NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

U

Fisheries Organization

Serial No. N2038

NAFO SCR Doc. 92/5

SCIENTIFIC COUNCIL MEETING - MARCH 1992

Results of Aerial Surveys of Capelin (Mallotus villosus) Schools

Using the Compact Airborne Spectrographic Imager (CASI)

by

Brian S. Nakashima

Science Branch, Department of Fisheries and Oceans, P. O. Box 5667 St. John's, Newfoundland, Canada AlC 5X1

Abstract

Aerial surveys were conducted over Trinity Bay and Conception Bay using a digital imaging spectrometer (CASI) in 1990 and 1991. Coverage was good in 1990 except for one transect. The 1991 survey underestimated the abundance and extent of the spawning biomass because the survey ended on July 17 which was almost one week before peak spawning occurred in Conception Bay. The school surface area index showed a decline between 1989 and 1990 which contrasted with the trap catch rate index which increased at the same time. The aerial survey series was significantly correlated with trends in the trap catch rate and NAFO projections of mature capelin biomass from 1982 to 1990. A revised aerial survey index using only the three transects most frequently covered will be the basis of future surveys.

Introduction

Aerial photographic surveys of capelin (<u>Mallotus villosus</u>) schools have been conducted since 1982 (Nakashima 1990). In 1989 we developed the application of an imaging spectrometer, the Compact Airborne Spectrographic Imager (CASI), to use in place of the photographic method of recording, measuring, and counting capelin schools (Nakashima et al. 1989; Borstad et al. 1990). All flights in 1990 and 1991 except for one flight on June 24, 1990 were conducted with the CASI. Comparisons of school area measurements showed a significant correlation between the photographic and digital techniques (Borstad et al. 1990). Differences between the two usually indicated that the photographic method underestimated the number and area of schools. For example, schools were more easily observed after classification and enhancement of images, especially those in low light or with some glare on the water.

The manuscript describes briefly the method using the CASI and processing with image analysis techniques, presents the 1990 and 1991 aerial survey results, and compares the school surface area index to other more traditional indices of relative abundance.

Material and Methods

Instrument Description

The CASI (Fig. 1) is an imaging spectrometer which uses a two dimensional (612 x 288) charge couple device (CCD) and a diffraction grating to collect image and spectral data. The CASI operates in the range of 423-946 nm. A 512 pixel width spatial image is formed in "pushbroom" fashion by reading out the cross track information as the aircraft moves forward. The remaining elements are used to obtain dark and electronic offset reference values. Spectral data are collected across 288 elements in the along track dimension of the array. The spectral resolution of each element is 1.8 nm and the spatial resolution of each element is 1.2 rad. Integration times are a function of ambient light levels, aircraft speed, and band selections.

In spatial or imaging mode the CASI operates like other pushbroom imagers except that band widths, positions and number are programmable during the flight. High spatial resolution imagery is collected in several spectral bands which can be programmed as narrow as 1.8 nm or wider. The spectral bands used in 1990 and 1991 were:

Band widths

Tre charge the s

Year	1	2	3	4	5
1990	470-522	523-550	555-595	659-692	· 700-719
- 1991	450-520	525-600	640-690	701-724	

The band width selections were based on prior work with the Fluorescence Line Imager (Borstad et al. 1985) and analysis of CASI data collected from Pacific herring (<u>Clupea pallasi</u>) schools (Borstad et al. 1992) and capelin schools in 1989 (Nakashima et al. 1989, Borstad et al. 1990).

CASI image data were then transferred to a PC-based image processor for classification and analysis. An algorithm, tested in 1989 to estimate school areas from the digital survey data (Borstad et al. 1990), was used to analyze the 1990 and 1991 data.

Survey Transects

Particulars of the aerial surveys including aircraft type, camera and film used, survey time, and altitudes flown are listed in Table 1. CASI surveys were flown at 1200 m to obtain a swath width comparable to aerial photographs taken at 457 m. Since 1982 the survey has covered four transects as often as possible during the spawning season. The four transects were the outside of Trinity Bay from the Horse Chops to Gooseberry Cove, the inside of Trinity Bay from Gooseberry Cove to Hopeall, the outside of Conception Bay from Caplin Cove to Harbour Grace Islands, and the inside of Conception Bay from Harbour Grace Islands to Portugal Cove (Fig. 2).

School Detection

Similar to the photographic survey (Nakashima 1990), we rely on experienced spotters to detect and direct the aircraft over capelin schools. Flight tapes were viewed following each flight or shortly thereafter to examine the quality of the imagery.

Analysis

For each transect flown, the mean and median surface areas of capelin schools, the total number of schools, and the total surface area of all schools observed were estimated.

The school surface area index for each year was estimated by summing the highest total school surface area observed on each of the four transects. I assumed that the peak in school surface area was indicative of inshore abundance for each transect for that year (Nakashima 1985). The trend in the index derived from 1982 to 1991 was compared to trends in catch rates from capelin traps and purse seines (Nakashima and Harnum 1992) and to projections of mature biomass derived from acoustic surveys (Anon. 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989). Mature biomass projections were unavailable for 1991 (Anon. 1990).

Results and Discussion

The 1990 survey used the aerial photographic method on June 24 and the CASI on the remaining flights (Table 1). In 1990 twelve of 20 days (June 17-23, 25, 28, and July 1, 2, 5) were lost due to poor weather conditions. The outside transect of Conception Bay (Table 2c) and the inside transect of Trinity Bay (Table 2b) were covered three times, the inside transect of Conception Bay was covered four times (Table 2d), and the outside transect of Trinity Bay was covered once (Table 2a). The observations on the afternoon of June 26 and the morning of June 27 over the outside transect of Conception Bay were combined. The observed peak in total surface area of schools was observed on June 26-27 in Conception Bay (Tables 2c, d) and on June 29 in Trinity Bay (Table 2b).

In 1991, the entire aerial survey was conducted with the CASI. Very few schools were digitally recorded due to the late arrival of capelin schools inshore. Eleven days (June 21, 22 and July 3, 4, 6-9, 12, 13, 15) were lost due to poor weather conditions. The survey was suspended between June 26 and July 2, however no capelin were present in the area. The survey was extended later into July than in previous years (Table 1), however, the CASI portion of the survey ended on July 17 a few days before capelin schools were fished in

Trinity Bay and Conception Bay (Nakashima and Harnum 1992) and one week before spawning took place (Nakashima and Slaney 1992). Visual observations of schools were conducted until July 20 indicating that more schools were arriving in the. survey area. The inside transect of Trinity Bay was covered five times (Table 2d), the outside of Conception Bay three times (Table 2c), and the inside of Conception Bay four times (Table 2d). The outside of Trinity Bay was not surveyed in 1991. Only 19 schools were observed in Conception Bay for a total school surface area estimate of 14,827 m². The highest total area of schools observed on the inside of Trinity Bay was 170,681 mi² on July 5 (Table 2b).

I compared the school surface area index for all four transects to the commercial catch rate series from the trap and purse seine fisheries and the mature biomass projections from previous NAFO assessments of this stock for 1982-90. The purse seine catch rate series is not significantly correlated with the trap catch rate or school surface area (p > .05) but is significantly correlated with the NAFO projections (p = .0243) (Table 4). The trap catch rate index is significantly correlated with the aerial survey index (p = .0138) and the NAFO projections (p = .0017) (Table 4). The aerial survey index and NAFO projections are significantly correlated (p = .0412) with each other. In 1990 the school surface area total indicated a decline from 1989 whereas the trap catch series and NAFO projections increased between 1989 and 1990 (Table 3). There was no NAFO projection of mature biomass for 1991 (Anon. 1990) and the aerial survey in 1991 did not overlap with the peak spavning period.

A second school surface area index was calculated using only transects from the inside of Trinity Bay and both transects in Conception Bay (Table 2b, c, d). The coverage of the outside transect of Trinity Bay has been poor in recent years (Table 2a). In 1990 we surveyed this transect once and did not survey it at all in 1991. The 1982 coverage was also inadequate compared to the other three transects. This transect is the furthest from the airport which may account for the infrequent coverage. Consequently I derived a revised series based on those transects which have been surveyed adequately (in my view) in all years (Table 3). The aerial survey indices based on three and four transects from 1982 to 1991 were highly correlated (r = .9926, p = .0001, Fig. 4). Further, comparison of the aerial survey index using three transects with the trap catch rate index and the NAFO projections showed minor statistical improvements (Table 4). Because the two aerial survey indices are comparable future surveys will ignore the outside transect of Trinity Bay in favour of increasing the frequency of flights over the remaining three transects.

Acknowledgments

The CASI data were collected by Geomatic Technologies Inc., St. John's, Nfld. School counts and area measurements were completed by Borstad Associates Ltd., Sidney, B.C. Observations were made by N. Duggan during the 1990 and 1991 surveys. M. Hynes assisted in the preparation of the manuscript.

References

Anon. 1982. NAFO Scientific Council Reports. p. 33-35.

- 1983. NAFO Scientific Council Reports. p. 52-554.
- 1984. NAFO Scientific Council Reports. p. 58-66.
- 1985. NAFO Scientific Council Reports. p. 74-77.
- 1986. NAFO Scientific Council Reports. p. 73-75.
- 1987. NAFO Scientific Council Reports. p. 73-75.
- 1988. NAFO Scientific Council Reports. p. 71-73.

1989. NAFO Scientific Council Reports. p. 98-101.

1990. NAFO Scientific Council Reports. p. 145-146.

Borstad, G. A., H. R. Edel, J.F.R. Gower, and A. B. Hollinger. 1985. Analysis of test and flight data from the Flouroescence Line Imager. Can. Spec. Publ. Fish. Aquat. Sci. 83. 38 p.

Borstad, G. A., D. A. Hill, R. C. Kerr, and L. R. Armstrong. 1990. Development of a digital survey technique for operational aerial surveys of spawning capelin. Contract No. XA988-00115-(021) for the Dept. Fisheries and Oceans. 46 p. Borstad, G. A., D. A. Hill, R. C. Kerr, and B. Nakashima. 1992. Direct digital remote sensing of herring stocks. Int. J. Rem. Sensing (in press)

Nakashima, B. S. 1985. The design and application of aerial surveys to estimate inshore distribution and relative abundance of capelin. NAFO SCR Doc. 85/84, Ser. No. N1058. 11 p.

1990. Capelin school surface area index for NAFO Div. 3L during the 1989 spawning season. NAFO SCR Doc. 90/59, Ser. No. N1780. 6 p.

- Nakashima, B. S., and R. Harnum. 1992. The inshore capelin fishery in NAFO Div. 3L in 1991. NAFO SCR Doc. 92/3, Ser. No. N2036. (in press)
- Nakashima, B. S., and R. W. Slaney. 1992. Capelin (<u>Mallotus villosus</u>) egg deposition on fifteen spawning beaches in Conception Bay, <u>Newfoundland in</u> 1987-91. NAFO SCR Doc. 92/2, Ser. No. N2035. (in press)
- Nakashima, B. S., G. A. Borstad, D. A. Hill, and R. C. Kerr. 1989. Remote sensing of fish schools: early results from a digital imaging spectrometer, p. 2044-2047. In Proc. of IGARSS '89, 12th. Canadian Symposium on Remote Sensing, Vancouver, B.C., July 10-14, 1989.

Year	Aircraft	Camera	Lens (mm)	Filter	Film	Radar altimeter	Survey period	Altitude (m)	Survey flight time (hrs)
1982	Piper Aztec	RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	No	Jun 18- Jul 5	152-160	
1983	Aero-Commander	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 19- Jul 9	457	21.8
1984	Cessna 310	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 17- Jul 7	457	38.5
1985	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 18- Jul 3	290-610	28.6
1986	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 19- Jul 5	381-579	13.4
1987	Piper Aztec	Z⊕iss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	¥es	Jun 16- Jul 3	457	37.0
1988	Piper Navajo Piper Astec	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 15- Jul 5	305-488	33.0
1989	Piper Navajo	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 16-27 Jun 30- Jul 4	434-732	26.0
1990	Piper Aztec	Zeiss RMK Casi	153	Anti-vignetting	Aerocolour Neg. 2445	. Yes	Jun 17- Jul 6	570-1260	27.0
1991	Piper Navajo	CASI				Yes	Jun 21-25 Jul 3-17	1200	27.3

Table 1. Summary of aerial surveys conducted from 1982 to 1991.

1

······	•		School size (m³)		
Date	No. of schools	Total surface area (m ¹)	Mean ± SD	Median	
			•		
June 19, 1982	, ,	2963	423 ± 502	125	
June 26, 1982	0	0			
July 3, 1982	1	522	522	522	
June 23, 1983	7	11330	1619 ± 1315	1283	
June 24, 1983	10	13671	1367 ± 1260 -	1088	
June 25, 1983	7	11662	1666 ± 2151	725	
June 29, 1983	8	2288	286 ± 228	195	
June 30, 1983	13	18470	1420 ± 1613	1116 ·	
July 1, 1983	3	6417	2139 ± 2176	1172	
June 18, 1984	9.	3236	360 <u>+</u> 423 ,	- 223	
June 19, 1984	8	3962	495 ± 703	279	
June 25, 1984	22	30467	1385 ± 1959	502	
June 26, 1984	38	37219	979 <u>+</u> 1718	167	
June 29, 1984	- 9	2790	310 ± 223	· 279	
July 3, 1984	48	43412	904 ± 3010	223	
July 6, 1984	34	16015	471 ± 485	167.	
June 21, 1985	0	0			
June 25, 1985	0	Ô	-		
June 29, 1985	18	15536	863 ± 983	· 316	
July 1, 1985	32	48808	1525 ± 1622	893	
July 2, 1985	· 24	49216	2051 ± 2965	<u>,</u> 949 ,	
July 3, 1985	9	2498	278 ± 183	270	
June 18, 1987	59	41348	701 ± 985	391	
June 22, 1987	81	45421	561 <u>+</u> 780	279	
June 28, 1987	15	5189	346 ± 384	223	
July 3, 1987	- 9	12220	1358 ± 3042	279	
June 19, 1988	41	45812	1117 ± 2569	、 279	
July 5, 1988	. 13	10714	824 ± 617	502	
June 17, 1989	78	97325	1248 ± 2664	433	
June 30, 1989	4	1334	333 ± 307	203	
July 3, 1989	0	,	_		
June 25, 1990	0				
June 27, 1990	26	31908	1210 ± 1266 ^a	. 709	

Table 2a. Schooling data for the outside part of Trinity Bay from Horse Chops to Gooseberry Cove, 1982-90.

.

a calculation excludes capelin in traps

4

Table 2b. Schooling data for the inside part of Trinity Bay from Gooseberry Cove to Hopeall, 1982-91.

· . ·	No. of	Total gurface	School size	School size (m ²)		
Date	'schools	area (m ²)	Mean ± SD	Median		
June 19, 1982	31	12724	411 ± 712	149		
June 26, 1982	29	35607	1228 ± 2755	299		
June 29, 1982	11	62397	5672 ± 8378	592		
July 2, 1982	8	31365	3921 <u>+</u> 9281	705		
July 3, 1982	2	1920	960 ± 17	960		
June 23, 1983	11	69583	6326 ± 6299	4241		
June 24, 1983	26	39004	1500 ± 1880	753		
June 25, 1983	30	174487	5816 ± 12759	781		
June 29, 1983	35	152557	4359 ± 11139	781		
June 30, 1983	46	199373	4334 ± 6927	558		
July 1, 1983	25	189497	7580 <u>+</u> 19791	2288		
Junė 19, 1984	13	15624	1202 ± 1770	335		
June 23, 1984	9	8314	924 ± 888	502		
June 25, 1984	96	31526	328 ± 505	117		
June 26, 1984	96	40510	422 ± 679	223		
June 29, 1984	47	12053	256 ± 314	167		
July 3, 1984	57	23827	418 ± 814	167		
July 7, 1984	77	43245	562 ± 1124	. 223		
June 21, 1985	13	.7041	542 ± 706	270		
June 25, 1985	35	22459	,642 ± 1144	211		
June 26, 1985	30	16540	551 ± 721	214		
July 1, 1985	125	60245	482 ± 963	181		
July 2, 1985	130	195659	1503 ± 6046	179		
June 28, 1986	59	95898	1625 ± 4502	340		
June 17, 1987	45	167567	3724 ± 17727	223		
June 19, 1987	91	399026	4385 ± 31197	167		
June 27-28, 1987	37	59315	1603 ± 5612	446		
July 3, 1987	5	1786	357 ± 322	279		
June 16, 1988	27	18749	694 ± 902	391		
June 19, 1988	50	104179	2084 ± 4546	502		
June 22, 1988	67	112863	1685 ± 5749	391		
June 25, 1988	20	87103	4338 <u>+</u> 15287°	474		
July 5, 1988	23	32252	1402 ± 3199	223		
June 17, 1989	60	84349	1389 ± 5040^{a}	191		
July 3, 1989	0	•	•			
June 24, 1990	4	69498	17375 ± 11184	21483		
June 27, 1990	30	58174	1831 <u>+</u> 3717	701		
June 29, 1990	38	. 141122	3714 ± 5486	1503		
June 23, 1991	_ 0					
June 24, 1991	0					
July 5, 1991	139	170681	1228 ± 1827	535		
July 14, 1991	54	64598	1196 <u>+</u> 1894	567		
July 16, 1991	33	93680	2839 ± 5562	800		

a calculation excludes capelin in traps

۰ ۲

		•	Schoo.	l size (m²)
	No. of Total surface		· · · · · · · · · · · · · · · · · · ·	
Date -	schools	area (m ²)	Mean ± SD	Median
June 29, 1982	10	6577	658 ± 366	642
July 2, 1982	2 .	1357	679 ± 554	679
June 23, 1983	34	51838	1374 ± 2266	530
une 24, 1983	16	10658	· 666 ± 823	447
une 25, 1983	4	4408	349 <u>+</u> 184	279
uly 1, 1983	5	5413	1083 ± 1884	112
une 18, 1984	1	391	391	
une 19, 1984	0	0		
une 25, 1984	49	63779	1294 ± 2874	391
une 26, 1984	. 67	65956	697 ± 1091	279
une 30, 1984	, 21 .	22320	818 ± 1509	223
uly 3, 1984	4	1786	446 ± 599	195
une 20, 1985	0	0		
une 24, 1985	0	0		
une 27, 1985	30	8840	. 268 ± 378	120
une 28, 1985	125	50837	368 ± 800	132
une 29, 1985	22	19253	875 ± 1169	291
uly 1, 1985	28	28036	991 ± 1616	264
uly 2, 1985	50	69166	914 ± 2064	223
une 19, 1986	88	132455	1462 ± 2853	279
une 16, 1987	139	184307	1322 ± 2924	391
une 19, 1987	143	112660	766 ± 1516	279
une 27, 1987	21	12164	539 ± 559	391
une 30, 1987	37	29462	790 <u>±</u> 1481	279
une.20, 1988	54	36993	679 ± 1099	223
une 22, 1988	64	18916	230 ± 324	112
une 25, 1988	116	87534	676 ± 1331	279
uly 4, 1988	51	39785	578 ± 805	279
une 16, 1989	180	266878	1483 ± 5512	335
une 18, 1989	162	197372	$1132 \pm 3607^{\circ}$	335
uly_1, 1989	8	6140	730 ± 1359	198
une 24, 1990	89	85437	863 ± 1483	396
une 26-27, 1990	42	88759	· 1937 ± 3671	670
une 30, 1990	38	26013	686 ± 771	368
une 23, 1991	0			
une 24, 1991	0		1.	
uly 14, 1991	11	6374	579 ± 2789	. 520

a calculation excludes capelin in traps

۰.	No. of	Watal auntana	School siz	e (m²)
Date	schools	area (m ²)	Mean ± SD	Median
tune 26 1987 bM		19408	571 ± 007 ⁸	1.75
une 26, 1982 PM	20	36513	1826 ± 1914	2080
une 27 1982	48	151214	3134 ± 6015^{a}	2003
una 20 1082	טוי דר	30275	1121 ± 1707	321
billy A 1087		13040	1121 1 1/0/	1400
uly 5, 1982	5 7	5127	732 ± 582	1409
une 23, 1983	53	97595	1787 + 2754 ^a	558
June 24, 1983	30	56860	$1819 + 2965^{a}$	558
une 25, 1983	29	79961	$2677 + 3725^{a}$	781
June 30, 1983	7	8091	1156 + 1181	558
July 1, 1983	1	2009	2009	
June 18, 1984	0	0	_	•
June 23, 1984	8	17689	2085 ± 2556	949
June 25, 1984	70	63891	$-879 + 1789^{a}$	223
lune 26, 1984	33	23603	$703 + 1708^{-1}$	223
June 30, 1984	29	16852	$508 + 467^{a}$	335
lulv 3, 1984	18	. 9040	$329 + 254^{a}$	223
July 5, 1984	0	0	-	
une 20, 1985	0	0		
June 24, 1985	2	1600	800 ± 834 .	800
lune 26, 1985	17	10124	596 ± 1145	31 (
une 27, 1985	76	16552	214 ± 426^{a}	- 76
une 28, 1985	120	33858	274 ± 938^{a}	6
uly 1, 1985	16	43228	2702 + 5140	301
uly 2, 1985	17	13436	676 ± 1872^{a}	191
une 19, 1986	39	31574	786 ± 1105^{a}	351
Juné 20, 1986	4	3515	698 ± 769	363
lune 22, 1986	86	30930	343 ± 616^{a}	131
uly 2, 1986	10	5019	502 ± 600	- 351
une 17, 1987	196	53066	263 ± 350 ^a	16
lune 19, 1987	365	205846	$556 \pm 1482^{\circ}$	16
une 21, 1987	179	74128	393 ± 699	16
une 27, 1987	138	94747	681 ± 2389	16
une 28, 1987	63	68969	1036 ± 2402	16
une 30, 1987	41	51336	1226 ± 2892	393
uly 3, 1987	47	34863	742 ± 1400	279
une 19, 1988	77	25780	335 ± 599	. 22
lune 20, 1988	31	7742	240 ± 256	16
une 24-25, 1988	289	201642	682 ± 1091 ^{°°}	39:
uly 4, 1988	24	32141	1295 ± 4242a	25:
une 16, 1989	186	187311	991 ± 2032^{a}	31
une 18, 1989	113	88283	686 ± 1422	27
une 30, 1989	0		a	
uly 1, 1989	22 -	13905	587 ± 512	39
ULY 4, 1989	24	10707	446 ± 651	27
une 26, 1990	112	128743	1092 ± 2960 ⁸	36
une 29, 1990	32	88310	2591 ± 4544^{a}	74
une 30, 1990	96	102615	1069 ± 1993^{a} .	48
uly 3, 1990			-	
une 25, 1991	0			
uly 8, 1991	Few	schools observed	- no CASI data	
uly 11, 1991				
1111 17 1991	A	8453	1057 ± 531	87

Table 2d. Schooling data for the inside of Conception Bay from Harbour Grace Islands to Portugal Cove, 1982-91

a calculation excludes capelin in traps

Year	Catch (t)/day		Maturo	School surface area (m ²)		
	Purse seine	Trap	biomass (t)	4 transects	3 transects	
.982	16.4	3.1	≥346,000	223,150	220,188	
1983	18.8	3.4	648,000	367,280	348,806	
1984	14.3	2.9	384,000	216,500	173,092	
985	16.4	4.6	596,000	357,270	308,053	
986	19.0	4.6	1,300,000	283,150	259,927	
987	18.1	8.8	2,830,000	762,953	717,532	
988	20.7	6.2	900,000	447,851	402,039	
1989	24.3	6.7	3,345,000	635,863	538,538	
1990	21.4	8.6	3,500,000	390,532	358,624	
1991	16.2	7.3		185,508	185,508	

Table 3. Comparison of three indices for estimating trends in relative spawning biomass. The catch/day index was based on capelin trap and purse seine data from logbook surveys (Nakashima and Harnum 1992), the mature biomass index from NAFO Scientific Council Reports (Anon. 1982-89), and the school surface area index for 4 and 3 transects.

Table 4. Pearson product moment correlation coefficients for two catch rate indices (purse seine, trap), two aerial survey series (3 transects, 4 transects), and NAFO projections of mature biomass from 1982 to 1990. The upper right triangle presents the correlation coefficients and the lower left triangle are probabilities.

	Purse seine	Trap	Aerial (3)	Aerial (4)	NAFO
Purse seine	*	. 6064	.5119	. 5488	.7343
Trap	.0834	*	.7878	.7827	.8815
Aerial (3)	.1589	.0117	*	.9923	.6908
Aerial (4)	.1260	.0126	.0001	` *	.6864
NAFO	. 0243	.0017	.0393	.0412	ł,

- 9 -

Fig. 1. Schematic of Compact Airborne Spectrographic Imager (CASI) from Borstad et al. (1990).

Fig. 2. Aerial survey transect for Trinity Bay and Conception Bay.

- 11 -

- 12 -