NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2244

NAFO SCR Doc. 93/61

SCIENTIFIC COUNCIL MEETING - JUNE 1993

Abundance Indices of Greenland halibut in Deepwater Fishing Zones of NAFO Divisions 3LMN

by

E. de Cardenas¹, S. Junquera² and A. Vazquez³

¹Instituto Espanol de Oceanografia, Santander, Spain ²Instituto Espanol de Oceanografia, Vigo, Spain ³Instituto de Investigaciones Marinas, Vigo, Spain

INTRODUCTION

Since 1990 a deepwater fishery of Greenland halibut has been developed in the boundary of Divisions 3L and 3M, extended to the North of Division 3N in 1992. The main participants in this fishery are Spain and Portugal. A description of this fishery is found in Junquera et al. (1992).

The Spanish fleet is composed by bottom trawlers that fish from depths of 800 m onwards. Catch rates are of the same level as in other areas where Greenland halibut were traditionally exploited (Brodie, 1991).

The fishing activity has been monitored by observers on board since the onset of this fishery. Eight observers stayed on board these commercial vessels in 1990, 23 in 1990 and 30 in 1992. They provided a great amount of information on fishing areas, length distributions, catches and effort which would allow us to get a quite clear picture about the trends of this species in the area. The fleet in 1990 was mainly large trawlers, but smaller vessels were incorporated with time. This heterogeneity of the fleet and the differences in the survey intensity at different seasons and years hampered a direct interpretation of the raw information on catch and effort to calculate indices accounting for seasonality or long-trends in catch rates (Junquera et al., 1992).

Following a recommendation of the NAFO Scientific Council in 1992 (Anon., 1992), the standardization of the catch rates in the whole available time series of data from the commercial fishery is undertaken in this paper. It allowed us to obtain comparable time series of catch rates, which can be considered as fishery related abundance indices because this is a directed fishery for Greenland halibut.

MATERIAL AND METHODS

Catch rates were adjusted to a multiplicative model for CPUE. The method used (Vazquez, 1980) gives a solution assuming a variance:

$V(CPUE) = (CPUE)^k Vb / t$

The power k has commonly a value between 1.5 and 2.0. The Vb s are constants for each vessel or fleet component. A minimum square solution is calculated by iteration.

Input data were monthly Greenland halibut catches and effort of each vessel by Division and depth zone, and they comprised 1400 records. Catches of other species were also included in each record, and they were used to exclude those records with catches of other species larger than for Greenland halibut. Although catches of species other than Greenland halibut were probably incidental by-catches, we decided to exclude the above mentioned records to reduce doubts regarding target species. A total of 1236 records were used. The best fit to the multiplicative model was obtained with an exponent k=2.146 and 58 % of the variance was explained. A power greater than 2.0 indicates a dispersion of highest values a little higher than the theoretical maximum, but the value obtained is within the expected range for a calculated parameter.

RESULTS

Results of the analysis are presented in Table 1. Significant differences among values obtained for each factor were explored. Cross comparison squares are presented in figure 1. In this figure, the values for each factor were previously arranged in increasing order to make easier interpretation of differences. No significant differences at a 5 level are indicated with an asterisk. A diagonal of asterics is always present for this reason. On this figure, a certain grouping can be observed among vessels but they are not independent and there is a continuous variation of values.

DISCUSSION

The relationships between the vessel factor value and vessel characteristics: gross tonnage and horse power, are presented in Figure 2 and 3, respectively. Correlation coefficients between them were also calculated. Horse power has a greater correlation with the vessel factor, indicating a greater influence on it.

There are no significant differences in year factor for 1991 and 1993, although data in 1993 are quite scarce. The year factor has its maximum value in 1990, when the fishery began, and a clear tendency is not observed, in spite of their annual variation (Figure 4).

Month factor value decreases along the year, from January to November, and increases to December and next January (Figure 5). This pattern seems to indicate a main concentration of Greenland halibut in January.

Division factor is significantly different between zones. The highest value corresponds to Division 3N (Figure 6), but the fleet does not concentrate there because catches contain smaller fish than in Divisions 3L and 3M, where the bulk of the catch was taken (Junquera et al., 1992). Similarly, the depth zone factor has its maximum value in 600-800 m depth zone and decrease with depth (Figure 7), but catches were mainly made in deepest zones, where large fish is more abundant (Junquera et al., 1992).

REFERENCES

Anon.- 1992. Scientific Council Reports, 1992.

Brodie, W.B.- 1991. An assessment of Greenland halibut in SA 2+Div. 3KL. NAFO_SCR Doc.91/88.

Junquera, S., S. Iglesias and E. Cardenas - 1992. Spanish fishery of Greenland halibut (<u>Reinhardtius hippoglossoides</u>) in 1990-91. <u>NAFO SCR</u> <u>Doc.</u> 92/28.

Vazquez, A. and M.G. Larrañeta - 1980. Assessment of cod stock in Division 3NO. <u>NAFO SCR Doc.</u> 80/II/10.

TABLE 1 - Values obtained for each factor from a multiplicative model. Catches in Kg and effort in hours.

	value s.error			¥/f
total		29091201	5656052	5.14

FACTOR 1 : vessel

order	code	n.	value	s.error	Catch	effort	Y/f	
1	JAH	75	1.000	0.027	2451405	354607	6.91	1.00
2	RSE	16	0.413	0.010	124600,	47073	2.65	0.13
3	ZXG	13	0.924	0.062	439174	58004	7.57	0.97
4	CKH	68	1.301	0.059	3823551	358283	10.67	2.61
5	EIF	19	0.752	0.062	513380	113880	4.51	3.09
6	GEH	25	1.638	0.048	711342	64512	11.03	0.20
7	NKD	20	0.909	0.059	257651	47785	5.39	0.78
8	OSF	32	0.752	0.021	1095205	234688	4.66	0.76
9	DSD	72	0.874	0.025	1832787	316269	5.80	0.99
10 .	, RTH	51	0.649	0.011	1176926	290290	4.05	0.31
11 "	XRH	17	0.629	0.020	430732	136152	3.16	0.57
12	ZRH	29	0.844	0.040	1098282	206242	5.33	1.80
13	WXD	20	0.639	0.033	141156	40075	3.52	0.43
14	HDE	13	0.608		79174	27200	2.91	0.59
15	SJF	25	0.796	0.044	544567	124711	4.37	1.53
16	IXE	15	0.769	0.034	266983	60138	4.44	0.48
17	FOD	39	0.541	0.015	856622	239771	3.57	0.77
18	VZG	18	0.436	0.021	143972	71410	2.02	0.74
19	NWH	40	0.633	0.017	965866	203969	4.74	0.57
20	BOE	52	1.001	0.034	1638500	250418	6.54	1.08
21	JVD	31	0.628	0.022	741966	164948	4.50	0.84
22	MAA	38 27	0.656	0.022	763632 671304	172017	4.44	0.81
23 24	BXH LJF	11	0.955	0.053 0.050	240816	93433 78520	7.18 3.07	1.09 2.71
24 25	ACH	11	0.356	0.030	87211	40294	2.16	1.21
25	XME	27	0.551	0.032	598216	130079	4.60	0.66
27	CXG	36	0.485		752053	184235	4.08	0.00
28	UUA	39	0.590	0.013	738486	165365	4.47	0.33
29	LAE	37	0.919	0.027	1409726	174058	8.10	0.53
30	XXH	27	0.648	0.023	892570	164840	5.41	0.80
31	ATH	30	0.363	0.013	479409	166820	2.87	0.95
32	YWD	59	0.461	0.012	673775	189726	3.55	0.57
33	NMF	17	0.503	0.019	318209	86651	3.67	0.49
34	KMF	37	0.648	0.022	485185	90214	5.38	0.42
35	UUG	26	0.421	0.016	213263	70160	3.04	0.43
36	NKE	32	0.486	0.011	467389	127355	3.67	0.28
37	ROD	19	0.382	0.014	226022	76245	2.96	0.43
38	WCH	20	0.352		120786	43457	2.78	0.90
39	KYF	21	0.459	0.023	329320	88176	3.73	0.95
40	FCH	32	0.358	0.011	289988	103782	2.79	0.43

FACTOR 2 : year

order o	ode	n.	value	s.error	Catch	effort	Y/f
4 2 1 3	91	289 795	0.853	0.018 0.009 0.007 0.045	4571688 5544523 18851445 123545	579232 1467297 3570353 39170	7.89 3.78 5.28 3.15

FACTOR 3 : month

order	code	n.	value	s.error	Catch	effort	Y/f
6	1	51	1.596	0.043	1169485	197881	5.91
10	2	82	1.440	0.030	2268143	393136	5.77
11	3	88	1.257	0.026	2213217	424240	5.22
12	4	93	1.339	0.027	2893720	471348	6.14
7	5	90	1.411	0.025	3669169	564078	6.50
8	6	73	1.170	0.024	2360980	390681	6.04
· 9	7	78 '	1.210	0.026	1710232	314929	5.43
2	8	124	1.046	0.016	2715503	622193	4.36
1	9	173	1.000	0.014	3274427	728912	4.49
3	10	166	0.916	0.014	2913744	690925	4.22
4	11	136	0.894	0.015	2333593	567769	4.11
5.	12	82	1.219	0.029	1568988	289960	5.41

FACTOR 4 : Division

order	code			s.error	Catch	effort	Y/f
1 2 3	3L 3M 3N	651 489	1.000 0.860	0.008	18739920 8794536 1556745	3148355 2177085 330612	5.95 4.04 4.71

FACTOR 5 : depth zone

ord	er code	п.	value	s.error	Catch	effort	Y/f
4 2 1 3 5	600-800 800-1000 1000-1200 1200-1400 1400-1600	389 490 226	7.335 6.812 6.328 6.339 5.182	0.185 0.070 0.045 0.100 0.390	1724790 8696097 14722492 3734948 212874	291384 1528638 3100217 705973 29840	5.92 5.69 4.75 5.29 7.13

FACTOR 1 : vessel

		order : 34332 31332331222121113312 111 2 2 2
order c	ode (34332 31332331222121113312 111 2 2 2 8017525892763764841193040285652979331046
38 -	WCH :	***************************************
	FCH :	****
	ATH :	****
	RQD :	*****
_	ACH :	*****
	RSE :	*****
	UUG :	****
	VZG :	****
	KYF :	****
-	YWD :	* *****
	CXG :	*****
	NKE :	****
	NMF :	****
	FOD :	****
	XME :	****
	LJF :	*****
	UUA :	*****
,	HDE :	*****
	JVD :	******
	XRH :	*****
	NWH :	* ******
	WXD :	*****
	XXH :	* *****
	KMF :	* *****
	RTH :	* *****
	MAA :	* ***** *
	OSF :	****
	EIF :	********
16 -	IXE :	****
	SJF :	*****
	ZRH :	******
9 -	DSD :	* ******
	NKD :	* *****
	LAE :	*****
	ZXG :	* ******
	BXH :	****
	JAH :	* ***
	BOE :	*****
	CKH :	. *
_	GEH :	and the second secon

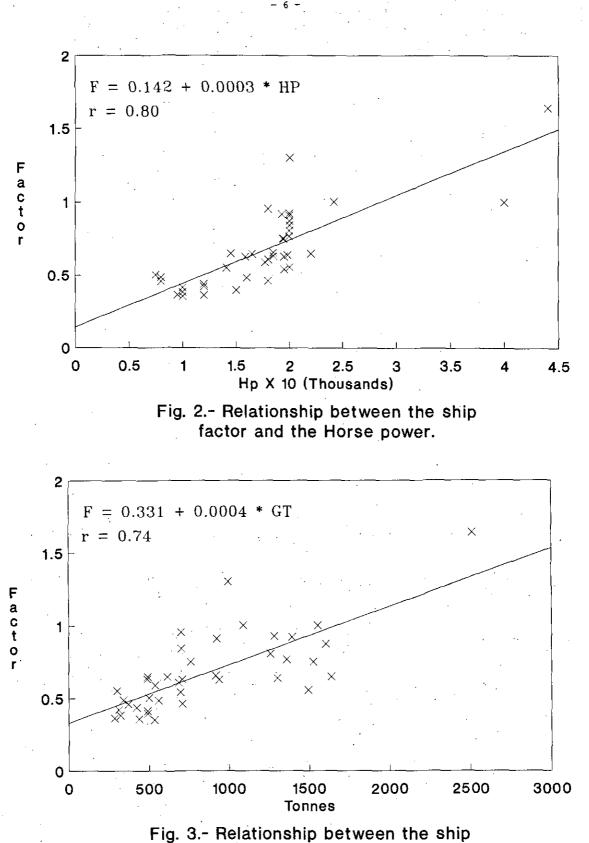
5 -

2

der	code	order: 2314
2 -	91	:**
3 -	93	:**
1 -	92	: *
4 -	90	: *
-		

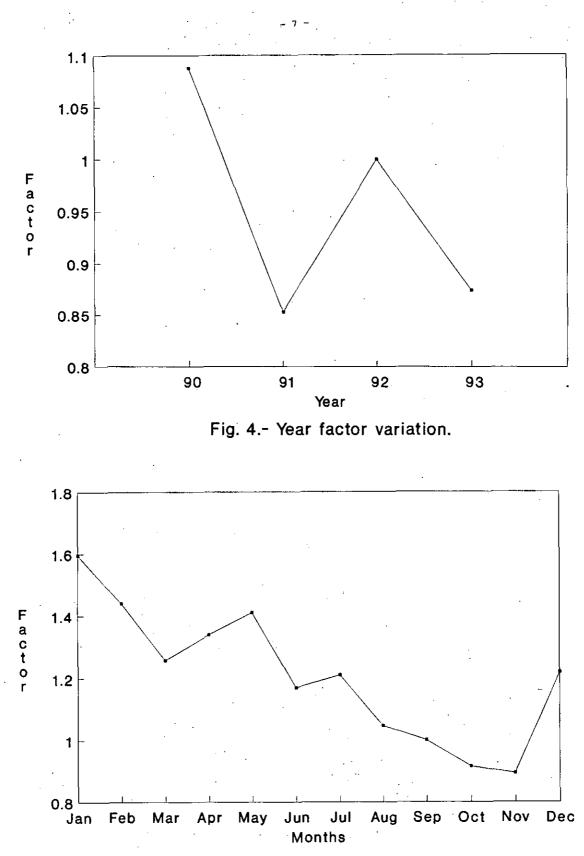
FACTOR 3 : month

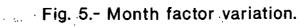
		order:
		11 1
order	code	431289512706
order		101000010.00
4	11	: * *
3 -	10	***
1 -	9	: *
2 -	. 8	: *
8 -	6	: ***
9 -	7	****
5 -	12	: ****
11 -	3	: ***
12 -	4	: **
7 -	5	* ***
10 -	2	: **
6 -	1	: *

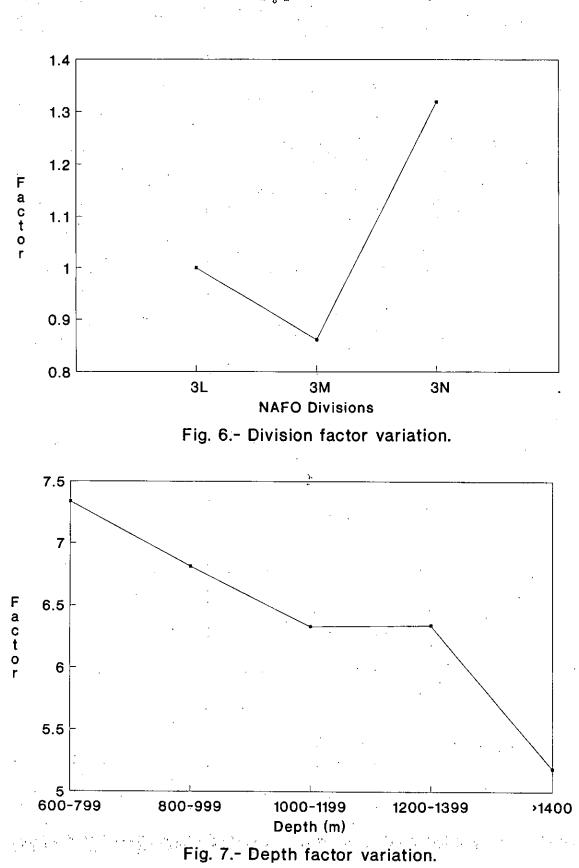

FACTOR 4 : Division

order	code	213
2 -	ЗМ	:*
1 -	3г	: *
3 -	'3N	: *

FACTOR 5 : depth zone


order	code	order: 51324
5 -	1400-1600	:* .
1 -	1000-1200	: **
3 -	1200-1400	: **
2 -	800-1000	: *
4 -	600-800	: *


FIGURE 1 - Cross comparison of values for each factor. No significant differences at 5 % level are indicated with a asterisk.


factor and gross tonnage.

· .

• ;

