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" ABSTRACT

The purpose of this paper isito present-a’ practical method for setting approx-
imately .optimal policy decisionstin®a quta: regilated’fiskery in j}_}‘hich.itie stock-
recruitment relationship, somatic growth, parameter uncertainty, stochastic varia-
tion, and mean-variance trade-offs in-catch ase explicitly considered. The proposed
method converts a dynamic, optimization,problem into,one.that can be solved usin
unconstrained optimizatio 'methods. The effects of errors in .estimation. of stocﬁ

- size, parameter- uncertainty; and' stochasti¢ réctuitment or éptimal quota.policies
are demonstrated, . ST R I . .

s

1 Introduction ,
The rational management of 'a fishéry.requires, the amalgamation-of-economic and
social corsiderations with- prediction’of changes'in fish populations: : Thismust be
carried out with populations whose size is not known with precision and whose dy- -
namics are subject to stochastic changes. Although excellent theoretical research has
"been done on the inclusion of economic-fadtors in stochastic fisheries' models, these
methods have seldom been applied to the routine management of a fishery (see-Clark
5198.5) for a review). The:purpase of this paper:is.to’presént a practical method

or setting approximately optimal updated:policy decisions'in: which stochastic vari-
ation and parameter uncertainty are explicitly considered. I shall investigate the
incorporation of information: other than ‘éstimates of stock size, e.g. age structure,
'in setting quotas. For example, for a given stock biomass, it might be desirable to
set a-lower quota than.if the stock'comprised m?ih{yiolcéaf agec asses., Similarly, if
stock-recruitment relationship is ‘mitocorrelated, then it,may be desirable to incor-
porate the last observed résidual fromthe stock Teeriitment relationship iinto the
quota setting process, s
* The approach used here is to limit attention to a parametric' family of policy
functions, e.%. let the quota’ for any.yedr be.a parametric function of the observed -
stock size. The optimization problem that is solved is to choose the parameters

. describing. the policy function: so thatthe desired:objective,’e.g. long.term’ catch,
is maximized. This approach-is khown as 'parameter optiniizition (B)gl!_n‘i@.‘“q 1957},
and has:been previously, used:in fisheries problems by Ruppert ‘et al. (1985). Here,
this technique.will be used;in :the context of ‘a Bayesian decision’ toblem,

Furthermore, we would not only like to set a quota each year, but we would also
like to provide fishermen with estimates of the likelihoods of fittire catch levels. This

* would allow fishermen to.make better investmentrdecisions; Fhie"metliods discussed
here will be applied - to a quota regulated:fishery. in: whichi the guétas are updated

" each year. However, the methods could also be applied in ot%er situations, e.g.
effort regulated fisheries. . _ .

There is a major limitation to the approach discussed hgre;':on_l%ﬂpgssivg Jearn-
ing will be considered here, not active learning (the modification*of stéck levels to
improve parameter estimates of the fishery model, e.g. the stock-recruitment func-
tion). Ludwig and Walters (1982):have shown'that-a 'magagemient strategy employ-
ing active learning ¢an improve long:term yields'when conlpared w!it_}l_-;aijrm‘dli'a;gif:ment
strategy that allows minimal variation:ini the spawning stock’ ~However, the abun-
darice of most marine stocks has. fluctuated: widely-intkhe lasti few decades because
of changing management practices-and:environmental variatiod: This, it' woiild be
much more difficult to justify the deliberate manipulation the spawning biomass of
these stocks for the purpose of improved.parameter estimation.




2 Formulation

I consider a population described at time ¢ by a vector of ages or stages, ©;. The
vector  is assumed to be measured with error, i.e.

Y=Ii+ g (1)

where €, is a vector or measurement error. It is assumed here that the statistical
pro%erties of &; can be adequately estimated.

he fishery is assumed to be regulated by a quota that is updated each year based
upon new knowledge of the population dynamtes and new estimates of population
size. The population dynamics are described by a discrete time stochastic equation

Tepl = (Ih Qh C!)! (2)

where the (; is a random component (possibly vector) in the dynamics, e.g. a
stochastic term describing variable recrultment.

The parametere describing the population dynamics are assumed to be estimated
for the available data. At the time a quota is set, the uncertainty in the parameters is
described by a prior distribution, mp. Empirical estimation of the prior distribution
is describedyby Ludwig and Walters (1982} and Charles (1983b).

The socio-economic utility of a quota will generally be a concave increasin
function of the quota. The utility function, U{@,) will generally be determineg
exogeneously to the management of the fishery, 1.e. by a combination of economic
analysis a.ncf’ olitical decision making. The utility will be assumed not to change
with time. '1Phe degree of concavity of the utility reflects risk-aversion, which 1s

defined as . )
r(@) = -UM@)U'(Q). (3)
The amount of wealth, e.g. quota, socicty is willing to forego to avoid risk is 2r(@)c?,
where @ is the present quota and o? is the variance of the risk. In general, risk
version will be a decreasing function of the quota levels, i.e. it is usually socially
im?ortant to maintain a minimum level of fishing. To satisfy this requirement, onl
tility functions which satisfy this property will be considered (this is ensured if
(@) < 0; Hull et al. (1973). It will be useful to scale the utility function such that
it can be compared to fishery management techniques that maximize only catch,
i.e, in which the utility function is the identity. To do this we examine two utilit
functions that have the identify function as their limit. Two utility functions whic
_satisfy the above conditions are

Q
“ 1700 (4)

where v is the maximum quota capacity of the fleet or market (this function ap-
proaches the identity as v — 0, a.ndp

V(@)= (@+v o7 /(v — 1) ()

which is more useful in describing fisheries without a maximum capacity (in this
case the U approaches the identity as v -+ 1). ]

rI;'he objective of the fishery manager is to choose quotas, @;,f = 1 to N, which
satisfy:

v(Q)

N

EYU(Q) (©)
t=1

where £ is the expectation operator and N is the time horizon of the management

plan. The expectation is actually a multiple expectation, first, with respect to the

errors in observation £, = 1,...N; second, with respect to the stochastic portion

of the population dynamics (},,t = I,...N; and third, with respect to the prior

distribution n.

Note that if the initial stock size and age structure is not known with certainty,
then the expectation will also have to include the prior probability distribution for
thoge estimates. This will be particularly important when stock projections are
made.

3 Method

Approximate solutlons to the stated problem are generally impossible; approxima-
tions must be used {Kendrick 1981). The approach taken here is to develop methods
that can be used by managers that are not experts at stochastic control theory.

The approximation used here is that the optimal sequence of quota decisions can
be approximated by ar appropriately chosen quota policy decision function

Qe = Qyss v) (7

max
Q(tht=1,..N




where v is a set of parameters describing the decision to function which are chosen

such that
max E Y UiQ(ye;v)], (8)

where the population dynamics are given by (2). The maximization in (8) is a
specialization of that in (6) in which the quota has been constrained by equation
(7). Note that (8) does not depend upon possible improved estimates of the pa-
rameters describing population dynamics i.e. as if all future quota decisions will
be based on the present level of information. The number of stochastic elements in

" the expectation will be sufficiently large that the expectation must be caleulated by

Monte-Carlo simulations (Stewart, 1983).
The quota policy for the simple case where there is only one age or stage class
to consider, G(y; v} should have the following properties:

1. The quota should be a nondecreasing function of y.

2. H the estimated stock size y is below some critical stock size Y.y then the quota
should be zero.

3. Above the critical stock size y,, the quota should increase proportional to a
power (y — y.)?, where 8 may be greater than one.

A two-parameter function that satisfies (1) and (2) is

0 Hy <y,

Qlyiv) = { vy ~p) iy >

where y, = vy.
A three-parameter function that satisfies properties (1), (2), and (3) is

v_J 0 ify <y,
Q(y’ V) - { v2(y - yc)ua if ¥> v (10)
where y. = v;.

A four-parameter function that is more flexible is

{0 fy<y

va(y—pe¥t
va+{y—vc ify >y,

Qlyiv) = (11)

where y. = v;.

The approach used here was lo first restrict the quota decision function to 9,
then fit 10 and 11; the more complicated decision function was accepted only if it
significantly imﬁ)mved the expected utilities summed over time.

Rupert et al. (1984) suggest the use of a technique known as stochastic ap-
proximation to obtain solutions to a problem similar to that described here except
that they limited stochagsticily to recruitinent. However, the method of stochastie
approximation does not scem to be casily applicable to more complex problems, e.g.
parameter uncertainty. Here, it was found that adequate solutions to the maximiza-
tion could be obtained by simpler methods.

: The suggested algorithm for finding the approximate maximum of (6) is as fol-
ows;

1. Choose a reasonable parameterization of the quota decision function Ay v),
e.g. such as eq. 10.

2. Generate and store realizations of all random elements; i.e. €, (t = 1...¥)
and mp.

3. Maximize (6) with respect to v approximating the expectation by summing
over the simulated realization generated in step (ii).

4. Repeat steps (ii) and (iii) to determine if sample size of Monte-Carlo simula-
tions was sufficient.

5. Repeat (ii) - {iv) using alternative parameterizations of the quota-decision
function.

The above algorithm is a stochastic version of parameter optimization {Bellman
1957), has several advaniages over alternative methods. [irst, it does not require
a deep knowledge of stochastic optimization theory to apply. Second, by choosing
and storing the stochastic portions of the problem, the maximization in step (iii) is
deterministic. Third, it can be relatively easily implemented because at the heart
of the algorithmn lies an unconstrained maximization routine. Fourih, the variation
in quotaﬁevels are easily investigated.
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Implicit in Eq. 8 is that errors in estimating stock abundance are sufficiently
small that the quota will actually be caught. If this is not the case, then the quota
in £q. 8 must be replaced b! the actual (or simulated) catch. This requires a model
relating the quota and the “true” abundance to the simulated catch.

4 Simulation

In order to demenstrate the use of the methods and to illusirate principles of setting

quotas in a stochastic environment, [ consider a model with two stages: z,,, the

number of pre-recruits at time ¢, and z,, the number of post-recruits at time t.
The dynamics of the post-recruits, z3, is

Tae1 = Pray s+ Bolg — ) (12)

where F; is the natural survival of stage i, and ¢3¢ is the catch of the fully recruited
class at time t. If FP; is zero, then the model can be used to simulate semelparous
species such as Pacific salmon while if 7 is close to one, the model can simulate long-
lived species. Recruitment is assumed to follow a Beverton-Holt relationship wit

residual variation assumed to be a zero mean, autocorrelated, lognormal distribution.
That is

S L _1, :
Tuan = T onn exp(¢; 20() (13)
where ¢, i3 the realization of a stochastic process generated by
Copr = ¢C +a - (14)

where ¢ is the autocorrelation and g, is a realization of Gaussion white noise with

mean zero, variance o2, and no autocorrelation, The relationship between the vari-
ance of  and the variance of a is given by

2
2 _ O'u .

g = 1 — g2 (15)

(Box and Jenkins 1976). In order to investigate the role of autocorrelation on

setting quotas it is useful to vary the amount of autocorrelation for a fixed level of

environmental variation crg. crg will be constrained to remain constant as ¢ changes,

ie. for each @, o2 will be chosen using (14) vo that o7 is constant.
Both the pre- and post-recruits may be observed with error, i.e.

1

Y1 = Treexplers — 5031) (16)
l ,

Y2 = Tacexplen, ~ 5‘7(,) {17}

where the observational errors are realizations of a mean zero, non-autocorrelated,
lognormally-distributed stochastic process. That is, ¢ is a mean zero, Gaussian
noise with variable #7. Cenerally estimates of stock ‘size of pre-recruitments will be
worse than those of past recruits, i.e. o7 > 2.

The prior probability distribution for the stock recruitment parameters, o and
B, is assumed to be a bivariate normal as follows:

w{,8) = (Cfo)" expl~(3)lMi(a = &)+ ol = )(B — B+ (8= AT) (19)

with
M= (1= pM)ad] ™ e = ~[20/(1 ~ pP)oaop), da = [(1 = 2)op)™ (19}
where €' is a normalization constant, n is the number of observations, and & and

are the best estimates (Charles 1983b). The theoretical justification for using a
ivariate normal for an empirical estimate of the prior uncertainty is that the un-
certainty of maximum—likeiﬁlood paraineter estimates can be very generally asymp-
totically approximated by a multivariale normal distribution. X?urthcr praciical
consideration is the wide availability of multivariate random number gencraiors.
However, in practice, the parameters of stock-recruit relationships may not be suf-
ficiently well determined for the multivariate normal to be an adequate description
of the likelihood surface,

In the simulations which are described below, the quota deciston function will
be restricted to the form of eq. 9 unless otherwisc stated. The time horizon will be
100 years and the Monte-Carlo integration will use 250 replicates,

he parameters used for the Beverton-Holt stock-recruitment relationship (Table
1} have been discussed and plotted in a widely used text (Ricker 1975, Fig. 11.5,
Table 11.7). The observational error variance, 07, corresponds roughly to that of
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& typical virtual population analysis, while the error variance of the pre-recruits
corresponds to that of a groundhsh research survey. The recruitment variability
and autocorrelation is the median of 10 stocks examined by Koslow (1984). The

K]a.rameter uncertainty was calculated from data in Beverton and Holt (1957) for
orth Sea plaice.

5 Simulation Results - Linear Utility
5.1 No Sochasticity

" The simplest case is considered first: a semelparous species, i.e. one that dies after

reproduction, with no observation error and with deterministic known dynarmics and
linear utility. In this case the prgf)osed method should reproduce the known optimal
solution (obtained using optional control theory), namely

Q. = { 0 if 79, < =} (20)

T4 — 2:; lf 1'2,1 S I;

where 73 is the optimal escapement of spawners (Gok 1980). This type of policy
18 known as a constant escapement policy, i.e. a constant number of spawners are
allowed to return to spawn each year. In this case the optimal number of spawners
is 387. The resulting quota decision function has a slope of one and = intercept
of 387 if the observed numbers of spawners is greater than 387 and zero otherwise.
This is the solution found by the proposed method (Fig. 1).

5.2 Stochastic Recruitment

Reed (1974, 1979}, Ludwig and Walters (1982), Chatles (1983a), and Clark and
Kirkwood (1984) have considered the above problem with the addition of indepen-
dent stochastic variation in recruitment. Their results are that the optimal solution
is of the same form as (19) except that the optimal escapement level of spawners is
usually reduced by a small amnount (less than 5%) unless the coefficient of variation
is quite large (greater than 100%). The solution produced here is consistent with
these theoretical results (Fig. 1, model 2). '

5.3 Stochastic Autocorrelated Recruitment

It is more realistic to consider autocorrelated environmental variation of recruitment,
i.e. greater than zero. If the environmental variation (¢}) constant, and the policy
function is restricted such that it is only a function of the number of spawners, there
is no change in the policy decision, i.e. it remains the same as in Figure 1 (model
2). The policy decision function is not changed in this case because there is no
feedback to the quota decision function from tée information on deviating from the
stock-recruitment relationship.

The information present in the environmental autocorrelation can be used to
improve the policy decision funciion by making the decision funciion dependent
upon the observed deviation from the stock-recruitment relationship as well as the
present stock of spawners. Define the logarithm of the deviation as

d; = log(y:1) — log(iiy) (1)

where 7, is the recruitment predicted by the stock-recruitment relationship. A tea-
sonable first step in examining a quota decision function that uses this information
is to reduce the quota in years with lower recruitment than expected (d;, < 0) and
to raise it in years in which recruitment is higher than expected (d; > 0). Equation
(9) can be modified in several way to do this, e.g.

0 ifa>0
Qi vz v) = { n(E) ifa<0 (22)
where
a = (v — vsde) — Yo (23)
The resulting optimal quota decision lunction significantly increased Lhe expected

quota of the policy by about 5% (Table 1). Sobel (1982) and Spulber (1982) consid-
ered this ptoblem using the theory of Makov decision processes; their results using
a more complex theory are similar to those found here.
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5.4 Errors in Observation

Consider model 1 (Table 1} with only errors in observation included (model 4). In
this case there is a qualitative change in the optimal policy (Fig. 1). In particular
the quotas are lower than these from model | when Eigh stock sizes are observed
and higher when low stock sizes are observed. This type of quota decision function
is reasonable when one considers the direction of errors once the population has
reached a steady state with respect to the quota decision function. That is, high
observed stock sizes are likely to be overestimates and low observed stock sizes are
likely to be underestimates. Thus, the quota decision function should be modified
as in Fig. 1. This type of quota decision function produces results similar to the
James-Stein estimators in statistics.

5.5 Stochastic Recruitment and Errors in Observation

If errors in observation and variable recruitment are considered simultanecusly
(model 5) the result is a quota decision function that is moderated form of that
found in model 4 (Fig. 1). The inclusion of variation in recruitment along with
error in observation means that more of the observed variation in stock size s real,
and thus the results from model 4 should be moderated,

5.6 Parameter Uncertainty

The effect of parameter uncertainty in the estimates of the stock-recruitment pa-
rameters was investigated. A standard error of 20% with a correlation coefficient
of -.9 had very little effect on the optimal decision policy; the shape of the optimal
policy was almost identical to that produced above. The mean utility, the mean
catch, and the standard deviation of the optimal catch was also almost identical.
kHowever, if the correlation between the estimated paramters was not included in
a realistic manner, e.g. no correlation was assumed, the decision function changed
greatly. Thus, the estimated tock and recrutiment paramters may be adequate for
obtaining quota decision functions, but if parameter uncertainty is inc[udeg, then it
must be included in a realistic fashion.

6 Simulation Results - Nonlinear Utility

The inclusion of nonlinear utility in the simulation with error the estimate of stock
size and stachastic recruitment {model 5, Table 1) has a drastic effect on the policy

function (Fig. 2, model 7). The simple constant escapement policy that is char-
acteristic in simpler models (Eq. 16) becomes a more comglex function with the
result that the equilibrium number of spawners is approached gradually as opposed
to that which resulted from the case of linear utility, in which the approach was as
rapid as was biologically possible. The results found here are consistent with those
found using optimal control theory (Clark 1985), but can be obtained without a
deep knowledge of optimal control theroy. .

7 Iteroparous Species

In these simulations long-lived species are mimicked bf/ allowing post-reproductive
survival (% > 0). Although this model does not include somatic growth (this is
studied in the next section), it does allow the investigation of two important factors
characteristic of longer-live& species. First, in many Fong-lived species the estimates
of older cohorts may be quite good, e.g. via cohort analysis; however, these estimates
of younger cohorts ma.y%e very poor. It may be desirable to use these two types of
information differently when making policy decisions. Second, a species that does
not die after reproduction will have more resilience to fluctuations in recruitment
which will be contrasted here with our previous examples. Results will be presented
verbally at the meeting.

8 Age-Structured Density-Dependent Models

The management of a multi-cohort, age-structured fishery is an enormously complex
task even in the deterministic case. Usually drastic simplifications are made. For
example, recruitment can be ignored and an equilibrium age structure assumed, as
in the dynamic pool models of Beverton and Holt (1957). Another common sim-
plification is to lump somatic growth, mortality, and recruitment into one variable
as in “general production motfel“. The Schaffer model is the most cotnmonly used
exam Fe of this clasas.

Clark (1976), Botsford (1981), Deriso (1980), Feichtinger {1982), Hannesson
(1975), and Getz {1980) have considered more realistic deterministic density-dependent




age-structured models and have obtained useful results. Nevertheless, none of the
models have come into general use and the results are not complete. The problem is
the inherent difficulty of multi-dimensional dynamic optimization problems (Clark
1985); even when partial results are obtained they may he Loo complex to apply in
practice. The inclusion of errors in observation, nonlinear utility, and stochasticity
makes full solutions impossible in practice.

Here the groblem is reduced to an unconstrained optimization of a policy decision
function as vefore; the principle difficulty is to reduce the dimensonality of the
problem so that the policy function is described by a reasonably samall number of
parameters.

"The Beverton-Holt dynamic pool model reduces the age structure into one vari-
able, exploitable biomass, which is a reasonable place to begin. Ore obvious ex-
tenston 18 to consider a measure of deviations from the equilibrium age structure.
For example, a population in which the exploitable biomass will be concentrated
in older, slowly-growing age classes should be harvested differently from a pepula-
tion in which the exploitable biomass is concentrated in younger, faster-growing age
classes. One solution to this problem is considered below.

It may be useful to also consider estimates of the pre-recruits as a variable in the
policy function. Another obvious variable to consider is a measure of size selectivity
of the fishery. (This was considered in the classic models of Beverton and Holt's
model.

We)would like to reduce to a vector of age specific abundances inte two numbers,
one representing total biomass and another representing the potential for somatic
growth. One obvious possibility is

N
Sg = E gt (24)
F=ay
N
Gy = 3 uin{wipr — w)/ Sy (25)
f=a,

where G} is the relative growth potential next year for the stock, and a; is the age
at first fishing. .. . .
The state of the population is described by a vector of ages, z; with elements

CZint = 1,2,..n —1 is the number of fish in age class ¢ at time ¢, and =z, is the

number of fish age n and older at time ¢. .
The catch of each age i at time ¢, ¢;, is assumed io be taken at the end the year
in spawning concentrations. The dynamics of numbers at age is thus

Trerger = Bizgg — ot (26)
fori=23,.n—-1
Tnapl = Puc1Zacrg — Gnoa + PaTot — Gy (27)
for .= n where P; is natural survival. )
The fishery is managed on a quota basis, in which the quota is the weight not
numbers of fish caught. To calculate the age-specific catch from a given quota, an
age-specific catch equation is assumed, i.e.

¢ = eqii, (28)

" where e is effort and ¢ is the age-specific catchability. The total weight of the catch

equals the quota, i.c.

Q= Z Gw; = e ): HEAT (29)

where w; 18 weight at age i.
The effort, e, can be determined from the above equaiion and used to calculate
the catches,

(30)

gz
e
2 T
The above equation may have to be modified if the population experiences
density-dependent growth.
A program b been written Lo apply the above approach to resd fishiery popu-
lations. Preliminary results will be presented verbally at the meeting,

9 Conclusions

1. Th]g proposed method is sufficiently simple to be used to be use to set quotas
policy. ‘

2. Stochastic recruitment had a small effect on the shape of the optimal policy
function.




3. Erf.or in estimating stock size had a targe effect of the shape of the optimal
pohicy. ‘

4. It is important to simultaneously include the effects of stochastic recruitment
and error in observing stock size in setting quota policies.

5. The inclusion of parameter uncertainiy is a Bayesian formulation had little
effect on the optimal policy.

6. It is crucial to include risk aversion in the setting of quota policies via a
nonlinear utility function

10 References

¢ Bellman, R. 1957. Dynamic programming. Princeton University Press, Prince-
ton, New Jersey.

- o Beverton, R.J.H. and S. J. Holt. 1957. On the dynamics of exploited fish pop-
uiations. Ministry of Agriculture, Fisheries and Food (London), Fish. Invest.
Ser. 2(19).

o Botsford, L. 1981. Optimal fishery policy {or size-specific, density-dependent
population models. J. Math. Biol. 12: 265-293.

¢ Charles, A. 1983a. Optimal fisheries investment under uncertainty. Can. J.
Fish. Aquat. Sci. 40: 2080-2091.

¢ Charles, A. 1983b. Effects of %arameter uncertainty and Bayesian updating
gg fisheries investment. Univ. B.C. Inst. Appl. Math. Stat. Tech. Rep. No.
-2.

Clark, C. W. 1976, Mathematical bioeconomics: the optimal management of
renewable resources. Wiley-Interscience, New York.

i985. Bioeconomic modeling and fisheries management. John Wiley and Sons,
Canada, Ltd., Toronto.

Deriso, R. B. 1980. Harvesting strategies and parameter estimation for an
age-structured model. Can. J. Fish. Aquat. Sci. 37: 268-282.

Feichtinger, G. 1982. Optimal bimodal harvest policies in age-specific bioe-
conomic models, p. 285-299. In G. Feichtinger and P. Kell [gd.] Operations
Research in Progress. Deidel, Vienna.

Getz, W. 1980. The ultimate-sustainable yield problem in nonlinear age-
structured populations. Math. Biosci. 48: 279-292,

Goh, B. S. 1980. Management and analysis of biological populations. Elsevier,
Amsterdam.

e Hannesson, R. 1975. Fishery dynamics: a North Atlantic cod fishery, Can. J.
Econ. 8: 151-173.

Hull, J. C., P. G. Moore, and H. Thomas. 1973. Utility and its measurement.
J. Roy. Stat. Soc. A 136(2): 226-247.

Judge, G. G., W. E. Griffiths, R. C. Hill, and T. C. Lee. 1980. The theory
and practice of econometrics. John Wiley and Sons, New York.

Kendrick, D. 1981. Control theory with applications to economics, p. 111-
158. In K. J. Arrow and M. D, Intriligator [ed.] Handbook of mathematical
economics, vo. 1.

Ludwig, D. A., and C. J. Walters. 1982. Optimal harvesting with imprecise
parameter estimates. Ecol. Model. 14: 273-292.

Mendelssohn, R. 1980, Using Markov decision models and related techniques
for purposes other than simple optimization: analyzing the consequences of
policy alternatives on the management of salmon runs. Fish. Bull. 78: 35-50,

Pope, J. G. 1972. An investigation of the accuracy of virlual population
analysis using cohort analysis. International Counal for Northwest Atlantic

Fisheries (ICNAF) Res. Bull. No, 9: 65-74.

Reed, W. J. 1974. stochastic model for the economic management of a renew-
able animal resource. Math, Biosci. 22: 313-337.

o Reed, W. J. 1979. Qptimal escapement levels in stochastic and deterministic
harvesting models. J. Environ. Econ. Manage. 6: 350-363.

o Ricker, W.E. 1958. Handbook of Computations for Biological Statistics of
Fish Populations. Fish. Res. Board of Canada, Ottawa. )




- 9 -

e Ruppert, D., R. L. Reish, R. B. Deriso, and R. J. Carroll. 1985. A stochastic
_population model for managing the Atlantic menhaden (Brevoortia tyrannus)
gs ery and assessing managerial risks. Can. J. Fish. Aquat. Sci. 42: 1371-
1379.

o Shepherd, J. G. 1982. A versatile new stock-recruitment relationship for fish-
ﬁies, a.nthhe construction of sustainable yield curves, J. Cons. Int. Explor,
er 40: 67-75.

¢ Sobel, M. J. 1982. Stochastic fishery games with myopic equilibria, p. 259-268.
In L. J. Mirman and D. F. Spulber |ed.] Essays in the economics of renewable
resources. North Holland, Amsterdam. v

e Spulber, D. G, 1982, Adaptive harvesting of a renewahle resource and stable
equilibrium, p. 117-139. In L. J. Mirman and D. F. Spulber ed.] Essays in
the economics of renewable resources. North Holland, Amsterdam.

s Stewart, L.T. (1983). Baﬁesian analysis using Monte Carlo integration - a

owerful methodology for handling some difficult problems. The Statistician,
52, 195-200. .

Table 1. Models investigated for a semalparous species. Méan recruitment is

assumed to follow a Beverton Holt stock-recruit function with o = 0.0006 an&

p = 0.4.

Modet 1 2 3 4 5 6 7
Observational
error 582 0 0 0 0.2 0.2 0 0.2
variance
Recruitment | o2 0 0.4 0.4 0 0.4 0 0.4
variability b 0 -0 0.8 0 G 0 0
Recruitment c:q[2 0 0 0 0 0 0.2 0
parameter oﬁz 0 0 0 0 0 0.2 0
uncertainty p 0 0 0 0 0 -0.9 0

Utility v 0 0 0 0 ¢ 0 0.002



FIG. 1, SEMELPAROUS SPECIES, LINEAR UTILITY
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