3Pn4RS	77 78	87 [.] 78	1210 389	1155 1313	
3Pn4RS	78	79	647	1485	
3Pn4RS	78	80	917	1617	
3Pn4RS 3Pn4RS	78 78	81 82	1213 1379	1723 1835	
3Pn4RS	78	83	1384	1759	
3Pn4RS	78	84	1402	1793	
3Pn4RS 3Pn4RS	78 78	85 86	1406 1423	1806 1817	
3Pn4RS	78	87	1210	984	
3Pn4RS	79	79	593	1326	
3Pn4RS 3Pn4RS	79 79	80 81	795 1359	1660 1988	
3Pn4RS	79	82	1457	2213_	
3Pn4RS	79	83	1424	2156	
3Pn4RS 3Pn4RS	- 79 79 .	84 85	1528 1557	2197 2212	
3Pn4RS	79	86	1576	2234	
3Pn4RS 3Pn4RS	79	87	1210	1077	
3Pn4RS	80 80	80 81	. 342 778	1533 2259	
3Pn4RS	80	82 '	953	2517	
3Pn4RS 3Pn4RS		83	1009	2445	
3Pn4RS	-	84 85	1087 1147	2563 2598	
3Pn4RS		86	1184	2631	
3Pn4RS 3Pn4RS		87 81	0	916	
3Pn4RS		82	3389 3012	1863 2195	
3Pn4RS	81	83 ´	2220	2184	
3Pn4RS 3Pn4RS		84 85	2133	2337	
3Pn4RS		86	2119 2205	2412 2468	
3Pn4RS	81 '	87	0	3714	
3Pn4RS 3Pn4RS		82 83	1530 1480	3651 3024	
3Pn4RS	82	84.	1350	3024 3071	
3Pn4RS 3Pn4RS		85 94	1321	3117	
3Pn4RS 3Pn4RS		86 87	1344 0	· 3230 3602	
3Pn4RS	83	83	1527	3046	
3Pn4RS 3Pn4RS		84 85	981	2971	
3Pn4R5		85 86	1116 1275	2984 3089	
3Pn4RS	83 '	87	0	3103	
3Pn4RS 3Pn4RS		84 05	886	2556	
3Pn4RS		85 86	1426 1625	2666 2876	
3Pn4RS	84	87	0 ·	2228	
3Pn4RS 3Pn4RS		85 46	1530	2738	
3Ph4RS 3Ph4RS		86 87	1426 0	3059 - 2709	
3Pn4RS	86	86	1600	2854	
3Pn4RS 3Pn4RS		87 ' 87	0	3076	
4TVn		87 78	1369 ; 1316	935 905	
4TVn		79	1275	900	

ý. 31 v.

.

- 29 -

,	•	•	

Stonl-	Year Age Group				
Stock .	Population	Assessment	Recruitment	Partially Recruited	Fully Recruited
TV n	71	80	1300	905	33
4TVn	71	81	1276	904	37
TVn	71	82 •	1275	897	- 31
ITVn	71	83	1275	898	31
TVn	71	84	1274	897	3.
ITVn	71	85	1274	897	3.
ITVn	. 71	. 86	1274	897	. 31
ITVn	.71	87	1155	848	3
4TVn	. 72	78	1121	805	3
ITVn	72	. 79 '	1083	796	3:
iTVn iTVn	· 72	80	1103	798	3
ATVn	72 72	81 82	1071	797	3
4TVn	72	83	1069	792 793	3
ATVn	72	84	1068	792	3
4TVn	. 72	.85	1067	791	3
4TVn	72		1067	791	3
4TVn	72	87	803	838	3
4TVn	73	78	809	783	3
4TVn	73	79	764	754	3
4TVn	73	80	763	774	3
4TVn	73	81	755	758	3
4TVn	73	82,	718	753	3
4TVn	73	83	717	. 753	3
4TVn	73	84	719	752	3
1TVn	73	85	717	752	3
lTVn	73	86	716	752	3
ITVn	73	87	1041	579	4
4TVn	74	78	1022	527	4
lTVn lTVn	7 4 74	79 80	1006	497	4
iTVn	74	80 81	988 980	-511	4
4TVn	.74	82	899	490 485	4
4TVn	74	83	910	485	4
4TVn	`74	84	899	485	4
4TVn		85	896	484	4
4TVn	74	86	895	484	4
4TVn		87	1015	561	4
4TVn	75	78	993	534	. 3
ITVn	75	79	986	483	3
4TVn	. 75	80	1000	496	3
4TVn	75	81	998	480	3
4TVn	75	82	827	453	. 3
4TVn	75	83	868	453	3
4TVn	75	84	827	453	3
iTVn	75	85	823	452	3
1TVn	- 75	86	829	451	3
4TVn 4TVn	75	87	1461	631	3
41Vn 4TVn	76 76	78	1565	594	2
4TVn 4TVn	. 76	- 79 80	1524 1640	564 560	1
41Vn 4TVn	. 76	81	1640	540	2
4TVn	76	82	1788	485	1
4TVn	. 76	83	1664	492	1
4TVn	76	84	1584	485	1
4TVn	76	85	1516	482	1
ATVn	. 76	86	1535	481	1
4TVn	76	87	2618	643	3
4TVn	77	78	3001	621	1
ITVn	77	79	2910	586	1
4TVn	77	80	3162	603	1
4TVn	77	81	2928	591	1
4TVn	77	82	3188	459	1
4TVn	77	83	3111	486	1
4TVn	77	84	2877	460	1
4TVn	77	85	2779	457	1
4TVn	77	86	2662	460	1
ATVn	77	87	4142	1084	4
4TVn	78	78	4748	1142	2
4TVn	78	79	4588	1105	1
4TVn	78	80	5033	1174	2
4TVn 4711-	78	81	4422	1196	1
4TVn 4TVn	78	82	3623	1228	1
4TVn 4TVn	78	83	3663	1150	1
	78	84	3589	1092	1
4TVn 4TVn	78 78	85 86	3277	1044	1
	78	. 86 . 87	3097 5108	1057 2042	1 3
4TVn					

- 30 --

		ar		Age Group	
Stoc	k Population	Assessment	Recruitment	Partially Recruited	Fully Recruited
4TVn		. 80	4893	2142	26
4TVn	79	81	3818	1985	18
4TVn	.79	82	3089	2072	16
4TVn	79	83	3099	2038	16
4TVn	79	84	3152	1864	- 15
4TVn	.79	85	2917	1796	15
4TVn	. 79	86	2691	1720	15
4TVn	79	87	5160	3235	27
4TVn	80	80	5746	- 3580	. 32
4TVn	80	81	1930	3187	26
4TVn	80	82	2562	2682	15
4TVn 4TVn	80	83	2413	2657	15
4TVn	80	. 84 85	2369 2365	2568 2327	15 15
4TVn	80	86.	2365	2215	15
4TVn	80	87	5451	4013	46
4TVn	81	81	2245	3190	38
4TVn	81	82	2274	2779	58 17
4TVn	81	83	2116	2761	20
4TVn	81	84	2041	2682	17
4TVn	81	85	2141	2480	16
4TVn	81	86	2311	2278	16
4TVn	81	87	3062	2602	66
4TVn	82	82	3054	2730	17
4TVn	82	83	- 2177	2603	27
4TVn	82	84	1976	2524	17
4TVn	82	85	2316	2361	16
4TVn	82	86	2832	2315	17
4TVn 4TVn	· 82 83	87 83	6092 3676	2498 2411	137 109
41Vn	83	- 84	- 3538	2327	87
41Vn	- 83	85	3799	2276	70
4TVn	83	86	4182	2249	74
4TVn	83	87	3663	2266	227
4TVn	84	84	3722	2136	163
4TVn	84	85	3815	2279	138
4TVn	- 84	86	3778	2623	110
4TVn	84	87	4505	3063	260
4TVn	. 82	85	4522	3280	172
4TVn	85	86	2931	3564	. 130
4TVn	85	87	6342	3228	227
4TVn	86	86	2430	3490	153
4TVn 4TVn	86 87	87 87	2810	3408 1072	· 188 392
4VsW	86	86	65 281	1194	316
li 4Vs₩		87	86	1592	
4VsW	85	85	351	1399	333
4VsW	85	86	534	1399	267
4VsW	85	87	296	2207	371
4VsW	84	84	614	1906	390
4VsW	84	85	442	1690	300
4VsW	84	86	581	1456	243
4VsW	84	- 87	1586	1953	210 241
4VsW	83 83	83 84	1283 1067	1942 1796	258
4Vs₩ 4Vs₩		84	1188	1354	205
4VSW 4VSW	,	86	969	1251	171
4VSW			1311	1927	317
4VsW		82	1149	1607	201
4VsW		83	1209	1578	196
4VsW		84	1122	1490	213
4VsW			879	1157	184
4VsW	82	86	831	1061	160
4VsW			1538	1104	294
4VsW			1680	1152	248
4VsW		82	1133	1232	183
4VsW			1118	1210	178
4VsW			997	1226	196
4VsW		85	718	1092	166
4VsW		86	678	998 877	155
4VsW		87	1492	877	213
			810 737	985 1050	189
4V3W			737 996	857	198 150
4VsW	U / J		330		
4VsW 4VsW				01/	ነፍስ
4VsW 4VsW 4VsW	80	83	906	914 933	150 163
4VsW 4VsW	80 - 80	83 84	906 916	914 933 ~854	150 163 144
4VsW 4VsW 4VsW 4VsW	80 80 80	83 84 85	906	933	163

Ļ

,

SLOCK	Yea	и –		Age Group Partially	Fully	
	Population	Assessment	Recruitment	Recruited	Recruited	
VsW	. 79	79	292	1181	117	
VsW	79	80	408	1192	91	
VeW	79	81	562	1100	122	
VsW	79	82	478	917	95	
lVsW lVsW	79 79	83 84	558 565	910 937	91	
l∨s₩ Vs₩	79	85	499	893	95 86	
VSW	79	. 85	466	851	86	
VSW	79	87	411	1020	45	
VsW	78	79	558	1112	59	
VsW	78	80	656	1001	54	
VsW	78	81	664	891	- 81	
VsW	78	82	527	793	59	
VsW	78	83	524	784	59	
VsW	78	84	. 527	818	59	
IVsW	78	85	517	764	58	
WeVI	78	86	487	- 745	56	
WeV	78 77	87	684	644	27	
iVsW Waw	77	79	826	622	36	
WeV WeV	,, רל	80 81	730 611	574 572	38 59	
IVSW IVSW	יי רר	82	552	572	43	
IVaW		83	532	502	42	
IVsW	77	84	559	524	43	
VsW	77	85	525	492	41	
VsW	77	86	515	478	40	
VsW	77	87	- 563	401	42	
4VsW	76	79	523	420	49	
4VsW	76	80	514	371	50	
4VsW	76	81	479	409	69	
4VsW	76	82	423	373	55	
4VsW	76 76	83	430	369	53	
4VsW 4VsW	76	- 84 85	451 426	376	53	
4VsW	76	86	408	360 360	52 52	
4VsW	76	87	403	347	. 76	
4VsW	75	79	409	368	79	
1VsW	75	80	361	357	18	
4VsW	75	81	379	394	95	
4VsW	75	82	359	363	84	
4VsW	75	83	. 351	364	85	
4VsW	75	. 84	360	363	65	
4VsW	75	85	341	363	84	
4VsW	75	86	344	360	83	
IVs₩	75	87	370	467	76	
IVsW	74 74	79	383	483	76	
ivsw Ivsw	74	80 81	367 392	486	77	
AVSW	74	82	372	518 491	82 80	
IVsW	74	83	374	489	80	
4VsW	74	84	371	491	81	
VsW	74	85	374	488	80	
1VsW	74	86	371	487	79	
iVsW	74	87	454	543	157	
VeW	73	79	462	554	158	
VsW	. 73	80	464	556	159	
VsW	73	81	476	590	159	
IVSW IVSW	73	82	465	565	158	
VsW VsW	73 73	83 84	467	561	158	
IVSW IVSW	73	84 85	470 466	562 560	156 158	
iVsW	73	86	465	559	158	
VsW	73	87 .	479	769	184	
VsW	72	79	487	. 774	185	
VaW	72	80	488	777	185	
VsW	72	81	505	802	185	
VsW	72	82	493	784	184	
VaW	72	83	488	784	184	
VaW	72	84	487	785	184	
VsW	72	85	487	783	184	
VsW	72	86	487	782	184	
WeV	72	87	630	897	177	
IVsW	71	79	636	898	· 177	
VsW	71	80	638	900	177	
IVsW Wow	71	. 81	659	909	177	
IVsW Wow	71	82	640	905	177	
ivsw Ivsw	71 71	83 [.] 84	640 640	906 906	177	
					177	

,

,

	Ye	ar				
Stock	Populat (an		Pagruitmat	Partially	Fully	
4VsW	Population 71	Assessment 85	Recruitment 639	Recruited 905	Recruited	
4VsW	71	86	639	905	177	
4VsW	71	87	208	151	46	
4VW	70	87	208	151	46	
4VW	70	86.	208	151	·46	
4VW 4VW	70 70	85	208	151	46	
4VW 4VW	70	84 83	208 209	151 151	46 46	
4VW	70	82	209	151	46	
4VW	70	81	211	151	46	
4VW	. 70	80	152	121	36	
4VW	71	87	152	121	36	
4∨₩ 4∨₩	71 71	86	152	121	' 36	
400	71 71	85 84	· 152 152	121 121	- 36 - 36	
4VW	71	83	154	121	36	
4VW	71	82	156	121	36	
4VW	71	81	155	121	36	
4VW	71	90	161	65	14	
4VW	72	87	161	65	14	
4VW 4VW	72 72	86 85	161 161	65 65	14 14	
4VW	72	84	161	65	14 14	
4VW	72	83	163	65	14	
, 4VW	72	82	169	66	14	
4VW	72	81	170	. 66	14	
4VW	72	80	165	58	10	
4VW 4VW	73 73	87 86	165 166	58	10	
4VW	73	85	166	59 59	10 10	
4VW	73	84	166	59	10	
4VW	73	83	170	59	10	
4VW	73	82	185	60	10	
4VW	73	81	185	60	10	
4VW	73	80	145	33	4	
4VW 4VW	74 74	87 86	145	33	4	
4VW	74	85	146 147	33 33	4 4	
' 4VW	74	84	146	33	4	
4VW	74	83	155	34	4	
4VW	74	82	176	35	5	
4VW	74	81	189	35	5	
4VW 4VW	、 74 75	80 87`	282	41	4	
4VW	75	86	282	41 41	4	
4VW	75	85	283	41	4	
4VW	75	84	283	41	4	
4VW	75	83	315	42	4	
4VW	75	82	428	46	4	
4VW	75	81	471	46	4	
4VW 4VW	75	80 87	462 463	52 52	5 5	
4VW	76	86	463	52 52	5 5	
4VW	76	85	467	52	5	
4VW	76	84	469	52	5	
4VW	76	83	604	54	6	
4VW	76	82	008	63	6	
4VW 4VW	76 76	61 80	791 656	63 56	6 5	
4VW	70	87	655		5	
4VW	77	86	659	56	5 .	
4VW	77	85	667	.56	5	
4VW	77	84	669	56	5	
4VW	77	83	913	61	, 6	
4VW 4VW	77 77	82 81	1231 1201	72	ר 'ז ז	
4VW -	77	81	789	* 79 125	7	
4vw	78	87	788	125	6	
4VW	78	86	800	126	6	
4VW	78	85	833	126	6	
4VW	78	84	818	126	6	
4VW	78	83	1317	143	7	
' 4VW 4VW	78	82	1370_		9	
4VW	78 78	81 80	1395 601	229 201	9 9	
4VW	79	87	602	201 201	9	
4VW	79	86	647	202	. 9	
4VW	79	85	686	204	9	
4VW	79	84	623	205	9	
				-		

	·				· .					
-					- 33 - ``			н 1 н		
						<i>i</i> .		\$		
		Stock	Year			Age Group	E.L.L.	5		•
		JEOCK	Population Ass	sessment	Recruitment	Partially Recruited	Fully Recruited			
		4∨₩ 4∨₩	79 79	83 82	912 875	279 387	10 15	Ī		
		4VW	79	81	905 509	382 304	15			
		4VW 4VW	79 80	80 87	528	304	11			
		4VW 4VW	80 80	86 85	660 676	305 310	11 12			
		4VW 4VW	80 80	84 83	846 1051	311 445	11 14			
		4VW 4VW	80 80	82 81	921 2247	620 603	21 25			
		4VW 4VW	80 81	80 87	. 471 604	318 317	22 22			
		4VW 4VW	81 81	86 85	1028 1351	324 342	22 22			
		4VW	81	84	1449	334	22			
		4∨₩ 4∨₩	81 81	83 82	1327 [°] 2064	608 637	67			
		4VW 4VW	81 82	U /	798 1581	179 180	22 22			
		4VW 4VW	82 82	86 85	1499 1690	204 225	22 23			
		4VW 4VW	82 82	84 83	1830 1783	191 350	24 65			
		4VW 4VW	82 83	82 87	1280 1798	147 157	12 12			
		4.VW 4.VW	83 83	86 85	1523 1769	230 239	13 15			
		4VW 4VW	83	84 83	1608 1108	332 172	16 7			
,		4VW	84	87	1394	246	7			
		4VW 4VW	84 84	86 85	918 918	655	21			
		4VW 4VW	84 85	84 87	773 625	316 746	4			
		4VW 4VW	85 85	86 85	947 313	701 532	18 3			
•		4VW 4VW	86 86	87 86	242 522	816 382	8 5			
		4VW 4X	87 70	87 87	426 358	131 100	240 157			
		4X	71	87	690 874	105 147	92			
		4X 4X 4X	72 73 74 75 76	87 87 87	889 970	112 256	63 42 28			
		4X 4X	75	87 87	1117 . 1090	325 281	30 21			
		4X	70 77 78	87 87	1064 871	362 435	31 461	1		
		4X 4X	79	87	922	388	40	Į.		
		4X 4X	80 81	87 87	886 866	406 315	43 60		•	
		4X 4X	82 83	87 87 87	1081 976	321 304	49 52			
1		4X 4X	84 85 86	87	813 382	301 446	46 49	1		
		4X 4X	87	87 87	151 426	406 131	55 240			
		4X 4X	70 71	86 86	358 690	100 105	157 92 63			
		4X 4X	72 73	- 86 86	874 889	147 112	63 42			
		4X 4X	74 75	86 86	975 1124	256 325	42 28 30			
		4X 4X	76 77	86 86	1095 1067	281 365	21 31			
		4X 4X	78 79	86 86	873 924	438 391	46 40			
		4X 4X	80 191	86 86	1050 1115	408	44 , 62			
		4X	82	86	1550	323	51	-	•	
		4X 4X	83 84	86 86	1284 1004	393 438	54 48	ļ		
		4X 4X	85 86	86 86	365 426	703 131 100	51 240	l		
		4X 4X	70 71	85 85	359 690	105	157 92,			
		4X 4X	71 72 73	85 85	874 900	147 112	63 42	l		
		4X	74	85	984	256	28	H		
										•

- 34 -

	Ye	ar	Aye Group		
Stock-	Population	Assessment	Recruitment	Partially Recruited	Fully Recruited
<u> </u>					Decomposite of the second s
4X 4X	75 76	85 ·	1134 - 1099	325	30 21
4X	.77	85	1071	370	31
4X	78	85	875	444	46
4X _ 4X	79 80	85	1008	392	43
4X	80	85 85 ·	1349 1360	410	47 65
4X	82		1808	369	54
4X	83	85	1197	558	57
4X	84	, 85	735	572	50
4X 4X	85 70	95 84	426 359	131 100	240 157
4X	71	84	691	105	92
.,4X	72	. 84	900	147	63
4X 4X	73 74	84 84	923	' 112	42
4X	74	84	1005 1142	257	28 30
4X	76	84 •	1105	299	21
.4X	77	84	1078	381	31
4X. 4X	78	· 84 84 ·	891	448	54
9X `4X	79	84 \	1076 1476	396 413	50 53
4X	81	84	1316	326	71
4X	:82	84	1282	406	59
4X 4X	83	84	628	627	62
4X 4X	84 - 70	84 83	427 359	132 101	240 157
4X	71	83	755	101	93
4X	.72	83	963	148	. 63
4X	73	83	980	112	42
4X 4X	74 75	83 83	1022 - 1163	292 374	28 31
4X	76	83	1124	330	21
4X	77	83	1108	391	51
4X	78	83	875	460	73
4X 4X	79 80	83 83	· 1127 · 1476	, 406 430	67 69
4X	81	83	1083	317	88
4X.	82	83	573	434	74
4X	83	83	427	132	240 ·
4X 4X	· 70 · 71	82 82	360 755	101 105	157 - 93
4X	72	82	961	148	63 -
4X /	. 73	82	978	113	42
4X	74	82	1021	292	28
4X 4X	75 76	92 82	1164 1131-	373 329	31 22 ·
4X	17	82	1191	391	51
4X	78	82	944	460	72
4X	7.9	82	1403	410	67
4X 4X	80 81	82 82	1387 967	476 355	69 88
4X	82	82	428	132	240
4X -	70	81	358.	101	157
4X 4X	. 71 72	81 81	754 960	105 148	93
4X	. 73	61	960 979	148	63 42
4X	74	81	1021	291	28
4X	75	81	1187	372	31
4X 4X	76 77	81 81	1146 1225	330	21
4X 4X	78	81	966	391 473	50 72
4X.	79	81	1828	419	67
4X	80	81	1214	495	69
4X 4X	81 70	81 80	424 355	. 131	240
4X	71	· 80	749	101	157 92
4X	72	80	957	146	. 63
4X	73	80	975	110	42
4X 4X	74 75	- 80 80	1032	289	28
4X	76	80	1349 1327	370 328	30 20
4X	77	80	1432	396	49
4X	. 78	80	886	.562	70
4X 4X	79 80	80 80	878- 1052	518	65
52	76	89	. 1052	128 126	64 64
5Z	. 76	87	1037	126	64
52	7,6	86	1008	121	62 ·
	•				

ļ

Stock	Year		Age Group		
0000	Population	Assessment	Recruitment	Partially Recruited	Fully Recruited
5 z	76	85	1071	129	65
52	76	84	973	115	61
52	76	83	934	111	59
5Z	76	82		909	. 89
			144		
5Z	77	88	138	899	88
5Z	77	87	137	896	87
52	77	86	125	870	84
5z	77	85	3127	926	89
5z	77	84	117	838	81
5z	77	83	93	806	77
52	77	82	, 61	644	95
52 52	78	88	, 51	632	94
5Z	. 78	87	55	629	. 94
5Z	78	86	49	600	89
5z	78	85	61	644	96
5z	78	84	' 39	570	84
5z	78	83	37	524	80
5z	78	82	797	139	365
5z	79	88	785	133	357
52 52	79	87	790	130	355
52 52	79	86	753	130	336
52	79	85	822	129	376
5z	`	84	701	103	312
5z	79	83	1300	86	288
5z	79	82	99	693	277
5z	80	88	94	681	267
5Z	80	87	86	683	265
5z	80	86	78	649	243
52	80	85	107	714	277
5z	80	84	148	600	220
5z	80	83	170	1089	187
5z	80	82	74	335	179
5z	81	68	67	322	170
5z	81	87	66	319	166
5z	81	86	54	288	145
5z	81	85	261	358	179
5z	81	84	274	310	120
52	81	83	518	730	93
5z	81	82	25	112	226
52 52	82	88	23	. 103	212
-	82	87			
52			19	97	212
5z	82	86	78	81	. 175
5z	82	85	22	270	240
5 z	82	84	19	308	127
5 z	82	83	34	523	435
52	82	82	28	- 56	160
5Z	83	88	22	50	146
5z	83	87	19	46	142
5Z	83	86	100	87	142
5Z	83	85	34		
		- .		179	176
52	83	84	80	185	108
5z	83	83	225	38	99
5z	84	88	96	33	86
5 Z	84	87	105	27	83
5z	84	86	95	133	54
5z	. 84	85	388	41	210
5z	84	84	9	202	57
5Z	85	88	42	93	
52 52	85				46
		87	28	98	42
5z	85	86	7	144	53
5Z	85	85	293	137	40
52	86	88	52	78	29
5z	86	87	433	73	24
5z	86	86	4	245	98
5z	87	88	3	, 70	21
52	87	87	153	180	63