Northwest Atlantic

Fisheries Organization

Serial No. N1928

NAFO SCR Doc. 91/45

SCIENTIFIC COUNCIL MEETING - JUNE 1991

Survey Biomass of Greenland halibut (Reinhardtius hippoglossoides) off West Greenland (NAFO Subareas 0+1),

July-August 1988, 1989 and 1990

P. Kanneworff and S.A. Pedersen

Greenland Fisheries Research Institute, Tagensvej 135, 1. DK-2200 Copenhagen N, Denmark

Introduction

A yearly stratified-random shrimp trawl survey in the main distribution area for shrimp (Pandalus borealis) off West Greenland was initiated in July 1988 by Greenland Fisheries Research Institute (Carlsson and Kanneworff 1991). This paper presents estimates of biomass, abundances and size distributions for Greenland halibut based on by-catch data collected during the shrimp trawl survey in July 1988, July-August 1989 and July-August 1990.

Materials and Methods

Survey design

The shrimp surveys were carried in the offshore area of West Greenland between $61^{\circ}52'5N$ to $72^{\circ}30'N$ and from the 3-mile limit to the 600 meter depth contour line (Fig. 1).

The surveys were conducted with four commercial shrimp trawlers of about similar size. In July 1988 with M/Tr Elias Kleist (722 GRT), in July-August 1989 with M/Tr Sisimiut (722 GRT), in July-August 1990 with M/Tr Maniitsoq (722 GRT) and M/Tr Auveq (695 GRT), respectively.

The four trawlers used similar trawling gear (Skjervoy 3300/20 with bobbin gear and a double-bag with 44 mm mesh-size in the cod-end). The trawl-doors used were in 1988 and 1990 of the *Perfect* type, while in the 1989-survey *BMV* doors were used. The *BMV* doors gave a smaller wing spread. During the trawl operations in 1989 and 1990 the wing spread was measured by means of SCANMAR equipment to an average of 17.2 m and 28.1 m, respectively. In the 1988-survey the wing spread was estimated to 26.5 m, lacking suitable equipment to measure the actual wing spread.

The standard trawling haul was about 60 minutes at a mean towing speed of about 2.4 knots throughout the surveys. In order to minimize the influence of vertical shrimp migrations the trawl operations were planned to be carried out only during daytime (hours: 0900-1900 UTC). Due to time constraint it became necessary to work on a 24-hour schedule in the last part of the surveys in 1989 and 1990.

In the area between 61°52′5N and 69°30′N (named 'WEST' and 'CANADA') the stratification was based on the depth contours and divided in subareas which were further divided in four depth strata. The area between 69°30′N and 72°30′N (named 'NORTH') was divided in separate shrimp grounds defined by the effort distribution in the commercial shrimp fishery. Due to scarce information on the bottom topography this area was not divided in depth strata. The size of the strata by subarea in square kilometres are given in Table 1.

The number of hauls per strata were allocated proportionally to strata sizes. However a minimum of two hauls per stratum was always scheduled. Within the strata the trawling sites were chosen at random according to Doubleday

Biomass and abundance

The mean biomass with standard deviation by subarea, depth-stratum and year was calculated by means of the swept area method and assuming a catchability coefficient of 1.0. From most of the hauls in 1988 subsamples of the Greenland halibut catches were weighted and total length measured to the nearest centimetre below. From some of the hauls during the two surveys in 1990 the Greenland halibut were length measured or the average weight per fish were estimated. The length distributions of all Greenland halibut in each haul were weighted by effort and pooled by area.

Abundance estimates by area were calculated simply by dividing the estimated biomass by the mean weight per fish weighted by strata area.

Catch distribution

The catch rates (kg/hour) of Greenland halibut were examined by the following general linear model (GLM):

log(catch) = a0 + a1(subarea) + a2(depth) + a3(year) + error

where subarea, depth and year were included as class variables.

The computer procedure "GLM" in the statistical computer package (SAS Institute Inc., North Carolina) was used.

Log(catch) was assumed to be normally distributed and this was justified as the standard deviation is proportional to the mean. The distributions are, however, not strictly log normal because several of the trawl catches were zero. Therefore, the delta distribution might be more correct. To avoid to take the log of zero 1 gram was added to all catch rates.

Average weight

Average weights per fish in grams were examined by the following general linear model (GLM):

GHLAVG = a0 + al(subarea) + a2(depth) + a3(year) + epsilon

where subarea, depth and year were included as class variables.

Results

Biomass and abundance

Except in subarea C3 there is a general decrease in the mean catch per hour and calculated mean biomass by subarea, depth-stratum and year from 1988 to 1990 (Table 2 and 3). The total biomass and abundance estimates decreases significantly from about 12,000 tonnes and 141 mill. in 1988 to about 4,600 tonnes and 36 mill. in 1990, respectively (Table 4 and 5). The largest reduction is seen in area 'NORTH' (subarea: N2, N4-N6) and 'West' (Subarea: W1).

Length distributions of Greenland halibut caught in area 'NORTH', 'CANADA' and 'WEST' during the survey in 1988 shows marked peaks at about 12, 18 and 25 cm (Fig. 2a-d). Length distributions of Greenland halibut caught in area 'WEST' during the survey in 1990 also shows marked peaks at about 12, 18 and 25 cm (Fig. 3a-b).

Catch distribution

Analysis of variance on the logarithmic transformed trawl-survey catches (kg/hour) shows significant effects (P<0.01) of subarea, depth and year (Table 6). The model explains 42% of the total variation. The model solution indicate a general decrease in the catch rate from north to south, from deep to shallow water and from 1988 to 1990.

Average weight

Analysis of variance on average weight per fish shows significant effects of depth (P<0.01) and of subarea (P<0.05) but no significant effects (P>0.05) of year (Table 7). The model explains 31 % of the total variation. The model solution indicate a general increase in average weight per fish from north to south and from shallow to deep water.

Discussion

Greenland halibut is most frequent on grounds with rich stocks of deep sea prawns (Pandalus borealis), and it is an important fish species in by-catch from the prawn fishery (Smidt, 1969). Small Greenland halibut have long been known to occur in rich quantities on nursery grounds in the Disko Bay, off the West Greenland coast north of 66° N and in several fjords of South Greenland at depths between 200-600 m (Jensen, 1935; Smidt, 1969; Riget and Boje, 1988). According to Smidt (1969) the stock of typing firestland halibut is very denies on the localities west of Disko compared with other localities, and the vast shallow areas (about 200-250 m in depth) northwest, west and southwest of Disko can be regarded as very important nursery grounds from where the older stocks in the fjords of Disko Bay, Umanak district, and more northern districts are recruited. According to Riget and Boje (1989) little attention have been paid to Greenland halibut on the continental slope and they propose that a stepwise migration and growth occur down the continental slope to the deeper part of the Davis Strait were the Greenland halibut mature and spawn.

The by-catch data presented in this paper confirm that major nursery grounds for Greenland halibut coincide with the distribution area for shrimp (Pandalus borealis). Average length and weight data by subarea and depth also

indicate a gradual migration and growth of Greenland halibut down the continental slope to the deeper part of the Davis Strait as proposed by Riget and Boje (1989). Average length and weight data collected by Japan Marine Fishery Resource Research Center (JAMARC) in cooperation with Greenland Fisheries Research Institute during stratified-random bottom trawl surveys off West Greenland at depths between 50-1500 m in 1987-90 extent and support these findings (Yamada et al., 1988; Yatsu and Jørgensen, 1989; Due et al., 1991).

When comparing the biomass estimates calculated from the trawl survey data, it is important that the catch data is collected with similar ships and trawl gear, during the same time period etc. This has not completely been fulfilled during the three years shrimp trawl surveys off West Greenland, 1988-90. For instance were the trawl-doors used in 1988 and 1990 of the Perfect type, while in the 1989-survey BMV doors were used. The BMV doors gave a smaller wing spread and a horizontally higher net opening. The effects of differences in ships and gear used between years is unknown as is the catchability for Greenland halibut. The biomass estimates derived from these surveys are therefore merely indices. However, the decrease in the total biomass and abundance estimates from about 12,000 tonnes and 141 mill. in 1988 to about 4,600 tonnes and 36 mill. in 1990 is an indication for a reduction in the stock size from 1988 to 1990.

References

- Carlsson, D.M. and P. Kanneworff, 1991. Report on Stratified-random Trawl Surveys for Shrimp (Pandalus borealis) in NAFO Subarea 0+1 in July-August 1990 and Comparison with Earlier Surveys. NAFO SCR Doc. 91/70.
- Doubleday, W.G. (Ed.), 1981. Manual of Groundfish Surveys in the Northwest Atlantic. NAFO Sci. Coun. Studies, 2:7-55.
- Due, T.T., C.A. Jørgensen and K. Akimoto, 1991. Japanske trawl undersøgelser ved Grønland, 1990. Videnskabelig del. Grønlands Fiskeriundersøgelser, Januar 1991/"Japanese Trawl Investigations off West Greenland 1990". (in Danish).
- Jensen, A.S., 1935. The Greenland halibut (Reinhardtius hippoglossoides), its development and migrations. K. Danske Vidensk. Selsk. Skr., 9 Rk., 6(4):1-32.
- Riget, F. and J. Boje, 1988. Distribution and Abundance of Young Greenland Halibut (Reinhardtius hippoglossoides) in West Greenland Waters. NAFO Sci. Coun. Studies, 12: 7-12.
- Riget, F. and J. Boje, 1989. Fishery and Some Biological Aspects of Greenland Halibut (Reinhardtius hippoglossoides) in West Greenland Waters. NAFO Sci. Coun. Studies, 13: 41-52.
- Smidt, E.L.B., 1969. The Greenland Halibut, Reinhardtius hippoglossoides (Walb.), Biology and Exploitation in Greenland Waters. Meddelser fra Danmarks Fiskeri- og Havundersøgelser, N.S., 6: 79-148.
- Yamada, H., K. Okada and O. Jørgensen, 1988. Distribution, Abundance and Size Composition of Greenland Halibut Estimated from a Stratified-Random Trawl Survey off West Greenland in 1987. NAFO SCR Doc. 88/34.
- Yatsu, A. and Jørgensen, 1989. Distribution, Abundance, Size, Gonad Index and Stomach Contents of Greenland halibut (Reinhardtius hippoglossoides) off West Greenland in September/October 1988, NAFO SCR Doc. 89/31.

Table 1 Stratum areas in squarekilometers.

AREA=NORTH

IAREA IN KM2	SUBAREA									
	N1	N1 N2 N3 N4 N5 N6 N								
	AREA	AREA	AREA	AREA	AREA	AREA	AREA			
	KM2	KM2	KM2	KM2	KM2	KM2	KM2			
DEPTH]								
200-600	3649	11789	367	2249	9607	15926	1159			

AREA=CANADA

IAREA IN KM2	SUBA	AREA !
	C1	C3
	AREA	AREA
	KM2	KM2
DEPTH		
200-300		660
1300-400	655	1192
1400-600	312	623

AREA=WEST

AREA IN KM2	SUBAREA										
, 	W1	W2	W3 1	W4	₩5 J	W6					
	AREA	AREA	AREA !	AREA	AREA I	AREA					
	KM2	KM2	KM2	KM2	KM2	KM2					
DEPTH		!									
150-200	2363	1499	2215	4204	1995	1095					
200-300	5213	2477	4810	1736	34541	1491					
300-400	9239	1.453	2714	745	1797	1300					
1400-600	752	559	3361	1915	28061	8841					

Table 2 Mean catch of Greenland halibut (kg/hour) and number of hauls by subarea, depth-stratum and year.

AREA=NORTH

KG PR HO	บห	ļ								SUB	ARE	Α								
			1	11		N2		l N3]	N	4		N5		ı	16		! !	N7	
		 		RL. IBU	t Т і	GRL. HALIB	UT	GRL. HALIB	UT	GR HAL	L. IBU	T	GRL. HALIB			AL.	JT		RL. LIBU	JT
			ME	AN I	N į	MEAN	1 N	MEAN	IN	MEA	N I	N I	MEAN	IN I	ME	AN	N I	1 ME	AN	N
DEPTH	IYEAR			†				 			,	(!		
200-600	188	-	7	.15	5	16.19	7	6.52	3	43.	24	_5 İ	9.71	4	15	. 27	10	0	. 54	2
	89	Ţ	4	. 45	61	2.25	1 6	1.63	1 3	7.	07	41	2.04	116				0	.00	2
	190	1	7	.041	91	0.51	7	15.25	1 3	8.	471	71	4.07	117	2	. 29	8	3	. 691	4

AREA=CANADA

KG PR HOUR	SUBAREA 1
[[C1. C3
[GRL. GRL. HALIBUT HALIBUT
1	MEAN IN MEAN IN
DEPTH LYEAR	
200-300 190	1.97 4
300-400 [88	2.261 31 13.341 31
89	1.671 31 6.401 31
90	5.31 3 23.81 4
400-600 88	33.00 1 . .
89	0.10 1 21.63 3
190	1 2.001 11 38.221 41

AREA=WEST

KG PR HOL	JR I						SUBA	REA		SUBAREA								
		Wl	1	W2		W3		W4		W5		W6						
1 } •		GRL.	JT	GRL. HALIBU	T	GRL. HALIB	JТ	GRL. HALIBU	JΤ	GRL. HALIBI	υT	GRL. HALĪBU	JT.					
! · !		MEAN	IN I	MEAN I	N I	MEAN	N	MEAN	N	MEAN	IN I	MEAN	N +					
DEPTH	IYEAR			i	į						 	•	 					
150-200	188	0.00	3	0.23	4 j	0.16	4	0.47	7	0.04	4	 -	i .					
!	89	0.55	2 1	0.13	3	0.15	4	0.19	8	0.00	4 1		1 .					
 	190	0.28	4 [0.021	51	0.23	6	0.10	12	0.00	1 6	0.39	3					
200-300	88	10.91	91	2.371	4 1	4,45	9	0.93	3	0.70	7		1 .					
!	189	4.77	4 1	3.781	5 !	0.38	10	0.67	3	0.37	7		1 .					
!	190	1.42	17	1.81	7 (1.34	112	0.36	5	0.09	110	2.00	3					
300-400	188	28.51	1141	39.30	2 (12.49	2	60.06	2	1.40	1 3	. .	١.					
!	189	8.66	111	1.73	3	13.07	3	5.45	2	3.90	4		١.					
1	190	12.10	1261	6.92	3	11.07	9	3.43	4	0.44	5	0.92	2					
400-600	188	17.54		43,43	2	49.94	8	53.81	1 3	25.30	4	<u>-</u>	! •					
	89	1.60	1 11	18.22	2	2.87	1 4	1.47	3	5.72	1 5		١					
1	190	1 1.40	1 31	53.20	6	25.93	1 9	16.08	6	4.74	1 8	5.96	1 4					

Table 3 Mean biomass of Greenland halibut (tonnes) and number of hauls by subarea, depth-stratum and year.

AREA=NORTH

BIOMASS	IN TONS	 						SUBAREA					· 	
į		N1		N2	!	N3	. !	N4		N5	N6	<u>-</u>	N7	!
		GRL.	Γ ,	GRL. HALIBUT	. !	GRL. HALIBUT	į	GRL. HALIBUT	. !	GRL HALIBUT	GRL. HALIBU	Г	GRL. HALIBUT	!
İ		MEAN	N	MEAN I	N į	MEAN I	N į	MEAN I	N I	MEAN IN	MEAN	IN I	MEAN I	N
DEPTH	IYEAR			!	;			!		!		! !	!	!
200-600	88	227	5	1494	7	24	3	, 838	5	793 4	1687	10	5	2
;	89	207	6	3321	6	81	3 į	1741	41	240116		. !	0 !	2
i	90	214	91	411	71	441	3 i	1441	7	327117	262	B 1	391	4

AREA=CANADA

IBIOMASS	IN TONS	SUBAREA							
		C1	!	C3					
į		GRL. HALIBUT	1	GRL. HALIBUT	 !				
İ		MEAN	N i	MEAN II	v				
DEPTH	YEAR				!				
200-300	190		i . i	11	4				
300-400	នេទ	11	3 i	130	3				
	89	121	3 [87	3				
j	90	29 i	3 į	2361	4				
400-600	88	75	1						
	89	0	1	157!	3				
i	90	4 1	11	2171	4				

AREA=WEST

BIOMASS	IN TONS	!		·		5	UBA	REA						
		Wi		W2		W3		W4	!	₩5		j W6		
 		GRL, HALIBU	r	GRL. HALIBUT	Γ	GRL HALIBU		GRL. HALIBUT	· .	GRL. HALIBU	r	GRL. HALIBUT	r .	
!		MEAN	N I	MEAN	N	MEAN	N	MEAN I	N	MEAN	N	MEAN	N	
DEPTH	IYEAR	1												
150-200	188	i o	3	3 (4	4	4	13	_7	1	4			
	189	14	2	2	3	4	4	10	8	0	4			
	190	6	4	0	5	5	6	5	12	0	6	5	3	
200-300	188	1 422	9	54	4	160	9	13	3	24	7			
	89	1 298	1 4	116	5	24	10	17	3	14	7			
	190	56	117	43	7	58	12	61	5	3	10	24	3	
300-400	188	2081	114	459	2	277	2	318	2	19	3			
	189	950	11	25	3	430	3	45	2	96	4			
 	90	888	126	100	3	260	9	23	4	7	5	1.2	2	
400-600	188	118	1 1	167	2	1249	8	794	3	479	4			
1-	89	14	1 1	114	2	109	4	341	3	212	5	! !		
; .	190	10	1 3	274	6	797	9	2411	6	121	8	47	4	

Table 4 Total biomass estimates (tonnes) and confidence intervals (%) by area and year.

Area/year	1988	ć	1989		1990	
	Biomass	c.v.	Biomass	c.v.	Biomass	c.v.
NORTH $(N_1 - N_7)$	5068	56%	961	45%	1073	448
CANADA $(C_1 + C_3)$	216	120%	256	63%	497	72%
WEST $(W_1 - W_6)$	6656	26%	2528	278	2992	228
Total	11940		3745		4561	

Table 5 Total abundance estimates (mill.) in 1988 and 1990 by area.

Area/year	1988	1990
	Abundance	Abundance
NORTH (N ₁ -N ₇)	47	5
CANADA $(C_1 + C_3)$	1.6	2
WEST $(W_1 - W_6)$	· 92	29
Total	140.6	36

Table 6 Analysis of variance (ANOVA) on log(catch) with a three factor model (subarea, depth and year). The ANOVA table and the parameter estimates togther with their calculated standard errors are given.

	GENERAL	LINEAR MODELS	PROCEDURE		
DEPENDENT VARIABLE: LO	OGGHL		•		
SOURCE	DF	SUM OF SQUAR	ES M	EAN SQUARE	F VALUE
MODEL	19	3115.712801	84 16	3.98488431	19.56
ERROR	499	4182.476293	26	8.38171602	PR · F
CORRECTED TOTAL	518	7298.189095	09		0.0001
R-SQUARE	C.V.	ROOT M	SE L	OGGHL MEAN	
0.426916 47	7.9511	2.895119	34	6.03765384	
SOURCE	DF	TYPE I	SS F VALUE	PR > F	
SUBAREA	14	952.299700	08 8.12	0.0001	
DEPTH YEAR	3 2		11 79.76 64 9.42		
201202					
SOURCE	DF	TYPE III	SS F VALUE	PR · F	
SUBAREA	14		50 4.19		
DEPTH	3		54 80 78		
YEAR	2	157.872005	64 9.42	0.0001	
PARAMETER	ES		FOR HO: RAMETER=0	PR > ITI	STD ERROR OF ESTIMATE
INTERCEPT	6.99	9060701 B	8.08	0.0001	0.86517872

				T FOR HO:	PR → IT1	STD ERROR OF
PARAMETER		ESTIMATE		PARAMETER≃0		ESTIMATE
INTERCEPT		6.99060701	В	8.08	0.0001	0.86517872
SUBAREA	Cl	0.43091005	В	0.36	0.7217	1.20930532
	C3	1.71663862	8	1.62	0.1062	1.06070790
	N1	1.48337591	В	1.37	0.1709	1.08176061
	N2	1.04521724	В	0.97	0.3343	1.08146246
	N3	2.86078363	В	2.18	0.0294	1.30958342
•	N4	1.89596073	В	1.67	0.0952	1.13400634
	N5	0.73756413	В	0.75	0.4541	0.98449656
	N6	0.16288144	В	0.15	0.8817	1.09403959
	N7	0.69630232	В	0.52	0.6021	1.33469045
	W1	1.45210481	В	1.60	0.1099	0.90663808
	W2	1.73750070	В	1.83	0.0680	0.94996265
	W3	1.75573813	8	1.93	0.0540	0.90898077
	W4	1.19253709	В	1.28	0.2011	0.93168994
	W5	~1.18488648	В	-1.29	0.1985	0.92032581
	W6	0.00000000	В			
DEPTH.	150-200	-6.05591641	В	-13.92	0.0001	0.43492516
·	200-300	-3.63150708	В	-9.31	0.0001	0.39012648
	300-400	-0.88224892	В	-2.28	0.0229	0.38661364
	400-600	0.00000000	В			•
YEAR	88	1.35793699	В	4.32	0.0001	0.31413527
-	89	0.37093265	В	1.17	0.2417	0.31645401
	90	0.00000000	В			,

Table 7 Analysis of variance (ANOVA) on average weight per fish - reduced model. The ANOVA table and the parameter estimates together with their calculated standard errors are given.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABL	E: GHLAVG	·			
SOURCE	DF				
		SUM OF SQUARES	М	EAN SQUARE	· F VALUE
MODEL	17	4285365.43355024	25208	0.31962060	4.10
ERROR	149	9154379,59323769	6143	8.78921636	PR · F
CORRECTED TOTAL	166	13439745.02678790			0.0001
R-SQUARE	C.V	ROOT MSE	G	HLAVG MEAN	
0.318858	111.6278	247.86849178	22	2.04911061	
SOURCE	DF	TYPE I SS	F VALUE	PR → F	
SUBAREA DEPTH	14 3	2395780.61247631 1889584.82107393	2.79 10.25		
SOURCE	DF	TYPE III SS	F VALUE	PR > F	
SUBAREA DEPTH	14 3	1532618.17815505 1889584.82107393	1.78 10.25	0.0462 0.0001	
PARAMETER			OR HO: HETER=0	PR > ITI	STD ERROR OF ESTIMATE
INTERCEPT SUBAREA C1 C3 N1 N2	-1 -274 -201	.18730084 B .91746926 B .62361663 B .03965664 B	5.03 -0.01 -1.70 -1.18 -1.77	0.0001 0.9914 0.0908 0.2391 0.0783	127.39125547 177.50718745 161.35166263 170.07373856 154.59848013
N3 N4 N5 N6 N7	-226 -334 -124 -346	.93027397 B .24789822 B .59760668 B .01637893 B	-1.03 -2.12 -0.83 -2.25 -0.92	0.3035 0.0356 0.4085 0.0260 0.3585	219.76683143 157.64548011 150.32101675 153.87155149 216.67470221

-296.66842736 B

-386.43952496 B

-284.57352568 B

-104.03952419 B

-157.32880040 B

-305.15440488 B

-280.64436393 B

-226.26146514 B

0.00000000 B

0.00000000 B

W2

W3

₩4

₩5

₩6

150-200

200-300

300-400

400-600

DEPTH

-2.20 -2.56

-2.14

-0.75

-1.15

`. -3.55

-5.09

-4.10

0.0291

0.0116

0.0338

0.4564 0.2507

0.0005

0.0001

0.0001

134.64028539

151.16625842

132.86856095

139.33738786

136.42270476

85.91525292

55.10279701

55.21009731

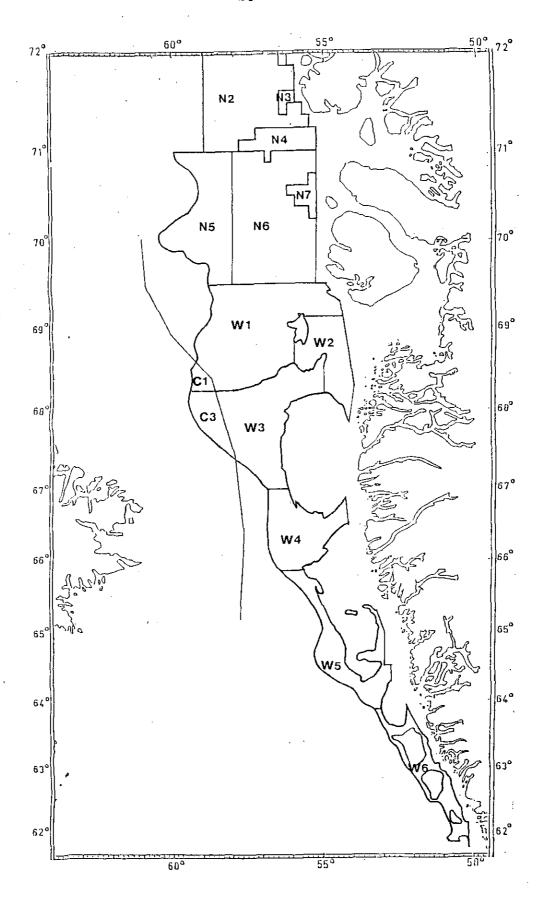
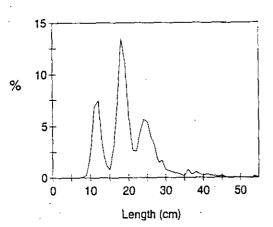
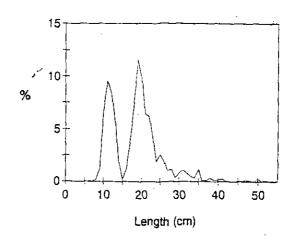
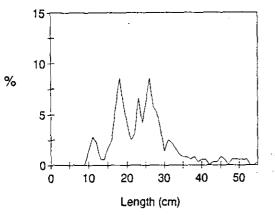



Fig. 1 Area stratification of the yearly stratified-random shrimp-trawl-survey in the main distribution area for shrimp (Pandalus borealis) off West Greenland.


Area: NORTH
Depth: 100-600m

Number measured: 1,709


Area: WEST (W₁₋₅) Depth: 150-400m

Number measured: 4,286

Area: CANADA
Depth: 300-600m

Number measured: 461

Area: WEST (W₁₋₅) Depth: 400-600m

Number measured: 1,338

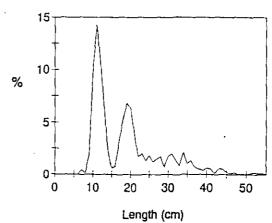
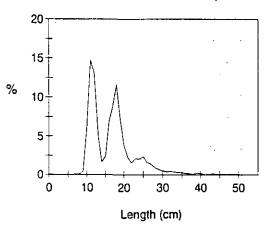



Fig. 2a-d Length distributions of the length measured Greenland halibut caught during the survey in 1988 by area and depth. a) "NORTH" (100-600m), b) "CANADA" (300-600m), c) "WEST" (150-400m), d) "WEST" (400-600m).

Area: WEST (W_{1-5}) Depth: 150-400m

Number measured: 1,149

Area: WEST (W₁₋₅)
Depth: 400-600m

Number measured: 1,149

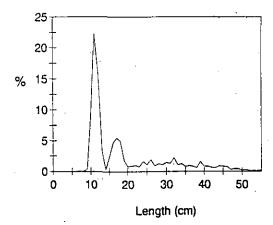


Fig. 3a-b Length distributions of the length measured Greenland halibut caught during the survey in 1990 by area and depth. a) "WEST" (150-400m), b) "WEST" (400-600m).