NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

<u>Serial No. N1929</u>

NAFO SCR Doc. 91/46

SCIENTIFIC COUNCIL MEETING - JUNE 1991

Survey Biomass of Redfish (Sebastes spp.) off West Greenland

(NAFO Subareas 0+1), July-August 1988, 1989 and 1990

S.A. Pedersen and P. Kanneworff

Greenland Fisheries Research Institute, Tagensvej 135, 1. DK-2200 Copenhagen N, Denmark

Introduction

A yearly stratified-random shrimp trawl survey in the main distribution area for shrimp (*Pandalus borealis*) off West Greenland was initiated in July 1988 by Greenland Fisheries Research Institute (Carlsson and Kanneworff 1991). This paper presents estimates of biomass, abundances and size distributions for redfish based on by-catch data collected during the shrimp trawl survey in July 1988, July-August 1989 and July-August 1990.

Materials and Methods

Survey design

The shrimp surveys were carried in the offshore area of West Greenland between $61^{\circ}52'5N$ to $72^{\circ}30'N$ and from the 3-mile limit to the 600 meter depth contour line (Fig. 1).

The surveys were conducted with four commercial shrimp trawlers of about similar size. In July 1988 with M/Tr Elias Kleist (722 GRT), in July-August 1989 with M/Tr Sisimiut (722 GRT), in July-August 1990 with M/Tr Maniitsoq (722 GRT) and M/Tr Auveq (695 GRT), respectively.

The four trawlers used similar trawling gear (Skjervoy 3300/20 with bobbin gear and a double-bag with 44 mm mesh-size in the cod-end). The trawl-doors used were in 1988 and 1990 of the *Perfect* type, while in the 1989-survey *BWV* doors were used. The *BWV* doors gave a smaller wing spread. During the trawl operations in 1989 and 1990 the wing spread was measured by means of SCANMAR equipment to an average of 17.2 m and 28.1 m, respectively. In the 1988-survey the wing spread was estimated to 26.5 m, lacking suitable equipment to measure the actual wing spread.

The standard trawling haul was about 60 minutes at a mean towing speed of about 2.4 knots throughout the surveys. In order to minimize the influence of vertical shrimp migrations the trawl operations were planned to be carried out only during daytime (hours: 0900-1900 UTC). Due to time constraint it became necessary to work on a 24-hour schedule in the last part of the surveys in 1989 and 1990.

In the area between 61°52'5N and 69°30'N (named 'WEST' and 'CANADA') the stratification was based on the depth contours and divided in subareas which were further divided in four depth strata. The area between 69°30'N and 72°30'N (named 'NORTH') was divided in separate shrimp grounds defined by the effort distribution in the commercial shrimp fishery. Due to scarce information on the bottom topography this area was not divided in depth strata. The size of the strata by subarea in square kilometres are given in Table 1.

The number of hauls per strata were allocated proportionally to strata sizes. However a minimum of two hauls per stratum was always scheduled. Within the strata the trawling sites were chosen at random according to Doubleday (1981).

Biomass and abundance

The mean biomass with standard deviation by subarea, depth-stratum and year was calculated by means of the swept area method and assuming a catchability coefficient of 1.0. From most of the hauls in 1988 subsamples of the redfish catches were weighted and total length measured to the nearest centimetre below. From some of the hauls during the two surveys in 1990 the redfish were length measured or the average weight per fish were estimated. The length distributions of all redfish in each haul were weighted by effort and pooled by area.

Abundance estimates by area were calculated simply by dividing the estimated biomass by the mean weight per fish weighted by strata area.

Catch distribution

The catch rates (kg/hour) of redfish were examined by the following general linear model (GLM):

- 2 -

log(catch) = a0 + a1(subarea) + a2(depth) + a3(year) + error

where subarea, depth and year were included as class variables.

The computer procedure "GLM" in the statistical computer package (SAS Institute Inc., North Carolina) was used.

Log(catch) was assumed to be normally distributed and this was justified as the standard deviation is proportional to the mean. The distributions are, however, not strictly log normal because several of the trawl catches were zero. To avoid to take the log of zero 1 gram was added to all catch rates.

Average weight

Average weights per fish in grams were examined by the following general linear model (GLM):

REDAVG = a0 + a1(subarea) + a2(depth) + a3(year) + error

where subarea, depth and year were included as class variables.

<u>Results</u>

Biomass and abundance

Except in subarea C3, depth 300-400m and subarea W4, depth 300-400m there is a general decrease in the mean catch per hour and calculated mean biomass by subarea, depth-stratum and year from 1988 to 1990 (Table 2 and 3). The total biomass and abundance estimates decreases from about 20,000 tonnes and 631 mill. in 1988 to about 12,800 tonnes and 401 mill. in 1990, respectively (Table 4 and 5). The largest reduction is seen in area 'NORTH' and 'WEST' (subarea: N4-N6, W1 and W5). There is increased biomass and abundance estimates in area 'CANADA' from 1988 to 1990.

Length distributions of redfish caught in area 'NORTH' and 'CANADA' during the survey in 1988 shows a marked peak at about 13 cm, whereas in area 'WEST' depth 150-400 m and depth 400-600 m there is marked peaks at about 7 and 13 cm (Fig. 2a-d). Length distributions of redfish caught in area 'WEST' during the survey in 1990 depth 150-400 m shows marked peaks at about 7, 11 and 13 cm, whereas in depth 400-600 m there is marked peaks at about 7, 11, 13 and 18 cm (Fig. 3a-b).

Catch distribution

Analysis of variance on the logarithmic transformed trawl-survey catches $\{kg/hour\}$ shows significant effects (P<0.01) of subarea, depth and year (Table 6). The model explains 48% of the total variation. The model solution indicate a general increase in the catch rate from north to south, from shallow to deeper water. There is a decrease in the catch rate from 1988 to 1990.

Average weight

Analysis of variance on average weight per fish shows significant effects of subarea (P<0.01) and of year (P<0.05) but no significant effects (P>0.05) of depth (Table 7). The model explains 22 % of the total variation. The model solution indicate a general increase in average weight per fish from north to south. There is a decrease in the average weight per fish from 1988 to 1990.

Discussion

The West Greenland shelf area from the Diskobank region to the Fyllabank region is an important nursery ground for redfish (mainly Sebastes mentella). The highest densities of young redfish are observed in trawl fishery around Store Hellefiskbank (NAFO Division 1B) and large quantities of young redfish are by-catch in the shrimp fishery in this area. (Jensen, 1979; Atkinson, 1987; Yamada et al., 1988; Riget et al., 1988; Pedersen and Lehmann, 1989).

The by-catch data presented in this paper confirm that young redfish are highly abundant around Store Hellefiskbank (NAFO Division 1B), and that major nussery grounds for redfish coincide with the distribution area for shrimp.

When comparing biomass and abundance estimates calculated from trawl survey data, it is important that the catch data is collected with similar ships and trawl gear, during the same time period and area etc. This has not completely been fulfilled during the three years shrimp trawl surveys off West Greenland, 1988-90. For instance were the trawl-doors used in 1988 and 1990 of the Perfect type, while in the 1989-survey BMV doors were used. The BMV doors gave a smaller wing spread and a horizontally higher net opening. The effects of differences in ships and gear used between years is unknown as is the catchability for redfish. The biomass estimates derived from these surveys are therefore merely indices. However, the decrease in the total biomass and abundance estimates from about 20,000 tons and 631 mill. in 1988 to about 12,800 tons and 401 mill. in 1990 is an indication for a reduction in the West Greenland redfish populations from 1988 to 1990.

These findings are supported by blomass and abundance estimates derived from the German groundfish survey with R/V Walther Herwig which indicate a decline of the fishable redfish populations (Sebastes marinus) Southwest of Greenland from 1982 to 1990 (Messtorff and Cornus, 1989 and 1990; Rätz, 1991). In addition blomass estimates from groundfish surveys conducted by Japan Marine Fishery Resource Research Center (JAMARC) in cooperation with Greenland Fisheries Research Institute also indicate a decline of the West Greenland redfish populations (Sebastes mentella) from 1987 to 1990 (Due et al., 1991).

Length distributions and average weight data by subarea and depth indicate a gradual migration and growth of young redfish from the northern areas (Division 1A and 1B) westward and south and from shallow to deeper water. Average length and weight data collected during stratified-random bottom trawl surveys off West Greenland at depths between 50-1500 m in 1986, 1987 and 1990 support these findings (Atkinson, 1987; Yamada et al., 1988; Due et al., 1991; Rätz, 1991). According to Zakharov (1966) the marked peak in the length distributions at about 7 cm in the southern part of the survey area (subarea W_1-W_5) probably represents age 1+ redfish. In September-November pelagic redfish fry probably age 0+ (40-68 mm) have been observed drifting northward from Kap Farvel along the West Greenland, and it is assumed that the redfish have been observed off West Greenland, and it is assumed that the redfish populations in West of Iceland (Zakharov, 1966; Anon., 1984; Pavlov et al., 1989; Anon., 1990; Magnusson et al., 1990).

References

- Anon., 1984. Report on the joint NAFO/ICES study group on biological relationships of the West Greenland and Irminger Sea redfish stocks. ICES C.M. 1984/G:3.
- Anon., 1990. Report of the study group on oceanic-type Sebastes mentella. ICES C.M. 1990/G:2.
- Atkinson, D.B., 1987. The Distribution and Abundance of Redfish (Sebastes marinus and S. mentella) in Davis Strait (NAFO Subarea 0+1). NAFO SCR Doc. 87/38.
- Carlsson, D.M. and P. Kanneworff, 1991. Report on Stratified-random Trawl Surveys for Shrimp (Pandalus borealis) in NAFO Subarea 0+1 in July-August 1990, and a Comparison with Earlier Surveys. NAFO SCR Doc. 91/70.
- Doubleday, W.G. (Ed.), 1981. Manual of Groundfish Surveys in the Northwest Atlantic. NAFO Sci. Coun. Studies, 2:7-55.
- Due, T. T., O. A. Jørgensen and K. Akimoto. 1991. Japanske trawl undersøgelser ved Grønland 1990. Videnskabelig del. Grønlands Fiskeriundersøgelser, Januar 1991/"Japanese Trawl Investigations off West Greenland 1990". (in Danish).
- Jensen, J.M., 1979. Redfish at West Greenland, Subarea 1. ICNAF Res. Doc. 79/VI/54.
- Magnússon, J., K. Kosswig and J.V. Magnússon, 1990. Further Studies on Young Redfish in the East Greenland Shelf Area. ICES C.M. 1990/G:43.
- Messtorff, J. and H.P. Cornus, 1989. Survey Biomass and Abundance Estimates for Redfish (Sebastes marinus and S. mentella) off West Greenland (NAFO Subarea 1), 1982-1988, and off East Greenland (ICES Div. XIVb), 1980-88. NAFO SCR Doc. 89/51.
- Messtorff, J. and H.P. Cornus, 1990. Survey Biomass and Abundance Estimates for Redfish (Sebastes marinus and S. mentella) off West Greenland (NAFO Subarea 1, 1989). NAFO SCR Doc. 90/88.
- Pavlov, A.J., V.S. Mamylov, A.S. Noskov, A.N. Romanchenko and A.V. Ivanov, 1989. Results of USSR investigations of Sebastes mentella Travin in 1981-1988 (ICES Subareas XII and XIV). ICES Paper C.M. 1989/G:17.

Pedersen, S.A., 1990. Rødfisk (Sebastes spp.) ved Grønland/"Redfish (Sebastes spp.) off West Greenland". Rapport til Grønlands Hjemmestyre fra Grønlands Fiskeriundersøgelser. Januar 1990 (in Danish).

- Pedersen, S.A. and K. Lehmann, 1989. By-catch of Redfish and Greenland halibut in the Shrimp Fishery off West Greenland, 1988. NAFO SCR Doc. 89/41.
- Riget, F., J. Boje and K. Lehmann, 1988. By-catches of Greenland Halibut and Redfish in the Shrimp Fishery at West Greenland. NAFO SCR Doc. 88/12.
- Rätz, H.-J., 1991. NAFO Subarea 1 Golden and Beaked Redfish: Spatial Distribution Pattern, Survey Abundance and Biomass Estimates in 1982-90 and Length Frequency in 1990. NAFO SCR Doc. 91/73.

Wieland, K., 1991. Distribution of larval and 0-group fish of West Greenland in Summer and Autumn 1989 and 1990. NAFO SCR Doc. 91/35.

Zakharov, G.P., 1966. The Distribution of Pelagic Redfish Fry in the East and West Greenland Areas. ICNAF Research Bulletin Number 3, 1966 :27-31.

Yamada, H., K. Okada and O. Jørgensen, 1988. Distribution, Abundance and Size Composition of Redfish (Sebastes marinus and Sebastes mentella) Estimated from a Stratified-Random Trawl Survey off West Greenland in 1987. NAFO SCR Doc. 88/35.

÷

Table 1 Stratum areas in squarekilometers.

.

AREA=NORTH

AREA IN KM2	!			SUBAREA			
	N1	N2	N3	I N4 I	N5	N6 1	N7
i,	AREA	AREA	AREA	AREA I	AREA	AREA	AREA
	KM2	KM2	KM2	I KM2 I	КМЗ	KM2	KM2
DEPTH	!						
200-600	3649	11789	367	22491	9607	15926	1159

AREA≃CANADA

AREA IN KM2	SUB	AREA
	C1	C3
1	AREA	AREA
	KM2	KM2
DEPTH		
200-300		660
300-400	655	1192
400-600	312	623

AREA=WEST

IAREA IN KM2			SUB/	REA		
	Wl	W2	W3 ,	. W4	W5 I	W6
	AREA	AREA	AREA	AREA	AREA	AREA
	KM2	KM2	КМ2	КМ2	I KM2	KM2
DEPTH						
150-200	2363	1499	2215	4204	1995	1095
200-300	5213	2477	4810	1736	3454	1491
1300-400	92391	1453	2714	745	1797	1300
1400-600	7521	559	3361	1915	28061	884

Table 2 Mean catch of redfish (kg/hour) and number of hauls by subarea, depth-stratum and year.

.

KC PR HO								·				ID A D										
10 10 10																						
-		1	n.	i	l N	2		I .	N3		1	N 4	1	1	15	1		16		1	N7	
		RED	FI	SH	RED	FI	SH	i RF	DFI	SH	R	EDFI	SH	REC	DF 1	รค่	REI)F I	SH	i R	EDFI	sF
		MEA	N	ואו	MEA	N	N	Î ME	AN	1 N	i M	CAN	IN	MEA	IN	IN	ME	NN.	1 N	†	EAN	ĪN
DEPTH	IYEAR			1 1			1	i		;			1 1			++ 			+ 	+ 1		i
200-600	188	Ο.	0 Z	5	0.	37	7	i o	. 64	3	:	2.94	1 5	20.	75	4	6	57	110	-	0.24	1
	189	0	37	1 61	0.	00	6	1 0	. 00	1 3		0.17	1 41	2.	83	116			† – –	+ 1	0.00	ţ,
	190	0.	29	1 91	0.	00	7	·	00	1 3		0.00	7		75	1 1 7 1		21	+	• :		<u>+</u> -

••

AREA=CANADA

KG PR HO	UR	ł			su	BA	RE/	۱		
	•	į		C1		ł		C3		
• .			RE	DFI	SН	Ţ	RF	DF	151	H
		1	ME	AN	IN	Ť	ME	AN	U.	N.
DEPTH	YEAR	į			; ;	ţ			i	
200-300	190			۰.	ł.	. i	20	. 0	Ξİ	4
300-400	188	;	8	. 27	i	31	42	. 9	ŧ,	3
	89	1	96	. 73	i :	31	105	6.6	31	3
	190	1	31	. 85	; ;	3î	154	. 20) i	4
400-600	188	1	146	. 25	1				;;	
	89	:	38	. 00	17	i i	51	. 4 :	31	3
	190	;	27		1-1	- + -	33	6	. + - . i	Ā

AREA=WEST

KG PR HO	un	!				;	ទបម	AREA					
		W1	. !	₩2	1	W3		W4	1	W5		WB	
		REDF	SHI	REDFIS	514 1	REDF 1	SH	REDFI	SHI	REDF	ISH	REDFIS	SH
		MEAN	INI	MEAN	NI	MEAN	IN	MEAN	IN I	MEAN	ĨN	MEAN	I N
DEPTH	IYEAR	!	1		1				1 1		1		•
150-200	180	0.00	1 31	0.00	4	2.02	4	2.54	7	2.7	3 4		Ι.
	89	0.55	2	0.87	31	0.62	4	2.11	1 81	0.8	21 4		i .
	90	0.00	1 4 1	0.001	5	1.56	6	0.61	1121	0.5	6	1.70	i 3
200-300	188	0.49	91 91	0.85	4	23.27	9	11.46	1 31	161.49	7		•
	89	0.67	1 41	1.90	51	3.00	10	8.13	1 31	24.5	91 7		;
	90	0.35	117	10.49	71	Z.48	12	0.27	1 51	2.28	3110	10.36	3
300-400	188	42.15	1141	44.82	21	83.25	2	94.12	izi	91.48	31 31		Ξ.
,	19	22.61	iiii	-1.70	3	21.97	3	223.25	1 21	3R 8	21 41	·	1.
	190	21 B	1261	68.041	31	28.19	i , 9 i	258.98	i 4i	21.5	21 51	6.53	7
400-600	188	105.69	1 1	29.78	21	22.39	8	37.5A	1 31	51.7	1 4		i .
	89	39.50	i î	28.231	ZĮ	4.55	4	35.77	1 31	42.56	51 51	••	i .
	190	33.52	1 31	89.491	61	67.42	9	15.79	1 61	48.33	1 8	27.491	4

Table 3 Mean biomass of redfish (tonnes) and number of hauls by subarea, depth-stratum and year.

AREA=NORTH

BIOMASS	IN TONS							SUBAREA						
1		N1		N2	1	N3		N4	1	N5	NB		N7	
1		REDFIS	н	REDFISH	ī	REDFISH	Ē	REDFISH	1	REDFISH	REDFISH		REDFISI	H
1		MEAN	IN	MEAN	N	MEAN	N	MEAN IN	Ē	MEAN IN	MEAN II	1	MEAN	IN
DEPTH	IYEAR		1				ļ		Ì	1			1	
200-600	88	1 1	5	38	7	2	3	58	5	1056 4	671	LO	2	2
	189	19	6	01	61	0	3	41	4 į	331116	. 1	. 1	0	2
l	90	1 9	1 9	0	71	0	31	1	7	84B117	23	81	5	i di

AREA=CANADA

BIOMASS	IN TONS	SUB	AREA
		C1	I C3
		REDFISH	I REDFISH
		MEAN IN	MEAN IN
DEPTH	IYEAR		
200-300	190		110 4
300-400	108	481 3	1 419 3
	189	738 3	14731 3
	190	1731 3	14511 4
400-600	188	3321 1	1
l I	189	1531-0	3711 3
1 }	190	5011	1 107 4

AREA=WEST

BIOMASS	IN TONS	1					SUBA	REA					
			 I	W2	·	W3		₩4	1	₩5	ļ	W6	_
		REDFIS	4 I	REDFIS	1 1	REDFISH	1 1	REDFIS	4 1	REDFISH	1	REDFISH	H
		MEAN	IN I	MEAN	NI	MEAN	IN I	MEAN	IN I	MEAN	N	MEAN	‡ N +
DEPTH	IYEAR	!										1	1
150-200	88	0	i 3i	0	4	37	4	80	i 7i	54	4	, ••	i +
	189	1 14	1 21	13	31	17	41	111	1 8	20	4		↓ +
	190	i 0	1 4 [0	5	29	6	28	12	9	6	20	¦
200-300	188	22	1 91	14	41	866	9	162	1 31	4941	7	ا ، 	ļ +-
	1	41	1 41	58	1 5	199	110	207	i 3	944	7		!
	1	1 16	1171	253	71	100	12	5	5	82	10	152	1
300-400	188	3284	1141	507	; Z	1898	2	438	12	1529	i 3		 • •
	1 I R9	1 2525	; <u>,</u> ,,,	24	1 3	737	1 3	1749	1 2	917	4		i
	 90	1 1542	1281	969	1 3	624	1 9	1590	<u>i 4</u>	328	5	81	Ì.
400-600	188	1 713	i 11	117	1 2	577	1 8	507	13	1051	4		į.
	1	345	i 11	165	2	172	+	769	1 3	1302	5	· · · · · · ·	1
·	1	-+	+ 1	482	+	1952	+	230	1 6	1239	1 8	225	1

Table 4 Total biomass estimates (tonnes) and confidence intervals (%) by area and year.

Area/year	1988	1989	1990
	Biomass C.V.	Biomass C.V.	Biomass C.V.
NORTH $(N_1 - N_7)$	2428 74%	354 478	685 48%
CANADA $(C_1 + C_3)$	799 105%	2735 30%	1970 548
<u>WEST $(W_1 - W_6)$</u>	16800 58 8	10326 428	10206 38%
Total	20027	13414	12863

Table 5 Total abundance estimates (mill.) in 1988 and 1990 by area.

Area/year	1988	1990
	Abundance	Abundance
NORTH (N ₁ -N ₇)	37	5 '
CANADA $(C_1 + C_2)$	31	82
<u>WEST $(W_1 - W_6)$</u>	563	314
Total	631	401

Table 6 Analysis of variance (ANOVA) on log(catch) with a three factor model (subarea, depth and year). The ANOVA table and the parameter estimates togther with their calculated standard errors are given.

GENERAL LINEAR MODELS PROCEDURE

			•		
	DEPENDENT VARIAB	LE: LOGRED			
	SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE
	MODEL	19	4599.87896666	242.09889298	24.50
	ERROR	499	4918.95118028	9.85761760	PR · F
	CORRECTED TOTAL	518	9518.83014691		0.0001
	R-SQUARE	С.У.	ROOT MSE	LOGRED MEAN	
	0.483240	51.0004	3.13968431	6.15619011	
	SOURCE	DF	TYPE I SS	F VALUE PR > F	
	SUBAREA	14	2486.86240252	18.02 0.0001	-
	DEPTH	3	1957.86823567	66.20 0.0001	
•	YEAR	2	155.34832848	7.88 0.0004	
•	SOURCE	· DF	TYPE III SS ~	F VALUE PR > F	
	SUBAREA	14	2422.62116381	17.55 0.0001	
	DEPTH	3	1978.01823494	66.89 0.0001	
	YEAR	2	155.34832846	7.88 0.0004	

			T FOR H0:	PR→ ITI	STD ERROR OF
PARAMETER		ESTIMATE	PARAMETER=0		ESTIMATE
INTERCEPT		9.43216966 B	10.05	0.0001	0.93826462
SUBARÉA	C1	-1.09199731 B	-0.83	0.4054	1.31146129
	C3	-0.00952331 B	-0.01	0.9934	1 15031111
	NI	-7.16482543 8	-6.11	0.0001	1.17314225
	N 2	-7.61600115 B	-6.49	0,0001	1.17281891
	N3	-6.55650204 B	4.62	0.0001	1.42021037
	N4	-7.63769766 B	-6.21	0.0001	1.22980144
	N5	-2,37387073 B	-2.22	0.0266	1.06766193
	N6 .	-4.39596419 B	-3.71	0.0002	1.18645850
	N7	-3.92901420 B	-2.71	0.0069	1,44743832
	W1	-3.21090846 8	· -3.27	0.0012	0.98322625
	W2	-1.41236146 B	-1.37	0.1710	1.03021067
	W3	-0.77530478 B	-0.79	0.4319	0.98576685
	W4	-0.5596475B B	-0.55	0.5799	1.01039437
	W 5	-0.47980899 B	-0.48	0.8309	0.99807026
	W6	0.00000000 B			
DEPTH	150-200	-5.24932239 B	-11.13	0.0001	0.47186543
	200-300	-2.78088333 B	-6.57	0.0001	0.42308238
	300-400	0.57646263 B	1.37	0.1698	0.41927280
	400-600	0.00000000 B	,		
YEAR	88	1.12638060 B	3.31	0.0010	0.34067182
	89	1.10739401 B	3.23	0.0013	0.34318644
	90	 n იიიიიიი 8 			

Table 7 Analysis of variance (ANOVA) on average weight per fish - reduced model. The ANOVA table and the parameter estimates togther with their calculated standard errors are given. .

. . .

.

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT 1	VARIABLE: REDAVG			
SOURCE	. DF	SUM OF SQUARES	MEAN SQUARE	F VALUE
MODEL	12	313538.44365169	26128.20363764	3.12
ERROR	131	1095453.47261039	8362,24024893	PR → F
CORRECTED '	TOTAL 143	1408991.91626208	• .	0.0006
R-SQUARE	C.V.	ROOT MSE	REDAVG MEAN	
0.222527	122.2162	91.44528555	74.82257075	
SOURCE	DF	TYPE I SS	F VALUE PR > F	
SUBAREA Year	11 1	267742.92873804 45795.51491365	2.91 0.0018 5.48 0.0208	
SOURCE	DF	TYPE III SS	F VALUE PR + F	
SUBAREA YEAR	11	300793.32368226 45795.51491365	3.27 0.0006 5.48 0.0208	
_		T FOR H	Ю: РП → IT)	STD ERROR OF

PARAMETER		ESTIMATE	PARAMETER=0		ESTIMATE
INTERCEPT		161.82629870 8	5.01	0.0001	32,33079076
SUBAREA	Cl	-173.39182446 B	-2.33	0.0212	74.35381444
	C3	-150.34119544 B	-2.42	0.0170	62.17924859
	N4	-91.31203972 B	-1.74	0.0849	52 59336851
	N5	~94.51193355 B	-1.88	0.0617	50,14488140
	NB	-41.33622901 8	-0.82	0.4112	50.14488140
	N7	-111.82629870 B	-1.15	0.2510	96.99237228
	Wl	-158.49436430 B	-3.80	0.0002	41.67762982
	W2	-129.82852685 B	-3.13	0.0021	41.43826102
	₩З	-146.46750494 B	-4.00	0.0001	36.61273003
	W4	-84.45234063 B	-2.24	0.0267	37.67499568
	W 5	-55.56920227 B	-1.52	0.1315	36.61240871
	Wð	0.0000000 B		1	
YEAR	88	40.67410600 B	2.34.	0.0208	17.38072400
	90	0 0000000 8			

Fig. 1 Area stratification of the yearly stratified-random shrimp-trawl-survey in the main distribution area for shrimp (*Pandalus borealis*) off West Greenland.

Length (cm)

Fig. 3a-b Length distributions of the length measured redfish caught during the survey in 1990 by area and depth. a) "WEST" (150-400m), b) "WEST" (400-600m).