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Abstract 
If size-at-age data are collected from annual surveys over a number of consec-

utive years then variability in growth can be investigated for association with en-
vironmental influences by formulating annual growth increments as a function of 
the environmental conditions prevailing at the time. Because growth increments are 
not observed directly, but are calculated as the difference of size-at-age measure-
ments, successive growth increments are statistically correlated. This has resulted 
in a division in the method of analysis of such data because some studies ignore 
the correlation while others accomodate it. Here the performance of three different 
methods of analysis are compared. 

Introduction 
Recent studies (e.g. Akenhead et al. 1982; Nakken and Raknes 1987; Millar 

and Myers 1990; P-Gandaras and Zamarro 1990; Anon 1991) have been directed 
at relating environmental variables (e.g., bottom temperature; population biomass; 
prey abundance) to cod growth using data from annual surveys. The objective 
of these studies is to investigate the influence of environmental conditions on the 
growth increments observed between successive surveys. 

Due to the availability of length-at-age data these studies used length as the 
measure of fish size and the same will he done here since the arguments do not 
depend on how size is quantified. In the analysis of these data a division of method-
ology has occurred due to the fact that it is length-at-age data that is observed, but 
incremental growth that is directly modelled as environmentally dependent. Ak-
enhead et al. (1982) and Anon (1991) difference the length-at-age data to obtain 
growth increment data, to which an environmentally dependent growth increment 
model is fitted. Millar and Myers (1990) and Anon (1991) sum the (environmentally 
dependent) growth increments from these models to produce an environmentally de-
pendent length-at-age model and fit this to the observed length-at-age data. These 
two approaches are presented below as methods 1 and 3 respectively. 

Method I below uses ordinary least squares to fit the expected (environmentally 
dependent) growth increments to the growth increment data. It is shown that 
the growth increment data are statistically correlated and method 2 (generalized 
least squares) is presented as a method that incorporates this correlation into the 
fitting procedure. Method 3 fits expected length-at-age, obtained from summing 
the expected growth increments, to the observed length-at-age data using ordinary 
least squares. 

This study examines the rationale behind these three different methods of fitting 
the same growth model. Simulation is used to observe the behaviour of the methods 
and to compare their relative performance. In the presentation below t is used 
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interchangeably as an index for time or age. For rigour, one should interpret t as an 
age index for each yearclass, and so the "time interval" (t,t + 1) is in fact the year 
in which the yearclass aged from t to t + 1. 

Methods 

Metluel I: Pitting to growth in erentent data using ordinary least squares 

The expected growth increment over time interval (t, t + 1) will be denoted by 
D, and the environmental variables suspected of influencing D e  will be denoted by 
x t , possibly a vector. The expected growth increment is modelled as 

	

D e  = I(xi; ■9 ) 	 ( 1 ) 

where f is some pre-specified function and /3 is a vector of parameters to be esti-
mated. For example, if x i  is the average temperature anomaly over the time period 
(t,t + 1) then one might wish to begin the analysis with a least squares fit of the 
simple linear model 

D, = fio + xtfit 

to the observed growth increments. Inspection of the residuals from this model will 
indicate whether other terms in the model are required, such as a quadratic effect 

of temperature. 
Equation (I) assumes that growth does not depend on current size or age. There 

is some evidence to suggest that this may be a reasonable assumption for cod over a 
restricted range of ages. For example, the Northeast Arctic cod data of Nakken and 

Raknes (1987) does not show any apparent size effects on growth increments (they 
present data for ages 1-7). P-Gandaras and Zamarro (1990) observe linear growth 
in Flemish Cap cod, up to age 11 in some yearclasses. Moreover, if a size effect is 
suspected then age can be used as a proxy for size (Anon 1991) and its statistical 
significance tested by including it as a factor in the linear model. 

The growth increment data for each yearclass are calculated as d e  = 	— It 
where I t  is the observed length at age t. Note that successive growth increments 
et, = 44, 1  - l t  and de-F1 = - Itti are not statistically independent because they 
both depend on 4+ ,. Therefore the use of (ordinary) least squares is not strictly 
appropriate. The appropriate recourse for dealing with correlated observations in 

a least squares model is to use generalized least squares (Seber 1977), as described 
below. 

Method 2: Fitting to growth increment data using generalized least squares 

In generalized least squares a linear transformation is applied to the data to 
eliminate the correlations, as outlined below. For full details the reader is referred 
to Seber (1977) and Seber and Wild (1989). 

If Al is the age of the oldest fish observed and the youngest age observed is 1 
then, in matrix notation, 

d = Al 

where dT = (d 1 ,d 2 ,...,dm_ i ), IT  = (I I , 12 ,..., /,y) and A is the M - 1 x M matrix 
given by 	 • 

/ -1 	1 0 ... 	0 0\ 

	

0 -1 1 ... 	0 0 
A= 

\ 	0 	0 0 ... -I 1 

Since the length-at-age observations are statistically it dependent the covariance 
matrix cr 2 E of / is a diagonal matrix and the covariance matrix ofd is tlt = a'AEA T 

 (Seber 1977). Since IP is a positive definite symmetric mat ix it can be represented by 

its Cholesky decomposition (Seber and Wild 1989, p. 680 , that is, Als can be written 
in the form K K T  where K is a non-singular lower triangular matrix. Then the 
linearly transformed vector K-I d has covariance matrix a 2  K_ 1 41(KT)_i = a2 /m_ i , 
where bo_, is the Al - 1 x M - 1 identity matrix. That is, p  is estimated by using 
ordinary least squares to fit the model 

rid IC4  f(x; In+ a 

where f (x; /3) 	(f (z i ; (1), f (x 2 ; 0), 	f(x m _ i ; fi)) = (E[d i ], E[d21,..., E[dm _ 1]) and 
e = (e l , c 2 , 	em _,) are independent and identically distributed as Norrnal(0, a 2 ) 
random variables. 



Method 3: Fitting to length-at-age data using ordinary least squares 

fd, will denote expected length at age t. If expected length at age I, L I , is 
modelled as a function of environmental conditions through to the end of the first 
year (denoted by x 0 ) then the expected length at age t is 

= 	E 	. 

That is, expected length at age t is simply given by summing expected length at 
age I with the expected growth increments up to time t. Whatever model of D, is 
used by methods 1 or 2 above can be used here. 

Using this approach I), can be formulated as a function of current size. For 
example, Millar and Myers (1990) used the discretized version of the von Bertalanffy 
growth curve, 	

= 	— L, = (L. — L,)( 1  — e - k ) 	 (2) 
and modelled L„,.„„ or k to be functions of bottom temperature and cod biomass. 
That is, k E.-: k(x t ; 0) or 0) where x, = (temp„ biom e ) is the annual 
temperature anomaly and cod biomass in the time interval (1,1+ 1). The values 
L, can be fitted to the observed length-at-age data 1, by ordinary least squares. 
Since the observed length-at-age data are independent this is a statistically correct 
procedure. 

This approach of modelling environmentally dependent growth increments by 
fitting to length-at-age data has been used by Cloern and Nichols (1978) and Cam-
pana and Hurley (1989). Cloern and Nichols (1978) modified the continuous form of 
the von Bertalanffy growth equation to account for seasonal variation in the growth 
of a bivalve mollusc and flathead sole. Campana and Hurley (1989) applied modified 
exponential and logistic growth models to growth of cod and haddock larvae. 

Numerical study • 
One criticism of fitting growth curves (method 3) is that in practice the resid-

uals from each yearclass may display autocorrelation. For example, if an environ-
mental measurement x, is spurious at time t then it will affect the entire growth 
curve of that yearclass. Autocorrelated residuals could also arise from model mis-
specification, such as the existence of highly influential environmental variables that 
are not included in the model. Method 2 is susceptible to the same phenomenon 
because of the linear transformation applied to the vector of expected growth incre-
ments - the entire transformation is affected if any element of the vector is spurious. 
Thus, although methods 2 and 3 are statistically correct, it is worth exploring how 
they compare to method 1 in detecting and quantifying the effect of environmental 
variables on growth. 

Simulations were conducted to compare the performance of method I, growth 
increment ordinary least squares fit; method 2, growth increment generalized least 
squares fit; and method 3, growth curve ordinary least squares fit. The scope of 
the simulation study was chosen to reflect the type of data summarized by Nakken 
and Raknes (1987). For seven yearclasses of Northeast Arctic cod they presented a 
summary of length-at-age data for ages 1-7 and bottom temperature data considered 
to be representative of that experienced by the cod. 

To best emulate the difficulties arising in the application of these environmentally 
modified fits to cod growth, several sources of variability and error were introduced. 
For simplicity, growth increments were modelled as a function of only one environ-
mental variable, temperature anomaly. For each of seven yearclasses the simulated 
length-at-age data were generated in the following way: 

1: The temperature anomolies temp, in the time intervals (t,t + 1), t = 0, 1, 	6 
are distributed as independent standard normal random variables. 

2: The expected length increment (cm) over time interval (t, t + 1) is given by 

19, = 	— L, =10 + Otemp, 	t 	1, 2, ..., 6 
	

( 3 ) 

and the expected length at age 1 by 

L I  = 15 + Otemp a  . 	 (4) 

Note that in the event of no temperature variation the expected lengths of fish 
from ages 1 to 7 are 15, 25, 35, 45, 55, 65 and 75 cm respectively. 



3: The observed length at age t is 

= L t -f- E t 	t = 1, ...,7 

where each c, is an independent Normal(0,un random variable. 

4: The observed temperature anomaly over time (1,1-1- I) is 

x t  = temp t  +E t  t= 0, ...,6 	 (5 ) 

where each a l  is an independent Normal(0, 4) random variable. 

Simulations were performed for all combinations of /3 = 0.0, 0.5, 1.0 and 2.0; 
ol=0.25 and 1.0; and 4= 0.0, 0.25 and 1.0. Note that 4 = 0 corresponds to 
no measurement error on the explanatory variable, while oT = 1 puts as much 
measurement error on temperature anomaly as there is actual true variability (since 
temperature anomaly is distributed as a standard normal) and so will result in 
some "spurious" x i . This large amount of measurement error can be considered 
as incorporating the fact that the annual temperature anomaly experienced by the 
fish is estimated using some convenient temperature index, often calculated from 
temperature data collected at a fixed location. The underlying assumption is that 
the temperatine anomaly so measured is positively correlated with the temperature 
anomaly experienced by the fish. 

R esults 
The simulation results are given in Tables 1-3. When there is no measurement 

error on temperature anomaly (crl. = 0) the root mean squared error (rmse) of the 
estimators does not depend on the value of 0  (Tables 1 and 2). This is expected, 
since in this case all three /3 are unbiased and their variance depends only on the 
design matrix and the magnitude of the error in observing the length-at-age data. 
The growth curve estimator 133  has lower rmse than the growth increment generalized 
least squares estimator 132. This is because 0 3  takes advantage of the information 
provided by L I , which /32 does not use. The effect of ignoring autocorrelation results 
in 0 1  having the highest rmse of the three estimators. 

With a moderate amount of measurement error on temperature (4 -= 0.25) the 
performance of the estimators becomes dependent on /3. For /3 equal to 0 or 0.5, .733 

 continues to have smaller rmse than A which in turn has smaller rmse than 01. For 
0 equal to 1.0 there is little difference in performance but for 0 = 2.0 the ranking 
of the estimators reverses, with 0 1  having smallest rrnse and /33 the largest rmse in 
both Tables 1 and 2. 

With a larger amount of measurement error (4 = 1.0) there is little difference 
in relative performance at any of the non-zero values of A For /3 = 2.0 estimator A 
has the smallest variance, but the bias of all three estimators is so large as to make 
the difference negligible in terms of rmse. 

It is interesting to observe that in all cases the three estimators displayed the 
same degree of bias. Moreover, the degree of bias appears to be determined by 
the signal to noise ratio in the temperature data. The true temperature anomaly 
is distributed Normal(0,1) and so when its measurement error is distributed as 
Normal(0,0.25) the total variability in the temperature observations is distributed 
as Normal(0,1.25). The proportion of total observed variability explained by true 
temperature anomaly is thus 1.0/1.25 = 0.8. The observed mean of the estimators is 
this same proportion of 13 (Tables 1 and 2). The same holds true when measurement 
error on temperature anomaly is Normal(0,1) - the total variability is Normal(0,2) 
and the ratio is 0.5. 

To study the ability of the three estimators to detect an environmental influence 
on growth the null hypothesis 0 = 0 was tested at each simulation (Table 3) at the 
5% level of significance. Under the null hypothesis the observed significance level 
of all three estimators was not significantly different from 0.05 for all combinations 
of 4 and 4. For 0 = 0.5 method I had great difficulty in detecting the effect of 
temperature anomaly when at was 1.0. For example, it reported a significant effect 
in only 34% of the simulations when ol and 4 were both equal to 1.0. In contrast, 
methods 2 and 3 detected the effect in 62% and 85% of the simulations respectively. 
For stronger effects, 0 = 1 or 2, there was not much difference in power of the tests. 



Discussion 
Three different ways of fitting the incremental growth models have been demon-

strated. Any model used by method I can be used by methods 2 and 3, but the 
converse is not true because only method 3 can include current size as a variable 
affecting expected growth increment. 

Fitting growth curves (method 3) requires determination of L I , the expected 
length at age I. Due to variation in yearclass timing and prevailing conditions 
during the pelagic stage it may be thArable to model L I  (equation 4) differently 
from D, (equation 3) in practice. If reasonable explanatory variables for L 1  can not 
be found then one is restricted to using a growth increment fit - methods 1 or 2. 

The problem of correlated growth increment data is avoided by methods 2 and 
3, but in so doing they incur the feature that the fit to an entire yearclass can 
be affected by a single spurious covariate data point. ❑owever, the simulations 
showed that this does not greatly affect their ability to estimate and detect the 
significant environmental effects and that model 1 is as much affected by these 
spurious data. When the model was well specified (small 4), methods 2 and 3 
generally did considerably better than method 1, and when 4 was large there was 
little difference between the three methods. 

• On the practical side, the three methods were easily implemented in the above 
simulations because they were all fitted by linear least squares. Method 3 becomes 
computationally complex when nonlinear growth curves are fitted because finding • 
the least squares solution then typically requires an iterative procedure. 

When the survey data include older fish the growth increment fits may not be 
able to take advantage of all the data because as a yearclass ages and becomes scarcer 
the length-at-age data will become patchy and will include gaps where no fish of that 
yearclass were observed. This is frequently the case in the Atlantic Canada cod data 
used by Millar and Myers (1990). Without successive length-at-age measurements 
annual growth increments can not be calculated. 

Fitting of growth curves (method 3) enables some interesting mechanistic ques-
tions to be addressed. For example, - over a prolonged period of unfavourable 
environmental conditions will maximum length be attained at the same age (imply-
ing a smaller maximum length), or will fish eventually reach the same maximum 
length but at an older age? In the context of the von Bertalanffy growth curve the 
above question is asking whether it is Lma, or k (equation 2) that is a function of 
the environment. Another question: "is loss of growth in an unfavourable year even-
tually recovered (when environmental conditions change) or permanently lost?", is 
also addressed by Millar and Myers (1990). 

To conclude, since the simulations can not hope to cover the range of all possible 
parameter values or ways in which the model can be mis-specified or corrupted it 
may be unwise to universally recommend one of the three methods over the others. 
I lowever, method 3 has the advantages that it enables all of the length-at-age data to 
be utilized and provides a valuable management tool - an environmentally sensitive 
growth curve. 
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al=0.25 

4=0 
mean 	sd 	rinse mean 

0-2-0.25 
sd rmse mean 
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sd rmse 
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Table 1. Mean, standard error and root mean squared error of the ordinary least 
squares fit to increments estimator (0 1 ), generalized least squares fit to increments 
estimator (/32 ) and the ordinary least squares fit to length-at-age data estimator 
($3 ). The results are calculated from 500 simulations. Random error on observed 
length has variance of = 0.25. 



Table 2. Same as Table I, but with 4 = 1.0. 

4=1.0 

4=0 
mean 	sd 	rinse mean 

a 2 =0 25 
sd rinse mean 

4=1.0 
sd rmse 

= 0.0 

f?' 0.02 0.22 0.22 -0.01 0.20 0.20 0.00 0.17 0.17 
02 0.02 0.15 0.15 0.00 0.13 0.13 0.00 0.10 0.10 
aa 0.01 0.08 0.08 -0.01 0.08 0.08 0.00 0.06 0.06 

= 0.5 

0.50 0.23 0.23 0.40 0.21 0.23 0.26 0.17 0.30 
0.49 0.16 0.16 0.40 0.15 0.18 0.26 0.12 0.27 

P3 0.49 0.09 0.09 0.40 0.10 0.14 0.25 0.11 0.27 

= 1.0 

1.01 0.22 0.22 0.80 0.21 0.29 0.51 0.17 0.52 
1.01 0.15 0.15 0.79 0.17 0.26 0.50 0.16 0.52 
1.00 0.09 0.09 0.80 0.16 0.26 0.50 0.18 0.53 

= 2.0 

1.99 0.22 0.22 1.60 0.23 0.46 1.01 0.23 1.02 
132 2.00 0.14 0.14 1.60 0.25 0.47 0.99 0.29 1.05 

2.00 0.08 0.08 1.59 0.30 0.51 1.00 0.36 1.06 

Table 3. Proportion of simulations in which the null hypothesis (i3 = 0) was rejected 
at the 5% level. The results are calculated from 500 simulations. 

0.0 

4=0.25 

4 
0.25 1.0 0.0 

4) =1.0 

4 
0.25 1.0 

= 0.0 

/3, 0.05 0.05 0.06 0.04 0.05 0.07, 
0.05 0.06 0.05 0.05 0.03 0.04 

/%3 0.05 0.05 0.06 0.04 0.05 0.04 

= 0.5 

0.98 0.95 0.81 0.57 0.51 0.34 
02 1.00 0.99 0.92 0.88 0.79 0.62 
;43 1.00 1.00 0.95 0.99 0.97 0.85 

P = 1.0 

13 1 1.00 1.00 0.98 0.98 0.94 0.81 
112 1.00 1.00 0.97 1.00 0.99 0.91 
Y3 1.00 1.00 0.94 1.00 1.00 0.94 

/3 = 2.0 

8, 1.00 1.00 1.00 1.00 1.00 0.98 
/&2 1.00 1.00 0.99 1.00 1.00 0.98 

1.00 1.00 0.97 1.00 1.00 0.95 
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