NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

<u>Serial No. N2121</u>

NAFO SCR Doc. 92/67

SCIENTIFIC COUNCIL MEETING - JUNE 1992

Report on a Stratified-Random Trawl Survey for Shrimp (<u>Pandalus borealis</u>) in NAFO Subareas 0+1 in July-September 1991, and a Comparison with Earlier Surveys.

by

Dan M. Carlsson and Per Kanneworff

Greenland Fisheries Research Institute, Tagensvej 135, 1. DK-2200 Copenhagen N, Denmark

INTRODUCTION

In July-September 1991 a random-stratified trawl survey was carried out in the main part of shrimp distribution area in NAFO Divisions 1A-1E and a part of Subarea 0.

The survey was carried out in almost the same area as similar surveys in 1988-90 with the scope of assessing the trawlable biomass of the offshore SAO+1 shrimp stock, and to collect biological samples to estimate the size composition of this stock.

Surveying conditions' were favorable without ice problems or bad weather.

MATERIALS AND METHODS

The survey was carried out in the offshore area between $61^{\circ}52'5N$ and $72^{\circ}30'N$ in Davis Strait from the 3-mile limit off the Greenland coast in depths between 150 m and 600 m including that part of Subarea 0 which is adjacent to the shrimp areas in Subarea 1.

The survey was conducted with the 722 GRT stern trawler M/T PAAMIUT which is of the same size as the trawlers used since 1988 in the trawl surveys. Also, the same trawling gear as earlier was used (Skjervoy 3000/20 with bobbin gear and a double-bag with 44 mm mesh size in the codend). The trawl doors used were of the type 'PERFECT GREENLAND', size 370*250 cm, weight 2420 kg. The wing spread was estimated by use of SCANMAR equipment to an average of 27.7 m. The mean trawling distance was 4.59 km, giving a mean swept area of 0.127 km² per haul.

The duration of the hauls was held as close as possible to 60 minutes. In order to minimize the influence of vertical migration of shrimp the trawl operations were carried out only in the daytime (0900-1900 UTC).

In the area between $61^{\circ}52'5N$ and $69^{\circ}30'N$ the stratification was made on basis of depth contours. As in the stratification scheme for the earlier surveys this area was divided into subareas (Fig. 1). Each of these subareas was further divided into four depth strata (150-200 m, 200-300 m, 300-400 m and 400-600 m).

Due to scarce information on bottom topography the area between $69^{\circ}30'N$ and $71^{\circ}00'N$ was divided into separate shrimp grounds as defined by the distribution of the fishery. However, some reduction of one stratum in this area (NS) was made compared to earlier years, based on better knowledge of the shrimp distribution from recent years.

It was estimated from the time available for the survey that about 110-120 hauls could be taken with trawling operations in the day-time only. In most of the survey area the coverage would then be about 750 km^2 per haul. In some of the strata in the northern area a lower coverage was accepted, being areas with known very low shrimp densities. The average coverage in the northern area was thus about 1400 km² per haul.

Hauls were allocated to a stratum proportionally to its size. However, a minimum of two hauls per stratum was always scheduled, so additional hauls were placed in some of the smaller strata. Within the strata the trawling sites were chosen at random according to the NAFO 'Manual of Groundfish Surveys in the Northwest Atlantic' (Doubleday, 1981). The sites of the trawl hauls are shown in Fig. 2a-d.

The mean biomass with standard deviation by stratum was calculated by means of the swept area method and assuming a catchability coefficient of 1. Sums of the calculated biomasses were made by region (North of $69^{\circ}30'N$, South of $69^{\circ}30'N$ in the Greenland zone, and the Canadian zone), and further, a pooled standard deviation by region was derived to indicate the level of confidence for the final biomass estimate.

Biological samples were taken from all catches, if the catch was not too small or damaged to give a proper sample. Shrimp were sorted by sexual characteristics and obligue carapace length was measured to the nearest 0.1 mm and afterwards pooled in 0.5 mm groups. Samples were weighted by catch and stratum area, to obtain estimates of total number of shrimp by sex and length group for each stratum and for the total survey area. These estimates were compared to results from earlier surveys to yield indications of changes in abundance of size groups.

A new method has been introduced for describing the distribution of shrimp biomass in the area south of $69^{\circ}30'N$. Shrimp densities in the depth range 150-600 meters were estimated on basis of the survey stations by the computer programme 'spline Survey Designer Software System' (Stolyarenko, 1987), and maps with isolines for different levels of density were produced for presentation.

RESULTS AND DISCUSSION

Shrimp catches from the trawl hauls were used to estimate the trawlable biomass for all strata. Table la-c gives a list of all catches taken. The biomass estimates for all strata in the three regions are shown in Table 2a-c.

When comparing the size of the estimated total biomass from the recent survey with the results from corresponding surveys in 1988-90 (Carlsson & Kanneworff, 1989; 1990; 1991), a decline through the years is indicated (Table 3, Fig. 3). However, some uncertainty remains concerning the high figure for 1989 due to the possible influence of a significantly smaller trawl wing spread used that year than in the three other years. The calculated absolute biomass levels through all four years can therefore only be compared with caution. However, some information may be obtained on a.o. displacement of the stock from year to year by analysing figures for the proportion of biomass in different strata relative to the yearly totals (Table 4).

In relation to 1988 and 1990 a larger part of the stock was found in the southern strata (W3-W5/W6) than in 1989 and 1991. A steady decline in biomass is seen through the four years in the northernmost areas, N1-N7 (Tables 3-4).

In 1989 the stock was concentrated in strata with depths between 200 and 300 meters, while in 1990 shrimp were more concentrated in depths between 300 and 400 meters. Through all four years a displacement of the stock to deeper waters is indicated, the stock being nearly absent in depths between 150 and 200 meters in 1990 and 1991 (Table 5). In 1991 20% of the biomass was estimated in the depth stratum 400-600 meters, the highest figure on record.

When examining the geographical distribution of the shrimp biomass as estimated by the 'spline'-method (Stolyarenko, 1987) it is obvious that large fluctuations in the distribution occur (Fig. 4-7) and that high concentrations of shrimp may be found at different locations from year to year. This phenomenon hampers an optimal stratification for a traditional stratified-random survey. This sampling problem might be solved by carrying out a two-stage survey or a two vessel survey, in which the second part of the survey or the second vessel could make a more intense sampling in areas with high shrimp densities to obtain a better description of the distribution.

The 'Spline Survey Designer Software System' (loc. cit.) also offers a possibility of designing a sampling scheme on basis of previously obtained information on shrimp distribution (or other factors influencing stock density, e.g. bottom temperature). The sampling might be optimized by this method, especially in connection with a two-stage survey, but in the lack of a series of parallel surveys applying both methods a direct comparison of the results is difficult. However, biomass calculations from both methods based on the stratified-random samplings during 1988-91 are in good agreement.

Length-frequency distributions of shrimp for the total survey area in 1988-91 are given in Fig. 8 and for 1991 in Table 6. A direct comparison of total numbers of shrimp by sex from year to year is complicated not only by differences in trawl design and minor changes in the area surveyed between years. Furthermore, samples could not be obtained from all strata in all years, however most strata without samples contain very small biomass estimates.

The text table below shows an increase in number of males from 1988 to 1989, and a decrease through 1989 to 1991. Numbers of primiparous females decrease from 1988 to 1989, increase in 1990 almost to the level of 1988, and decreased in 1991; indicating a poor recruitment in 1991 to the female group. Multiparous females decreased from 1988 to 1989, but remained stable in the following years. The stable number of multiparous females between 1990 and 1991 may be explained by a good recruitment to the female group in 1990 as evidenced by the relatively high number of primiparous females this year:

No. of shrimp (billions)	1988	1989	1990	1991
males prim.fem. mult.fem.	19.8 3.5 4.6	34.0 2.6 3.7	19.4 3.3 3.4	12.5 1.3 3.4
Total	27.9	40.3	26.1	17.2

Savard et al. (1989) used modal analysis on shrimp samples collected during Greenland trawl surveys in Davis Strait in 1983 to 1987 and summarized age and growth data as shown in Table 7. Using these data as a length-at-age key on the total length-frequency distributions from the surveys in 1988 to 1991 (Fig. 8), consistency is found from year to year. In 1988 a dominant mode is found around 20 mm CL and another mode at 22.5 mm CL, representing 5 and 6 years old males. In 1989 these modes have moved to 22 mm and 24.5-25 mm CL, respectively, now representing 6 years old males and 7 years old primiparous females. A new mode of males is indicated around 20 mm CL (5 years old), but the distribution is characterized by a dominant mode at 17.5 mm CL, showing a significant recruitment to the fishery of probably 4 years old males. In 1990 this 'year-class' is still significant, now at 19.5 mm CL, while there are no indications of a significant new recruitment to the fishery of smaller shrimp. The 22 mm group from 1989 is present as primary females in 1990. As would be expected, the 1985 'year-class' is found in 1991 at 21.5 mm, naturally with a lower abundance. Also a new mode is found around 17.5 mm (the 1987 'year-class'). This mode is, however, significantly lower than was indicated for the 1985 'year-class' in the 1989

Figures 9a-e show length-frequencies of the total number of shrimp by stratum and years. All depth strata are combined, the strata north of $69^{\circ}30'N$ are combined in two main strata (stratum NW = stratum N1-N4, NS = N5-N7) and all strata on the Canadian side of the midline combined in one stratum (C) (refer to Fig. 1). Both main strata north of $69^{\circ}30'N$ (Fig. 9b) show a significant decrease in abundance of shrimp for all sizes over the four years, except for some recruitment of the 1985 'year-class' in stratum NS in 1991. In stratum C (Fig. 9a) all size groups decrease from 1988 to 1989, while in 1990 numbers of females increase and a dominant male group around 20 mm CL is evident. In 1991 the female component has been drastically reduced and the distribution is now totally dominated by the 1985 'year-class' around 22 m CL. In strata W1, W2 and W3 the female component has decreased in abundance from 1990 to 1991 (Figures 9c-d), and the distributions are in 1991 totally dominated by the 1985 'year-class'. On the other hand, in strata W4, W5 and W6 there is an increasing number of females. In stratum W6 some recruitment of the 1987 'year-class' (around 18 mm CL) is indicated. Figures 10a-e show the numbers of shrimp by stratum (stratum W1 - W6) and depth from 1988 to 1991 for males, primiparous females, multiparous females and for all sex groups combined. From 1988 to 1990 an axis is indicated from shallow water in southern areas with smaller shrimp to deeper water to the north with larger shrimp. In 1991 the distribution over the area is more even, however, still with smaller shrimp be deeper water and larger shrimp more abundant in deeper water area (150-200 m).

÷: [

å. .

CONCLUSIONS

The total biomass estimate from the stratified trawl surveys indicate a general decline when comparing the results of the surveys through the years 1968-91. While the figures for 1969 were about 30% higher than in 1988, the 1990-biomass was at the level of 1968, and the 1991-biomass was reduced to 70% compared to the year before. In 1989 and 1991 a southward displacement of the stock was indicated. In 1990 a displacement in the opposite direction was found in the areas south of $69^{\circ}30'N$. The biomass in the areas north of $69^{\circ}30'N$ exhibit a significant decrease through the period.

A migration towards deeper water through the years is indicated, the stock being nearly absent in shallow water in 1991, and with 20% of the stock in the depth stratum 400-600 meters.

Doubts whether the estimates of absolute biomass from the four trawl surveys are comparable have been expressed. The arguments are based on the differences in gear design between years. When looking at the total biomasses in terms of length-frequency distributions the recruitment of a significant group of males in 1989 may, however, explain at least in parts the high biomass estimate obtained in 1989.

Also, there is some consistency with regard to the progression of identifiable size groups of shrimp between the years. In 1989 a significant recruitment to the fishery of small shrimp around 19.5 mm CL is obvious. L50 is at the mesh size used in the surveys (about 43 mm stretched mesh) around 16.5 mm CL (Lehmann & Degel, 1991). The same 'year-class' can be identified not only in 1990 but also in 1991.

The primary females found in 1990 contributed to the multiparous females in 1991. In 1991 the recruitment to the primiparous females was relatively small, and in 1992 it may be expected that the number of multiparous females will decrease. On the other hand the dominant 1985 'year-class' will contribute to the group of primiparous females in 1992, but the significance of this will depend heavily on the impact of the fishing pressure before this happens. There are no indications of a good recruitment of new male groups in 1991.

REFERENCES

Carlsson, D.M. & P. Kanneworff, 1989. Report on a stratified-random trawl survey for shrimp (Pandalus borealis) in NAFO Subarea 0+1 in July 1988. NAFO SCR Doc. 89/40. Serial No. N1617.

Carlsson, D.M. & P. Kanneworff, 1990. Report on a stratified-random trawl survey for shrimp (Pandalus borealis) in NAFO Subarea 0+1 in July-August 1989. NAFO SCR Doc. 90/46. Serial No. N1763. Carlsson, D.M. & F. Kanneworff, 1991. Report on stratified-random trawl surveys for shrimp (Pandalus borealis) in NAFO Subarea 0+1 in July-August 1990. NAFO SCR Doc. 91/70, Serial No. N1954.

- Lehmann, K.M. & H. Degel, 1991. An estimate of shrimp discard from shrimp factory trawlers in Davis Strait and Denmark Strait. NAFO SCR Doc. 91/40. Serial No. N1'920.
- Doubleday, W.G. (Ed.), 1981. Manual of groundfish surveys in the Northwest Atlantic. NAFO Sci. Coun. Studies, 2:7-55.
- Savard, L, D.G. Parsons and D.M. Carlsson, 1989. Age and growth of northern shrimp (Pandalus borealis) in Davis Strait (NAFO SA 0+1). NAFO SCR Doc. 89/94. Serial No. N1694.
- Stolyarenko, D.A., 1987. The spline approximation method and survey design using interaction with a microcomputer: Spline Survey Designer Software System. ICES C.M. 1987/K:29, 24pp.

Table 1a. List of trawl stations in strata west of the midline in the Davis Strait survey 1991. Catches are given in kg.

STATION-	AREA-		TR-			C W1	BPD		
19ENTIFICATION	CODE	DEPTH		988 	COB	UNL	REU		TOTAL
•							9. T	1.1	
	,								
STRATUM C1-3									
91PA0070026 026	KX436	. 322.0	60	206	0	4	11	σ	523
91PA0070027 027	LA436	341.5	61	165	0	5	37	Ó	207
STRATUM C1-4				_				_	
91PA0070025 025	KX434	537.5	61	0	0	14	27	Q	43
STRATIM C3-2			*******				· · · ·		
91280070024 024	KV4.36	295.0	58	61		1		0	. 77
STRATUM C3-3	· .		·						
91PA0070021 021	KP438	370.0	60	98	0	7	25	o'	130
91PR0070020 020	.KP439	303.0	63	459	0	. 1	. 10	0	471
91PA0070022 022	KR439	332.5	60	165	. 0	11	221	0 ·	418
STRATUM C3-4 .									
91PA0070023 023	KS435	543.0	63	3.	0	18	46	0	67

Table 1b. List of trawl stations in strata north of 69°30'N in the Davis Strait survey 1991. Catches are given in kg.

STATION- IDENTIFICATION	AREA-	DEPTH	TR- Time	SHR	COD	CHIL.	RED	ніх	TOTAL
STRATUM NT									
91280080014 080	ML002	266.0	65	. 2	0		0	· 2	4
91PA0080013 081	MM003	304.0	62	56		· · ·	ō	.30	86
91PA0080009 082	MH005	272.0	64	4	õ	-		11	15
91FA0080012 078	MH439	324.5	61	200	0		0	47	247
91PA0080010 079	MN001	239.0	61	1	0	•	. •	2	2
STRATUM NZ	*******					******			
91PA0080016 114	MD4 37	315.5	62	0	0	0	. 0	` o	, 'o
91PA0080015 115	ME438	307.5	62	· o	· 0	O 1.	0	0	0
91PA0080008 116	MK005	168.0	61	0	0	0-,	0	. •	0
STRATUM N3									·····
91280080006 084	MEDO7	296.5	60	422	0	1	.0	37	4.50
91PA0080007 083	MG008	189.5	61	10	ō	·ō	ō		10
						**			
STRATUM N4									·
91PA0080019 086	MA005	460.0	62	32	0	11	0	8	51
91PA0080017 085	MBOO4	329.0	60	39	0		0	3	42
91PR0080003 112	MB009	402.2	60	45	0	30		23	104
91940080004 087	MD010	.345.0	62	278	0	0	0	11 A.	278
91980080005 113	MDO10	1/2.5	01	23				·	23
STRATUM N5									
91PA0080028 070	LM439	337.5	60	0	0	0	ø	7	7
91PA0080026 072	LN438	303.5	61	. 1 _.	0	1	0	· · 7	. 9
91PA0080027 071	LN438	295.0	61	້	0	· 0	· 0	2	2
91PA0080025 073	LP439	347.5	60	5	o	· 1	1	19	25
91PA0080023 075	LR437-	. 327.5	61	·. 2	- 0	0	2	5	9
91PA0080024 074	LR438	341.0	61	7	0	0 .	0	4	11
91PA0080022 076	LT437	485.3	66	· 0	٥	3.	.4	` 14	20
91PA0080021 077	LV438	587.5	61	. 1	0	0	0 -	•	1
STRATUM N6							·	·	
91PA0080031 107	LM008	137.5	64	0	0	0	0	1	1
91PA0080029 108	LP005	237.5	61	0	0	0	0	' 0	0
91PA0080030 109	LP006	168.5	60	0	0	. 0	o	1	1
91PA0080020 110	LX003	514.5	63	7	0	30	0	18	54
91930080018 111	MA004	424.5	61	58	Ó	•	•	32	89
STRATUM N7									
91PR0080001 089	1.1017	208.0	60	Ó	0	·2	. 0	1	3
91PA0080002 088	LV011	227.0	60	7	ŏ	ō	ŏ.	13	21
								*	

Table 1c. List of trawl stations in strata south of 69°30'N east of the midline in the Davis Strait survey 1991. Catches are given in kg.

STATION-	AREA-		TR-			, .				
IDENTIFICAT	ION CODE	DEPTH	TIME	SHR	COD	GHL	RED	MIX	TOTAL	
							-			
978370M W1-1										
01050070059		105 0						_	_	
012200700000	051 LF007	165.0	02	0	0	0	U	¢	• .	
91PA00/005/	050 LGOUA	102.5	60	0	0	0	0	Q	0	Ì
91PA0070063	D63 LG015	169.5	60	21	0.	Ô	0	0	21	
91PA0070056 (149 LHO10	179.5	61	0	0	0	٥	D	0	
STRATUM W1-2										
91PA0070060 (053 LD005	284.0	62	17	0	0	0	٥	17	
91P30070061 (52 LE005	265.5	57	-;	Ň	ă	č	ž	17	
91280080040	163 I TOO3	230 5	40			ž	č			
91 080080041 (N64 1 0004	272 0	4.	<u>.</u>	Š	v		ų.	-	
91FR0080041 (24 LF004	223.0	01	U	0	•	0	1	1	
91PA0070062 (205 LHOUS	234.5	63	0	0	0	0	0	· 0	
91PA0080032 1	LUG LJ003	227.0	61	0	0	0	0	0	0	

STRATUM W1-3										
91PA0070031 ()58 KZOO3	381.0	60	127	0	24	33	0	184	
91PA0070033 0	057 KZ005	361.5	61	356	0	54	148	0	558	
91PA0070029 (059 LA001	305.5	63	110	0	6	5		121	
91PA007002B (28 LA438	321.0	50	40	ň	· .			121	
91220070030 0	00 18002	314 0	67	211	Ň	÷				
91830070050 (54 18006	222.0	. 02	311	Š	· 4	10	0	335	
01pp00000000 0		333.5	01	1475				1	1476	
91PAGOBOU39 C	62 LF440	309.0	62	28	a	1	1	23	53	
91PA0080035 0	67 LH439	331.5	62	199	0	7.	. 12	45	262	
91PA0080037 0	66 LH439	359.0	63	234	0	23	21	23	302	
91PA0080033 0	68 LJ439	353.0	60	8	0	0	C	5	13	
STRATUM W1-4										
91280080038	61 1.8437	536 5	83	2	0		10	•		
91930080034 0	68 1.1438	443.0	42	,	Š	2	10	3	21	
		443.0	03	•	0		-	4	10	
D 20 0 20 1 10 1						*				
010000700EE 0				_			·			
91PA0070055 0	45 LEOII	153.5	60	0	0	0	0	0	ο.	
31PA0070064 0	47 LF015	158.5	63	9	0	- Q	0	· 0	9	
STRATUM W2-2										
91PA0070052 0	43 LB014	221.0	59	13	0	11	11	0	35	
91PA0070053 0	99 LDO12	250.0	63	0	0	0	2	<u>.</u>	.,	
91PA0070054 0	46 LEO12	210.0	60	, n	ō	õ	· 6	ñ.		
								•		
STRATUM W2-3										
91280070034 0	55 1.8009	396.0	60	777	~	60	24	~		
0100070036 0	30 13031	373.0	00	/23		00	24	0	807	
91FA0070035 0	SF LAUII	372.0	60	1352	Q	30	34	0	1415	
91FR0070030 0	al LAGIS	359.5	60	851	¢	30	34	0.	916	
STRATUM W2-4										
91PA0070051 0	42 LB016	542.5	60	806	0	97	32	0	935	
STRATUM W3-1						1.				
91PA0070016 0	93 KM006	164.0	59	0	0	a	1	n	· •	
91PR0070042 0	14 KS005	164.0	60	õ	ň	2	· Â	ž	-	
91220070041 0	35 ¥8007	154 5	63	ž	Ň		, v		0	
JIFR0070041 0.	33 X3007	194.9	63	v	0	0		0	0.	
67703 TTTM 1/2 - 7										
GINALUA 83-4							1		1.1	
31FR00/0018 0	A RLUU3	4//.3	6Z	104	Ο,	0	1996	ο.	2100	
91PA0070017 0	2 KL005	234.0	60	0	D	0	0	Q	0	
91PA0070019 09	O KMOOZ	269.0	60	142	0	0	416	0	558	
91PA0070043 03	13 KR004	269.0	61	256	0	0	1	0	257	
91PA0070040 03	6 KV006	235.0	59	3	0	0	0	o .	4	
91PA0070047 03	7 KV010	248.5	60	10	ō	3	84	ō	67	
								•		
STRATUM W3-3										
91 P30070039 01	1	375 0					· • ·			
01 pp 0070030 03	A 80110	323.0	03	5/6		12	40	0	630	
91PR0070039 03	U KS44U	327.0	61	242	0	2	18	0	261	
ATAMO010031 03	Z 87002	342.3	60	662	0	4	21	٥	686	ľ
STRATUM W3-4										
91PA0070044 09	4 KJ006	504.0	62	3	0	17	. 70	0	90	
91PA0070036 02	9 KV440	418.0	62	39B	0	11	20	ō	479	
91PA0070032 05	6 83005	440.0	61	217	ā	38	27	ň	201	
91PA0070048 03	8 876011	479.0	65	769	õ	70	6	ž	403 .	
91220070049 04	0 87017	445 0	43	709	ž	170	100		907	
			60	101	v	140	100	υ,	98Z	
								••••- <u></u>		
SINATUM W4~1	• ••• ••• ·									•
71PAUU/0011 10	J RADOB	192.2	60	0	0:	0	¢	0	0	
91PA0070014 09	a KDOO3	177.0	60	0	0	0	1	0	1	
91 PR 0070015 10	2 KD011	191.0	60	c	0	0	0	0	ο.	
91PA0070010 09	9 KD013	191.0	60	0	0	o	0	0	0	
									-	

Table 1c continued.

STATION- IDENTIFICATION	AREA- CODE	DEPTH	TR- TIME	SHR	COD	GHL	RED	MIX	TOTAL
91PA0070046 096	KG007	188.5	59	19	0	1.	15	0	34
STRATUM W4-2 91PA0070012 104 91PA0070008 100	KBC07 KB013	298.5 289.5	64 60	0 775	0 0	0 9	8 57	0 0	9 842
STRATUM W4-3 91PA0070009 101 91PA0070045 095	КD013 КН007	312.0 362.5	60 62	1759 391	0	14 2	142 72	0	1915 465
STRATUM W4-4 91PA0070007 105 91PA0070013 097	KA006 KD006	568.5 503.5	62 60	 0 3	 0 1	 6 11	26 30	0	33 45
STRATUM W5-1 91PA0070001 014 91PA0070004 017	JH019 JL014	173.0 175.0	60 60	0	 0 0	0 1	0 8	• • •	0 10
STRATUM W5-2 91PR0060011 009 91PR0060009 011 91PR0060010 010 91PR0060010 010	JB019 JE018 JF017	241.5 295.0 241.5	60 60 60	60 489 195 360	0 0 . 0	1 0 0;	75 95 4 24	6 4 1 0	141 588 200 384
STRATUM W5-3 91PA0060008 012 91PA0070002 015	JF019 JK013	341.5 378.5	61 60	545 0	 12 0	 4 4	48 6	8 0	618 9
STRATUM W5-4 91PA0060007 013 91PA0070003 016 91PA0070005 018	JF020 JL013 JR011	454.0 497.0 558.0	60 60 60	430 0 0	6 1 0	6 3 3	15 5 10	11 0 0	466 8 13
STRATUM W6-1 91PA0060002 003 91PA0060004 005	н5026 НТ023	172.0 190.5	60 60	7 10	0	 0 0	0	10 2	17 13
STRATUM W6-2 91PA0060012 008	JB023	236.0	60	526	0	4	40	35	604
STRATUM W6-3 91PA0060006 007	HZ024	358.5	54	61	2	0	22	11	96
STRATUM W6-4 91PA0060001 002 91PA0060003 004 91PA0060005 006	нро26 НS023 НV025	456.0 520.5 406.0	60 58 60	378 0 749	41 0 9	2 1 7	5 66 60	12 32 39	439 99 863

. - 6 -

- 7 -

Table 2a. Estimated trawlable biomass in strate west of the midline in the Davis Strait survey 1991.

STRATUM	SOKM		I	BIOMASS I	N STRATA		
		TONS	HAULS	8TD	STDERR	MIN	МАХ
AREA C1 300-400 M	655	1643.7	2	1069.8	756.5	887	2400
AREA C1' 400-600 M	312	0.5	1	•	•	o	٥
AREA C3 200-300 M	660	311.0	1			312	312
AREA C3 300-400 M	1192	2210.3	3	1441.9	832.5	. 850	3722
AREA C3 400-600 M	623	13.5	1			14	. 14

Table 2b. Estimated trawlable biomass in strate north of 69°30'N in the Davis Strait survey 1991.

.

STRATUM	SOKM			BIOMASS J	N STRATA		
		TONS	HAULS	STD	STDERR	MIN	MAX
AREA NI	3649	1517.5	5	-2586.9	1156.9	13	6023
AREA N2	11789	0.0	. 3	.0.0	0.0	• 0	` O
AREA NO	367	586.4	2	785.2	555.2	31 -	1142
AREA N4	2249	1551.5	5	2155.0	953.8	408	5398
AREA NS	5990	85.3	6	100.3	35.5	4	272
AREA NG	15926	1625.4	5	3199.4	1430.8	0	7314
AREA N7	1159	34.3	2	44.3	31.3	3	66

Table 2c. Estimated trawlable biomass in strats south of 69'30'N east of the midline in the Davis Strait survey 1991.

STRATUM	SOKM			BIOMASS	IN STRATA	· .	
		TONS	HAULS	STD	STDERR	MIN	MAX
AREA W1 150-200 M	2363	98.3	4	196.6	98.3	0	393
AREA W1 200-300 M	5213	121.0	6	244.4	99.8	0	617
AREA NI 300-400 M	9239	19864.4	10	27756.4	8777.3	664	94945
AREA W1 400-600 M	752	24.5	2	6.9	4.9	20	29
AREA W2 150-200 M	1499	49.7	2	70.3	49.7	0	99
AREA W2 200-300 M	2477	86.1	3	149.2	86.1	0	258
AREA W2 300-400 M	1453	10538.0	3	2469.5	1425.8	6981	, 13376
AREA W2 400-600 M	559	3910.5	1			39 10	3910
AREA W3 150-200 M	2215	0.0	3	0.0	0.0	٥	. 0
AREA W3 200-300 M	4810	3082.8	6	3697.4	1509,4	•	9239
AREA W3 300-400 M	2714	10339.4	3	5155.3	2976.4	4739	14887
AREA W3 400-600 M	3361	10442.7	5	8119.3	3631.1	75	19408
AREA W4 150-200 M	4204	159.5	5	356.5	159.5	, O	797
AREA W4 200-300 M	1736	6347.0	2	8968:4	6341.6	. 5	12689
AREA W4 300-400 M	745	6403.9	2	5630.2	3981.2	2423	10385
AREA W4 400-600 M	1915	27.4	2	35.1	24.8	3	. 52
AREA W5 150-200 M	1995	1.5	2	2.1	1.5	0	3
AREA W5 200-300 M	3454	6863.7	4	3934.0	1967.0	· 2236	11414
AREA W5 300-400 M	1797	3809.1	2	5385.4	3808.1	· o	7616
AREA W5 400-600 M	2806	3174.7	3	5498.8	3174.7	0	9524
AREA W6 150-200 M	1095	73.3	2	24.8	17.5	56	91
AREA N6 200-300 M	1491	6592.1	1			6592	6592
AREA W6 300-400 M	1300	773.8	1			774	774
AREA W6 400-600 M	884	2629.2	3	2630.9	1518.9	2	5264

Table 3. Sums of estimated biomasses in main regions 1988-91.

AREA	BIO 1988	MASS 1989	INYE 1990	A R 1991
WEST	122323	184032	131977	95411
CANADA	8111	3992	9959	4180
NORTHWEST	25177	11805	10228	5400
TOTAL	155611	199829	152164	104991

Table 4. Stratum areas in 4 of total survey area in 1991, and calculated biomass estimates in 4 of total yearly biomass from surveys 1988-91 in the area 51*52'5N - 72*30'N._____

	D E P 150-200 M	т н S 200-300 н	T R A 2	U N 400-600 M	TOTAL
W1 AREA	2.3	5.0	8.8	0.7	16.8
1988-BTOM	0.0	0.8	16.6	0.0	19.5
1093-0104	1 61 -	<u> </u>	1 2 2	0.0	11 0
1989-0100		1 1 2		å. å	12.0
1990-8104		1.3	18.2	0.0	19.9
1991-BIOM	0.1	, 0.1	19.0	0.0	19.2
W2 AREA	2.4	2.4	3.4	Q.5	5.7
1988-BIOM	0.0	4.4	1.3	1.0	12.8
1989-BIOM	0.0	5.0	10.6	0,9	17.5
1990-BIOM	0.0	3.4	17.2	5.0	25.7
1991-BIOM	. 0.0	0.1	10.1	3.7	13.9
	2.1	4.6	26	12	12.5
1988-BIOM	0.0	11 0	1 5 1 .		
1000-0704	1 1	11.2		3	37.0
1000-0104		1 1 1 1	5.5	4 7	21.4
1401 11704	0.0		2.2	10.0	61.1
1991-8104	0.0	3.0	9.9	10.0	22.9
HA AREA	4.0	1,7	9.7	1,8	9,2
1988-BIOM	7.4	3.1	0.2	2.2	13.0
1989-BIOM	1.1	14.0	0.0	0.1	15.5
1990-BTOM	0.0	5.5	0.7	0.0	6 3
1001-0704	1 0 2	1 2.7	2	0.0	12.4
1991-BIOM	0.2	······································	L	0.0	12.4
W5 AREA	1.9	3.4	1.2	2.7	9.6
1988-BIOM	0.0	3.3	2.6	3.5	9.4
1989-BIOM	3.4	9.0	5.4	1.5	20.2
1990-BIOM	0.0	2.3	. 4.2	2.4	9.0
1991-BIOM	0.0	6.6	3.2	3.0	12.8
NG AREA	1.0	1.4	1.2	0.8	4.6
1988-BIOM				<u> </u>	
1989-BIOM	-	- 1	- 1		· _
1990-BIOM	0.1	3.5	0.1	1.3	5.0
1991-BIOM	0,1	6.3	0.7	2.5	9.6
C1 3751			0.6	0.2	
TARP-DIAN	+	+ <u>-</u>		÷**	<u> </u>
1000-0100	1]	-	1		1 · 2 · 2
1909-010M	1 -		0.5	0.0	
1990-01CM	1	į –	4.4	1 0.0	. 2.2
1991-810M	I		2.4	0.0	Z.4
C3 AREA	1	0.6	1.1	0.6	2.4
1908-BIOM	-		4.1		4.1
1989-BIOM	· ·	-	1.1	0.3	1.4
1990-BIOM	1 -	1.6	2.3	0.3	4.2 1
1991-BIOM	· _ ·	0.5	1.0	0 0	2.2
	1 • •	1			

	· · · ·	TOTAL	
, '	N1 AREA	3.5	
	1988-BIOM	1.5	
	1989-BIOM	2.2	
	1990-BIOM	1.6	
	1991-BIOM	1.5	
	NZ AREA	11.3	
	1988-BIOM	7.0	
	1989-BIOM	0.6	
	1990~BIOM	1.1	
ļ	1991-BIOM	0.0	
	N3 AREA	0.4	
	1988-BIOM	0.0	
	1989-BIOM	0.1	
	1990-BIOM	0.2	
	1991-BIOM	0.6	
	N4 AREA	2.1	
	1988-BIOM	2.6	
	1989-BIOM	1,4	
1	1990-BION	1.7	
	1991-BIOM	1.5	

 5.	7
1.	4
1.	7
0.	6
о.	1
 15.	2
1.	5
	-
ο.	4
· 1.	6
1.	1
 2.	ĩ
۵.	0
ο.	6
0.	0

Table 5. Relative distribution (1) of estimated biomesses 1988-91 in depth strata south of 69'30'N.

YEAR	DEF 150-200	тн s 200-300	T R A T 300-400	U M 400-600
1988	8.9	28.2	49.9	13.2
1989	5.7	57.3	30.7	6.3
1990	0.3	25.8	58.8	15.1
1991	0.4	23.5	55.8	20.3

ļ,

-	9	-	
---	---	---	--

LENGTH, CPL	MALES	PRIM. FEM	MULTI.FEM	TOTAL
7.5	841280	0	0	84128
8.5	224329	0	0	22432
10	979552	0	0	97955
10.5	498008	0	0	49800
11.	5261927		0	526192
11.5	9954480	. 0	0	99544B
12	22117098	0	· 0	2211709
12.5	30803574	0	. 0	3080357
13	42794618	· o	Ó	4279461
11.5	39527621	Ó	Ó	3952762
14	22000107	ō	Ó	2200010
14 5	40133673	ō	0	4013367
15.	67268924	o o	ō	6726892
15 5	149587933	o o	ő	14958793
10.0	245251501	· õ	ŏ	24525150
16 5	227685338	ň	ŏ	32768533
10.5	301066985	ň	័	39198698
17	424200524	ŏ	ŏ	43430950
17.5	434309324		224220	43303463
10	933/10305	Ň	224323	3003362/
18.2	389330209		410207	4407457
19	440335468	0	949955	66007657
19.5	308083239	224220	243233	00092033
20	829250190	224,329	2000093	117402021
20.5	1108041444	3202004	2003100	142410011
21	1425487790	22.39040	11420859	151071053
21.5	14090092/3	24014770	38197304	14116014
22	1121640290	74956001	64891000	127128926
22.3	2070000000	160021070	173780274	0826006
23	204675417	130361373 337746078	216262157	8486845
23.5	102660010	274004245	260211101	7174643
24 . 24 E	192000919	216209910	258340354	6573377
24.3	31451204	150052016	367041789	5582860
43 .	22060640	130032910	261202125	47715460
23.3	20900049	47621057	325601330	2827065/
20	10394109	17060456	2040601550	2020205
26.5	1903/39	1/930030	200000130	30393035
27	2421098	9000073	203327291	2//03320
27.5	1418819	4140380	240492029	24003124
28	1523337	518/9/0	100000000	10000020
28.5	8809	2890701	122086805	14498333
29	274609	309301	05014244	000084
29.5	102708	0	46680435	4678314
30	l õ	255335	27076429	2733170
30.5	0	.0	12962306	1296230
31	0	0	13212360	132123
31.5	0	139800	1677831	181763
32	0	0	1190177	119017
33.5	0	•	1904822	190482
	12500140120	1242227246	7764502172	172150774

Table	6.	Numbers	of	shrimp	per	length	group	(carapa	ca length	I) IN COCAL
		iomass e	stim	ate in	1991,	, based	on poo	oling of	individu	al samples
		weighted	by	catch a	nd at	tratum /	srea.			

a 7. Summary of age and Davim Strait, 1983-87,	growth data for samples of northern shrimp combined (from Savard et al., 1989).	from
· · · · · · · · · · · · · · · · · · ·		

Age	• Hin - max lengths (mm)	Range	Mean length (mm)	Increment (mm)
4	7.4 - 9.8	2.4	8.4	
-	100 101		10.0	> 3.9
4 .	10.9 ~ 13.1	2.4	12.3	> 3.4
Э.	14.5 - 16.6	2.1	15.7	
	17 6 10 4		10 5	> 2.8
~	17.0 - 19.4	1.0	10.3	> 2.1
5	19.1 - 22.1	3.0	20.6	
e			DD D	> 2.1
0	21.3 - 23.8	2.5	• 22.7	
7	23.0 - 26.6	3.6	24.9	~ 2.2
				> 1.4
8	24.4 - 28.0	3.6	26.3	

- 10 -

Figure 2b. Topographic map for the area 64°30'N-67°30'N with trawl stations in the shrimp survey in 1991.

- 12 -

Figure 2c. Topographic map for the area 67'N-70'N with trawl stations in the shrimp survey in 1991.

Figure 2d. Map of the area 69°30'N-72°30'N with stratum numbering and trawl stations in the shrimp survey 1991.

BIOMASS OF SHRIMP AT WEST GREENLAND Survey results 250000 *UII* CANADA ŹZZ NORTH \otimes 200000 WEST 150000 TONS 100000 50000 0 1990 1991 1988 1989 YEAR Figure 3. Estimated total biomass 1988-91 for the three main regions in the Davis Strait from trawl surveys.

- 13 -

Figure 4a. Contour map with estimated shrimp densities 1988 for the area 62°N-65°N as calculated with the 'spline' method, based on travl survey data from 1988. Sampling sites are also given.

Figure 4c. Contour map with estimated shrimp densities 1988 for the area 67°N-70°N as calculated with the 'spline' method, based on trawl survey data from 1988. Sampling sites are also given.

- 15 -

Figure 5b. Contour map with estimated shrimp densities 1989 for the area 64°30'N-67°30'N as calculated with the 'spline' method, based on trawl survey data from 1989. Sampling sites are also given.

Figure 6a. Contour map with estimated shrimp densities 1990 for the area 62*N-65*N as calculated with the 'spline' method, based on trawl survey data from 1990. Sampling sites are also given.

Figure 6c. Contour map with estimated shrimp densities 1990 for the area 67°N-70°N as calculated with the 'spline' method, based on trawl survey data from 1990. Sampling sites are also given.

- 17 -

Figure 7a. Contour map with estimated shrimp densities 1991 for the area 62°N-65°N as calculated with the 'spline' method, based on trawl survey data from 1991. Sampling sites are also given.

Figure 7b. Contour map with estimated shrimp densities 1991 for the area 64°30'N-67°30'N as calculated with the 'spline' method, based on trawl survey data from 1991. Sampling sites are also given.

Figure 7c. Contour map with estimated shrimp densities 1991 for the area 67°N-70°N as calculated with the 'spline' method, based on trawl survey data from 1991. Sampling sites are also given.

Figure 8. Numbers of shrimp by length group (CL) in the total survey area in 1988-91, based on pooling of samples weighted by catch and stratum areas.

Figure 9a. Numbers of shrimp by length group (CL) in strata C1+C3 (see Fig. 1) in 1988-91, based on pooling of samples weighted by catch and stratum area.

Figure 9b. Numbers of shrimp by length group (CL) in strata N1-N4, right column, and N5-N7, left column (see Fig. 1) in 1988-91, based on pooling of samples weighted by catch and stratum area.

- 22 -

Figure 9e. Numbers of shrimp by length group (CL) in stratum W5, right column, and W6, left column (see Fig. 1) in 1988-91, based on pooling of samples weighted by catch and stratum area.

- 25 -

- 26 -

based text).

.1

Figure 10c. Numbers of multiparous females by stratum and depth in 1988-91, based on pooling of samples (see text).

Figure 10d. Total numbers of shrimp by stratum and depth in 1988-91, based on pooling of samples (see text).

