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ABSTRACT 

The purpose of this paper is to present a practical method for setting approx-
imately , optimal policy decisionsl in a nuota regulated' fishery in which the stock-
recruitment relationship, somatic growth, parameter uncertainty, stochastic varia-
tion and mean-variance trade-offs in-catch are explicitly considered. The proposed 
method converts a dynamieoptimization,problem into one that can be solved using 
unconstrained optimizatiOn Methods. The effects of errors in estimation of stock 
size, parameter uncertainty, and stochastic recruitment on optimal quota policies , are demonstrated. 

1 Introduction 
The rational management of a fishery requires the amalgamatiom of .economic and 
social ceneidefations with prediction of changes in fish population& This must be 
carried out with populations whose size is not known with precision and whose dy-
namics are subject to stochastic changes. Although excellent theoretical research has 
been done on the inclusion of economic'factors in stochastic fisheries models, these 
methods have seldom been applied to the routine management of a fishery (see Clark 
(1985) for a review). Thepurposmof this paper is to present a practical'` method 
for setting approximately optimal updatelipolicy decisions in which Stdcliaitic vari-
ation and parameter uncertainty are explicitly considered. I shall investigate the 
incorporation of information. other than:estimates of stock size, e g age structure, 
in setting quotas. For example, for a given stock biomass, it might be desirable to 
set a lower quota than if the stcck-eomprieed mainly Older kge Similarly, if 
stock-recruitment relationship is antocoitelated, then it,inity,be desirable to incor-
porate the last observed residual froiriAlie stock recruitment relationship into the 
quota setting process. 

The approach used here is to limit attention to a parametric family of policy 
functions, e.g. let the quota' for an -yearbe ,a parametric function of the observed 
stock size. The optimization problem that is solved is to choose the parameters 
describing the, policy function so that the desired objective, e.g. long.teirn catch, 
is maximized. This approach is known as parameter optimization (Bell/malt 1957) , 

and has been previously, used in fisheries problems by Ruppert et al. (1985). Here, 
this technique ;  willbe used in the context of 'a Bayesian decision problem 

Furthermore, we would not only like to set a quota eachyear; but we would also 
like to provide fishermen with estimates of the likelihoods of filtfiracatch levels. This 
would allow Sermen to. make better investmentidecisions. 1 Thenietlidds discussed 
here will be applied to a quota regulated fishery in whichl the quotaS are updated 
each year. However, the methods could also be applied in other situations, e.g. 
effort regulated fisheries. 

There is a major limitation to the approach discussed here; only ,  passive learn-
ing will be considered here, not active learning (the modification' of stock levels to 
improve parameter estimates of the fishery model, e.g. the stock-recruitment func-
tion). Ludwig and Walters (1982), have shown that a Manageffient Stiategythploy-
mg active learning can improve long-terrh yields. when compared with,a management 
strategy that allows minimal variatiorrim the spawning stock 'However, the abun-
dance of most marine,stocks has fluctuated- widely-  I the last few decades because 
of changing management practices and,environmental variation:' Thus;Wwould be 
much more difficult to justify the deliberate manipulation the spawning biomass of 
these stocks for the purpose of improved,parameter estimation. 
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2 Formulation 
I consider a population described at time t by a vector of ages or stages, x t . The 
vector x is assumed to be measured with error, i.e. 

yi = xt 	et 	 (1) 

where e t  is a vector or measurement error. It is assumed here that the statistical 
properties of s e  can be adequately estimated. 

The fishery is assumed to be regulated by a quota that is updated each year based 
upon new knowledge of the population dynamics and new estimates of population 
size. The population dynamics are described by a discrete time stochastic equation 

x +1 = 	Q t, ) 

	

(2) 

where the 6 is a random component (possibly vector) in the dynamics, e.g. a 
stochastic term describing variable recruitment. 

The parameters describing the population dynamics are assumed to be estimated 
for the available data. At the time a quota is set, the uncertainty in the parameters is 
described by a prior distribution, iro.  Empirical estimation of the prior distribution 
is described by Ludwig and Walters (1982) and Charles (1983h). 

The socio-economic utility of a quota willgenerally be a concave increasing 
function of the quota. The utility function, U(Q1)  will generally be determined 
exogeneously to the management of the fishery, i.e. by a combination of economic 
analysis and political decision making. The utility will be assumed not to change 
with time. The degree of concavity of the utility reflects risk-aversion, which is 
defined as 

r(Q) = -U"(Q)/C(Q). 	 (3) 
The amount of wealth, e.g. quota, society is willing to forego to avoid risk is ir(Q)o 2 , 

where Q is the present quota and a 2  is the variance of the risk. In general, risk 
version will be a decreasing function of the quota levels i.e. it is usually socially 
important to maintain a minimum level of fishing. To satisfy this requirement, only 
utility functions which satisfy this property will be considered (this is ensured if 
r'(Q) < 0; Hull et al. (1973). It will be useful to scale the utility function such that 
it can be compared to fishery management techniques that maximize only catch, 
i.e. in which the utility function is the identity. To do this we examine two utility 
functions that have the identify function as their limit. Two utility functions which 
satisfy the above conditions are 

U(Q) —  	 (4) 
1 + vQ 

where v is the maximum quota capacity of the fleet or market (this function ap-
proaches the identity as v --+ 0, and 

U(Q) = (Q + v -1 1) -1 1(v —1) 11 	 (5) 
which is more useful in describing fisheries without a maximum capacity (in this 
case the U approaches the identity as v 	1). 

The objective of the fishery manager is to choose quotas, Q t , t = 1 to N, which 
satisfy: 

N 

Q(t)
max EEU(Q i ) 	 (6 ) 4.1 	 

where E is the expectation operator and N is the time horizon of the management 
plan. The expectation is actually a multiple expectation, first, with respect to the 
errors in observation e t ,t = 1,...N; second, with respect to the stochastic portion 
of the population dynamics 6,1 = 1,...N; and third, with respect to the prior 
distribution ro. 

Note that if the initial stock size and age structure is not known with certainty, 
then the expectation will also have to include the prior probability distribution for 
those estimates. This will be particularly important when stock projections are 
made. 

3 Method 
Approximate solutions to the stated problem are generally impossible; approxima-
tions must be used (Kendrick 1981). The approach taken here is to develop methods 
that can be used by managers that are not experts at stochastic control theory. 

The approximation used here is that the optimal sequence of quota decisions can 
be approximated by an appropriately chosen quota policy decision function 

	

Qt = R(Yt; 	 (7) 
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where v is a set of parameters describing the decision to function which are chosen 
such that 

max EE U[Q(y e ; v)], 	 (8) 

where the population dynamics are given by (2). The maximization in (8) is a 
specialization of that in (6) in which the quota has been constrained by equation 
(7). Note that (8) does not depend upon possible improved estimates of the pa-
rameters describing population dynamics i.e. as if all future quota decisions will 
be based on the present level of information. The number of stochastic elements in 
the expectation will be sufficiently large that the expectation must be calculated by 
Monte-Carlo simulations (Stewart, 1983). 

The quota policy for the simple case where there is only one age or stage class 
to consider, Q(y; v) should have the following properties: 

1. The quota should be a nondecreasing function of y. 

2. If the estimated stock size y is below some critical stock size y„ then the quota 
should be zero. 

3. Above the critical stock size y„ the quota should increase proportional to a 
power (y — Ma, where /3 may be greater than one. 

A two-parameter function that satisfies (1) and (2) is 

if y < ye  
Q(Y; v) = 	Civ2 (y  - y, ) if y ye  (9 ) 

where ye  = 
A three-parameter function that satisfies properties (I), (2), and (3) is 

(2(y; v) = 
0 	if Y 	Yc 
v2 (y — Yc)"' if Y > Ys 

(10) 

where ye  = 

A four-parameter function that is more flexible is 

v) 	
0 	if y < ye  

Q(y; v) = fuv.23V4T  if y > yo  

where y, = vi. 
The approach used here was to first restrict the quota decision function to 9, 

then fit 10 and 11; the more complicated decision function was accepted only if it 
significantly improved the expected utilities summed over time. 

Rupert et al. (1984) suggest the use of a technique known as stochastic ap-
proximation to obtain solutions to a problem similar to that described here except 
that they limited stochasticity to recruitment. However, the method of stochastic 
approximation does not seem to be easily applicable to more complex problems, e.g. 
parameter uncertainty. Here, it was found that adequate solutions to the maximiza-
tion could be obtained by simpler methods. 

The suggested algorithm for finding the approximate maximum of (6) is as fol-
lows: 

1. Choose a reasonable parameterization of the quota decision function Q(y; v), 
e.g. such as eq. 10. 

2. Generate and store realizations of all random elements; i.e. 	(t = 1...N) 
and wo. 

3. Maximize (6) with respect to v approximating the expectation by summing 
over the simulated realization generated in step (ii). 

4. Repeat steps (ii) and (iii) to determine if sample size of Monte-Carlo simula-
tions was sufficient. 

5. Repeat (ii) - (iv) using alternative parameterizations of the quota-decision 
function. 

The above algorithm is a stochastic version of isirameter optimization (Hellman 
1957), has several advantages over alternative methods. First, it does not require 
a deep knowledge of stochastic optimization theory to apply. Second, by choosing 
and storing the stochastic portions of the problem, the maximization in step (iii) is 
deterministic. Third, it can be relatively easily implemented because at the heart 
of the algorithm lies an unconstrained maximization routine. Fourth, the variation 
in quota levels are easily investigated. 
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Implicit in Eq. 8 is that errors in estimating stock abundance are sufficiently 
small that the quota will actually be caught. If this is not the case, then the quota 
in Eq. 8 must be replaced b7 the actual (or simulated) catch. This requires a model 
relating the quota and the true" abundance to the simulated catch. 

4 Simulation 
In order to demonstrate the use of the methods and to illustrate principles of setting 
quotas in a stochastic environment, I consider a model with two stages: xi,,, the 
number of pre-recruits at time t, and 1 2 ,,, the number of post-recruits at time t. 

The dynamics of the post-recruits, x2, is 

x24+1 = 	P2(x2,e - C2,I) 	 (12) 

where Pi is the natural survival of stage i, and c2,, is the catch of the fully recruited 
class at time t. If P2 is zero, then the model can be used to simulate semelparous 
species such as Pacific salmon while if P is close to one, the model can simulate long-
lived species. Recruitment is assumed to follow a Beverton-Holt relationship with 
residual variation assumed to be a zero mean, autocorrelated, lognormal distribution. 
That is 

xi,t+1 = 	
12,e 	1 2 	exp((, - -a ) 	 (13) a + f3x 2 ,, 	2 

where C, is the realization of a stochastic process generated by 

(t+i 	95(i + at • 	 (14) 

where 0 is the autocorrelation and a, is a realization of Gaussion white noise with 
mean zero, variance (4, and no autocorrelation. The relationship between the vari-
ance of ( and the variance of a is given by 

(7.2 
2 

(j<  — 1 — cb2  

(Box and Jenkins 1976). In order to investigate the role of autocorrelation on 
setting quotas it is useful to vary the amount of autocorrelation for a fixed level of 
environmental variation ct 	will be constrained to remain constant as 0 changes, 
i.e. for each 0, a?, will be chosen using (14) so that 	is constant. 

Both the pre- and post-recruits may be observed with error, i.e. 

1 
 Y1,1 = $1,t eXP(el,t 	
2 ) 
	 (16) 

1 	\ 
Y23 = x2,t exP(c23 ice,/ 	 (17) 

where the observational errors are realizations of a mean zero, non-autocorrelated, 
lognormally-distributed stochastic process. That is, ej is a mean zero, Gaussian 
noise with variable a?. Generally estimates of stock 'size of pre-recruitments will be 
worse than those of past recruits, i.e. 4, > 

The prior probability distribution for the stock recruitment parameters, a and 
P, is assumed to be a bivariate normal as follows: 

r(a,13)= (CI a)" exp(-(-1i )[A i  (a - 6) 2  + A2 (a - 6)09 - 	Aa(fl - 'i) 2 ]) (18) 

with 
ar = [( 1  - P2 )a!r A2 = -120( 1  P2 )craafil, A3  = [( 1  — P2 )41 —I 	( 19) 

where C is a normalization constant, u is the number of observations, and et and 
,3! are the best estimates (Charles 1983b). The theoretical justification for using a 
bivariate normal for an empirical estimate of the prior uncertainty is that the un-
certainty of maximum-likelihood parameter estimates can be very generally asymp-
totically approximated by a multivariate normal distribution. A further practical 
consideration is the wide availability of multivariate random number generators. 
However, in practice, the parameters of stock-recruit relationships may not be suf-
ficiently well determined for the multivariate normal to be an adequate description 
of the likelihood surface. 

In the simulations which are described below, the quota decision function will 
be restricted to the form of eq. 9 unless otherwise stated. The time horizon will be 
100 years and the Monte-Carlo integration will use 250 replicates. 

The parameters used for the Beverton-Holt stock-recruitment relationship (Table 
1) have been discussed and plotted in a widely used text (Ricker 1975, Fig. 11.5, 
Table 11.7). The observational error variance, a t7,, corresponds roughly to that of 

(15) 



a typical virtual population analysis, while the error variance of the pre-recruits 
corresponds to that of a groundfish research survey. The recruitment variability 
and autocorrelation is the median of 10 stocks examined by Koslow (1984). The 
parameter uncertainty was calculated from data in Beverton and Holt (1957) for 
North Sea plaice. 

5 Simulation Results - Linear Utility 

5.1 No Sochasticity 
• The simplest case is considered first: a semelparous species, i.e. one that dies after 

reproduction, with no observation error and with deterministic known dynamics and 
linear utility. In this case the proposed method should reproduce the known optimal 
solution (obtained using optional control theory), namely 

0 	if X2 • t < 
Q t = 	 (20) T2 - X; if x 2 , t  < xZ 

where x; is the optimal escapement of spawners (Goh 1980). This type of policy 
is known as a constant escapement policy, i.e. a constant number of spawners are 
allowed to return to spawn each year. In this case the optimal number of spawners 
is 387. The resulting quota decision function has a slope of one and x intercept 
of 387 if the observed numbers of spawners is greater than 387 and zero otherwise. 
This is the solution found by the proposed method (Fig. 1). 

5.2 Stochastic Recruitment 
Reed (1974, 1979), Ludwig and Walters (1982), Charles (1983a), and Clark and 
Kirkwood (1984) have considered the above problem with the addition of indepen-
dent stochastic variation in recruitment. Their results are that the optimal solution 
is of the same form as (19) except that the optimal escapement level of spawners is 
usually reduced by a small amount (less than 5%) unless the coefficient of variation 
is quite large (greater than 100%). The solution produced here is consistent with 
these theoretical results (Fig. 1, model 2). 

5.3 Stochastic Autocorrelated Recruitment 
It is more realistic to consider autocorrelated environmental variation of recruitment, 
i.e. greater than zero. If the environmental variation (q) constant, and the policy 
function is restricted such that it is only a function of the number of spawners, there 
is no change in the policy decision, i.e. it remains the same as in Figure 1 (model 
2). The policy decision function is not changed in this case because there is no 
feedback to the quota decision function from the information on deviating from the 
stock-recruitment relationship. 

The information present in the environmental autocorrelation can be used to 
improve the policy decision function by making the decision function dependent 
upon the observed deviation from the stock-recruitment relationship as well as the 
present stock of spawners. Define the logarithm of the deviation as 

	

dt  = log(y t , t ) — log(Rt ) 	 (21) 

where is the recruitment predicted by the stock-recruitment relationship. A rea-
sonable first step in examining a quota decision function that uses this information 
is to reduce the quota in years with lower recruitment than expected (d t  < 0) and 
to raise it in years in which recruitment is higher than expected (dt  > 0). Equation 
(9) can be modified in several way to do this, e.g. 

(0 	if a > 0 
Q(cit, vim; )= ,,2 (=„:±  ).4 if a <0 (22) 

where 
a = (v1  — usdi) — vi.m. 	 (23) 

The resulting optimal quota decision function significantly increased the expected 
quota of the policy by about 5% (Table I). Sobel •(1982) and Spulber (1982) consid-
ered this problem using the theory of Makov decision processes; their results using 
a more complex theory are similar to those found here. 



5.4 Errors in Observation 
Consider mode! 1 (Table 1) with only errors in observation included (model 4). In 
this case there is a qualitative change in the optimal policy (Fig. 1). In particular, 
the quotas are lower than these from model I when high stock sizes are observed 
and higher when low stock sizes are observed. This type of quota decision function 
is reasonable when one considers the direction of errors once the population has 
reached a steady state with respect to the quota decision function. That is, high 
observed stock sizes are likely to be overestimates and low observed stock sizes are 
likely to be underestimates. Thus, the quota decision function should be modified 
as in Fig. 1. This type of quota decision function produces results similar to the 
James-Stein estimators in statistics. 

5.5 Stochastic Recruitment and Errors in Observation 
If errors in observation and variable recruitment are considered simultaneously 
(model 5) the result is a quota decision function that is moderated form of that 
found in model 4 (Fig. 1). The inclusion of variation in recruitment along with 
error in observation means that more of the observed variation in stock size is real, 
and thus the results from model 4 should be moderated. 

5.6 Parameter Uncertainty 
The effect of parameter uncertainty in the estimates of the stock-recruitment pa-
rameters was investigated. A standard error of 20% with a correlation coefficient 
of -.9 had very little effect on the optimal decision policy; the shape of the optimal 
policy was almost identical to that prbduced above. The mean utility, the mean 
catch, and the standard deviation of the optimal catch was also almost identical. 
kHowever, if the correlation between the estimated paramters was not included in 
a realistic manner, e.$. no correlation was assumed, the decision function changed 
greatly. Thus, the estimated tock and recrutiment paramters may be adequate for 
obtaining quota decision functions, but if parameter uncertainty is included, then it 
must be Included in a realistic fashion. 

6 Simulation Results - Nonlinear Utility 
The inclusion of nonlinear utility in the simulation with error the estimate of stock 
size and stochastic recruitment (model 5, Table 1) has a drastic effect on the policy 
function (Fig. 2, model 7). The simple constant escapement policy that is char-
acteristic in simpler models (Eq. 16) becomes a more complex function with the 
result that the equilibrium number of spawners is approached gradually as opposed 
to that which resulted from the case of linear utility, in which the approach was as 
rapid as was biologically possible. The results found here are consistent with those 
found using optimal control theory (Clark 1985), but can be obtained without a 
deep knowledge of optimal control theroy. 

7 It eroparous Species 
In these simulations long-lived species are mimicked by allowing post-reproductive 
survival (P2  > 0). Although this model does not include somatic growth (this is 
studied in the next section), it does allow the investigation of two important factors 
characteristic of longer-lived species. First, in many long-lived species the estimates 
of older cohorts may be quite good, e.g. via cohort analysis; however, these estimates 
of younger cohorts may be very poor. It may be desirable to use these two types of 
information differently when making policy decisions. Second, a species that does 
not die after reproduction will have more resilience to fluctuations in recruitment 
which will be contrasted here with our previous examples. Results will be presented 
verbally at the meeting. 

8 Age-Structured Density-Dependent Models 
The management of a multi-cohort, age-structured fishery is an enormously complex 
task even in the deterministic case. Usually drastic simplifications are made. For 
example, recruitment can be ignored and an equilibrium age structure assumed, as 
in the dynamic pool models of Beverton and Holt (1957). Another common sim-
plification is to lump somatic growth, mortality, and recruitment into one variable, 
as in "general production model". The Schaffer model is the most commonly used 
example of this class. 

Clark (1976), Botsford (1981), Deriso (1980), Feichtinger (1982), Hannesson 
(1975), and Getz (1980) have considered more realistic deterministic density-dependent 



age-structured models' and have obtained useful results. Nevertheless, none of the 
models have come into general use and the results are not complete. The problem is 
the inherent difficulty of multi-dimensional dynamic optimization problems (Clark 
1985); even when partial results are obtained they may be too complex to apply in 
practice. The inclusion of errors in observation, nonlinear utility, and stochasticity 
makes full solutions impossible in practice. 

Here the problem is reduced to an unconstrained optimization of a policy decision 
function as before; the principle difficulty is to reduce the dimensionality of the 
problem so that the policy function is described by a reasonably small number of 
parameters. 

The Beverton-Holt dynamic pool model reduces the age structure into one vari-
able, exploitable biomass, which is a reasonable place to begin. One obvious ex-
tension is to consider a measure of deviations from the equilibrium age structure. 
For example, a population in which the exploitable biomass will be concentrated 
in older, slowly-growing age classes should be harvested differently from a popula-
tion in which the exploitable biomass is concentrated in younger, faster-growing age 
classes. One solution to this problem is considered below. 

It may be useful to also consider estimates of the pre-recruits as a variable in the 
policy function. Another obvious variable to consider is a measure of size selectivity 
of the fishery. (This was considered in the classic models of Beverton and Holt's 
model.) 

We would like to reduce to a vector of age specific abundances into two numbers, 
one representing total biomass and another representing the potential for somatic 
growth. One obvious possibility is 

N 
Si = E 

•=a, 

N 

Gt  E 	— wivst 	 (25) 

where G, is the relative growth potential next year for the stock, and a 1  is the age 
at first fishing. 

The state of the population is described by a vector of ages, x t  with elements 
= 1,2, ...n — 1 is the number of fish in age class i at time t, and x„,, is the 

number of fish age n and older at time t. 
The catch of each age i at time t, 	is assumed to be taken at the end the year 

in spawning concentrations. The dynamics of numbers at age is thus 

4+1 = Ptzt,r — ci, t 	 (26) 

for i = 2,3, ...n — 1 

Xn ,t+1 = Pn-1 Xn-1,1 	en-1,1 	— 	 (27) 

for i.= n where Pt is natural survival. 
The fishery is managed on a quota basis, in which the quota is the weight not 

numbers of fish caught. To calculate the age-specific catch from a given quota, an 
age-specific catch equation is assumed, i.e. 

	

ci = eqixi, 	 (28) 

' where e is effort and q is the age-specific catchability. The total weight of the catch 
equals the quota, i.e. 

Q = E covi  = e E qixiwi. 	 (29) 

where tv;  is weight at age i. 
The effort, e, can be determined from the above equation and used to calculate 

the catches, 
(29t  c — 	ri 	 (30) 

The above equation may have to be modified if the population experiences 
density-dependent growth. 

A program illt11 Well Witte!' to apply 1110 ILIWVe 15111)1tMCI) to real fishery popu- 
lations. Preliminary results will be presented verbally at the meeting. 

9 Conclusions 
I. The proposed method is sufficiently simple to be used to be use to set quotas 

policy. 

2. Stochastic recruitment had a small effect on the shape of the optimal policy 
function. 

(24) 
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3. Error in estimating stock size had a large effect of the shape of the optimal 
policy. 

4. It is important to simultaneously include the effects of stochastic recruitment 
and error in observing stock size in setting quota policies. 

5. The inclusion of parameter uncertainty is a Bayesian formulation had little 
effect on the optimal policy. 

6. It is crucial to include risk aversion in the setting of quota policies via a 
nonlinear utility function 
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Table 1. Models investigated for a semalparous species. Mean recruitment is 

assumed to follow a Beverton Holt stock-recruit function with a = 0.0006 and 

p = 0.4. 

Model 1 2 3 4 5 6 7 

Observational 

error 

variance 

0  2 
e 

0 0 0 0.2 0.2 0 0.2 

Recruitment 0c 2  0 0.4 0.4 0 0.4 0 0.4 

variability fo 0 0 0.8 0 0 0 0 

Recruitment a 2  
a 0 0 0 0 0 0.2 0 

parameter 
o0 

2 0 0 0 0 0 0.2 0 

uncertainty p 0 0 0 0 0 -0.9 0 

Utility 0 0 0 0 0 0 0.002 
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