NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2250

NAFO SCR Doc. 93/66

SCIENTIFIC COUNCIL MEETING - JUNE 1993

Stratified-Random Trawl Survey for Shrimp (Pandalus

borealis) in Denmark Strait in 1992.

by

Dan M. Carlsson and Per Kanneworff

Greenland Fisheries Research Institute, Tagensvej 135, 1. DK-2200 Copenhagen N, Denmark

INTRODUCTION

Stratified-random trawl surveys have earlier been carried out in Denmark Strait in 1989 and 1990 (Lehmann & Kanneworff, 1990; Kanneworff & Lehmann, 1991). In 1992 the survey was planned - as in 1990 - to cover the supposed total distribution area for the stock. The survey in 1989 was concentrated on the female stock component only. The 1992 survey was carried out somewhat later in the year (October 8-26) compared to the former surveys. Due to bad weather and ice cover only 55 out of 81 planned stations were visited.

A special study in a selected area was undertaken to compare biomass estimates from earlier Norwegian surveys (Smedstad, 1990) with the present survey.

The Icelandic authorities kindly granted permission to carry out research in the Icelandic economic zone.

MATERIAL AND METHODS

The survey area (Fig. 1) covered the offshore part of Denmark Strait between $65^{\circ}N$ and $68^{\circ}N$, bordered to the east by the 600 m contour line. Due to scarce information on bottom topography it was not possible to stratify after depth, and hence a stratification by 30*60 minutes geographical areas (Fig. 1) was used.

As in earlier surveys the trawling gear used was a 'SKJERVOY' shrimp trawl, size 3000/20 meshes, equipped with bobbin gear and a double-bag with 44 mm mesh size in the codend. Trawl doors were of the type 'PERFECT GREENLAND, size 370*270 cm.

Distance between trawl doors was measured continuously, and after the survey the wing-spread of the trawl was calculated to 23.1 meters at average. Based on wing-spread, trawling distance, catch of shrimp, and stratum area, an estimate of stratum biomass was calculated for each haul. Based on all hauls in a stratum a mean biomass estimate was calculated.

Four strata (No. 15, 16, 23 and 24) were selected for a special study to investigate the possible reasons for the large differences in the levels of biomass estimates obtained by the Norwegian surveys 1985-89 and the surveys conducted by the Greenland Fisheries Research Institute respectively. In the selected strata all Norwegian fixed trawling sites were visited in addition to a corresponding number of randomly selected stations.

A few trawl hauls were taken at the Icelandic shelf (outside the stratification scheme) in order to compare the shrimps from this area with shrimps from the Dohrn Bank area.

Biological samples were taken from all catches, provided that the catch was not too small or damaged (e.g. mixed with large amounts of sponges). Shrimps were sorted by sexual characteristics, and oblique carapace length was measured to the nearest 0.1 mm.

CTD-casts were made at all trawling sites (Rønnow, 1993).

RESULTS AND DISCUSSION

In total, 59 trawl stations were fished (Table 1, Fig. 2), of which 37 belonged to the stratified-random survey. 22 planned stations, mostly in the northern and the western part of the survey area, were not visited due to ice problems and bad weather. The strata in these areas were thus badly covered, but a very low biomass was indicated by the neighbouring stations.

The calculated total biomass from the stratified-random survey stations was only 1044 tons of shrimp, being the lowest recorded in surveys in this area. The major part of the biomass was found in the central strata (Table 2). The survey in 1990 indicated a total biomass of 1860 tons for the same strata, while the Norwegian surveys in 1985-89 indicated a range from 25 to 50 thousand tons. The present survey is obviously underestimating the biomass of the Denmark Strait shrimp stock. In November-December after the survey period total catches in the commercial fishery were more than 1500 tons. In the survey period, however, catch rates and catches in the commercial fishery were very small (Carlsson and Kanneworff, 1993). During the survey period - which is the only period where ice conditions allow access to all (or most of) the survey area, shrimp are obviously not fully available to the gear, either because they have moved elsewhere - i.e. the survey area is not covering the total stock area - or for other reasons.

- 2 -

- 1

4

The Norwegian surveys during 1985-89 estimated consistently larger biomass levels (Smedstad, 1989) than the Greenland surveys. Possible reasons for the discrepancies have been discussed earlier (Kanneworff & Lehmann, 1991). E.g. may the use of fixed stations, with possible higher shrimp abundance, in the Norwegian surveys have led to overestimation of stock size. During the present survey Norwegian trawling sites from the earlier surveys were visited in the central area (strata no. 15, 16, 23 and 24) in order to test this possibility. Biomass calculations for the four strata based on the Norwegian stations and those from the stratified-random survey are presented in Table 3. The Norwegian stations. It is therefore conceivable that at least part of the large differences in biomass estimates by this phenomenon.

Overall length frequency distributions for the surveys in 1989, 1990 and 1992 were constructed by pooling of samples after weighting with catch and stratum area (Fig. 3). Even though the survey area in 1989 was smaller than in the following years, total numbers (millions) of shrimp decrease over the years:

	males	females	total
1989	231.0	135.4	366.3
1990 - 1992 -	142.6 163.6	85.7 45.3	228.3 209.0

Some significant changes are evident from the total distributions. The male component in 1989 consisted of a broad range of year-classes ranging from 18 to 32 mm carapace length (CL). In 1990 and 1992 the size of the male component seems to depend more on fewer year-classes, and the right side of the distribution has been cut off, indicating that sex change is taking place at a smaller size. The female component is reduced continuously over the three years. Inside the female group there is a change towards smaller size, very large females (32 - 36 mm CL) are almost absent in 1992, while the group of females smaller than 28 mm CL is getting relatively more numerous, confirming the earlier sex change as indicated by the change in largest male size.

Figures 4, 5, and 6 show the calculated numbers of shrimp per stratum in 1989, 1990 and 1992 respectively. Figure 6 shows an increase in total numbers in the western part of the survey area (strata 12, 20, 21, 28, and 29) in 1992, when compared to Fig. 5 (1991), largely due to the occurrence of a substantial amount of males in stratum 20. In stratum 7, the stratum with the highest numbers in 1990, numbers of both males and females have decreased by a factor 10, while abundance has increased in the central strata at the midline to Icelandic waters (stratum 15, 16, 17, 23 and 24). The concentration of shrimp in these strata resembles the distribution encountered in 1989 (Fig. 4), although numbers of males and especially females are much lower in 1992.

By-catches of fish were small in most of the strata (Table 1). Only in stratum 23 any noticeable amount of fish was taken, the main species being capelin, wolffish and polar cod. Large amounts of sponges were caught in many of the strata (especially in no. 5, 7, 9, 15, 20; 23 and 24).

REFERENCES

- Carlsson, D.M. & P. Kanneworff, 1993. The Commercial Shrimp Fishery in the Denmark Strait in 1992 and Early 1993. NAFO SCR Doc. 93/60. Serial No. N2243.
- Kanneworff, P. & K.M. Lehmann, 1990. Report on a Stratified-Random Trawl Survey for Shrimp (Pandalus borealis) in ICES Subarea XIV b. NAFO SCR Doc. 90/58. Serial No. N1779.
- Lehmann K.M. & P. Kanneworff, 1991. Report on a Stratified-Random Trawl Survey for Shrimp (*Pandalus borealis*) in ICES Division XIVb in 1990. NAFO SCR-Doc. 91/52. Serial No. N1935.
- R¢nnow, B, 1993. A short Presentation of Hydrographic Data Sampled during the Shrimp Surveys in 1990 and 1992 in Denmark Strait. NAFO SCR Doc. 93/48. Serial No. N2229.

Smedstad, O.M., 1990. Preliminary Report of a Cruise with M/T HÅKØY-II to East Greenland Waters in September 1989. NAFO SCR Doc. 90/12. Serial No. N1724. Table 1a. List of trawl hauls in the stratified-random survey in the Denmark Strait 1992. Stratum numbers with the extension 'G' and 'I' denote Greenland and Iceland part of a stratum, respectively.

STATION-	ADE N	<u> </u>							-
IDENTIFICATION	AREA- CODE	DEPTH	TR- TIME	SHR	COD	GHL	RED	MIX	TOTAL
92PA0160002 074 92PA0160001 075	KN126 KP127	300.0 323.0	RATUM 60 57	5 0 0	0	0	0	1 3	1 4
92PA0160049 056 92PA0160048 072	KJ106 KL106	51 295.0 582.0	RATUM 60 21	6 0 0	0	0	0	0	0
92PA0160046 068 92PA0160047 073	KK111 KL110	51 225.5 480.0	RATUM 60 60	7 0 7	0	03	1 1	02	. 1 <u>1</u> 12
92PA0160045 065	KJ114		RATUM 49	8 0	0	0	0	1	1
92PA0160033 066 92PA0160034 069	KJ118 KK117	51 330.5 315.5	RATUM 60 60	9 0 0	0	0 0	0 0	.0, 0	 0 0
92PA0160005 067 92PA0160004 070	KJ124 KK124	51 371.0 342.5	RATUM 60 60	10 2 0	0	0	0	2 0	4 0
92PA0160003 071	KL126	558.5	TRATUM 61	11 0	0	0	0.	1	
92PA0160050 053	KF103	366.5	RATUM	12 1	0	1	0	0	2
92PA0160039 051 92PA0160043 057 92PA0160036 058 92PA0160044 061	KE116 KG114 KG116 KH113	51 317.0 289.5 360.0 287.5	TRATUM 60 45 60 60	15 6 0 0 0	0 0 0 0	0 0 1 0	0 0 0 0	1 0 1 0	8 0 2 0
92PA0160038 055 92PA0160031 063	KF117 KH120	51 333.0 339.0	FRATUM 61 46	16 10 2	0 0	20	0 1	1 0	13 3
92PA0160029 059 92PA0160030 064	KG121 KH122	51 365.0 369.5	TRATUM 60 60	17 5 42	Ō.	i	ż	ż	 5 47
92PA0160006 060	KG126	STF 567.5	RATUM 60	18 I 0	0	2	0	1	. 3
92PA0160052 036 92PA0160051 040	J2102 KB101	S1 293.5 350.5	RATUM 29 60	20 3 0	- 0	0	1 0	1 0	 5 1
92PA0160055 044	KD106	337.0	RATUM 60	21 0	0	1	0	2	4
92PA0160015 035 92PA0160019 046 92PA0160021 041 92PA0160022 047	JZ115 KD115 KD116 KD116	51 294.0 312.0 299.0 325.0	FRATUM 60 60 60 60	23 0 6 22 17	0' 0 0 0	00002	1 0 0 0	90 42 6 20	92 48 28 39
.92PS0160024 042	кв117	STH 286.5	ATUM 60	24 G - 6	0	1	0	0	8
92PA0160010 037 92PA0160009 038 92PA0160012 039	JZ119 JZ120 KB119	STF 413.5 472.0 320.5	ATUM 60 60 60	24 I 0 0 7	0 0 0	0 0 0	0. 0 0	2 1 36	3 1 43
92PA0160007 048	KD123	STF 459.0	атим 59	25 I 0	0	0	0	0	0
92PA0160054 025	JT098	321.5	RATUM 60	28 0	0.	0	0	3	3
92PA0160053 029	JV102	320.0	RATUM 44	29 0	0	0	11	8	. 19
92PA0160008 033	JX119	`STF 482.5	ATUM 60	33 I 0	0	2	1	2	4
		• •						- , - -	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•											· -
92PA0160040 010 KE115 307.5 60 47 0 0 2 5 54 92PA0160041 014 KF114 299.0 60 9 0 1 1 2 13 92PA0160042 013 KG113 321.5 60 0 0 0 0 0 2 2 STRATUM 16 92PA0160023 011 KE117 329.0 60 134 1 2 5 7 148 92PA0160027 012 KE119 330.0 60 57 0 6 0 3 67 92PA0160028 016 KF119 314.0 60 4 0 1 0 8 13 92PA0160022 018 KH119 339.0 60 0 0 0 0 0 0 0 0 92PA0160023 011 KE117 329.5 60 1 0 0 0 0 0 0 0 0 0 0 92PA0160023 011 KE117 346.5 60 5 0 3 0 1 8 92PA0160023 016 KF119 314.0 60 4 0 1 0 8 13 92PA0160032 018 KH119 339.0 60 0 0 0 0 0 0 0 0 0 0 92PA0160013 001 JZ116 306.5 60 2 0 1 1 35 38 92PA0160014 004 KA116 306.0 60 1 0 0 39 40 92PA0160012 007 KB115 300.5 60 7 0 0 0 39 40 92PA0160014 004 KA116 306.0 60 1 0 0 1 2 15 STRATUM 24 G 92PA0160025 008 KD117 312.0 60 8 0 0 0 1 2 15 STRATUM 24 G 92PA0160026 009 KD118 327.0 60 30 0 0 1 3 11			 ом		DÉPTH		SHR	сор	GHL	RED	MIX	TOTAL
92PA0160023 011 KE117 329.0 60 134 1 2 5 7 148 92PA0160027 012 KE119 330.0 60 57 0 6 0 3 67 92PA0160027 015 KF117 346.5 60 5 0 3 0 1 8 92PA0160028 016 KF119 314.0 60 4 0 1 0 8 13 92PA0160032 018 KH119 339.0 60 0 0 0 0 0 0 92PA0160013 001 JZ113 295.5 60 1 0 0 180 181 92PA0160013 001 JZ116 306.5 60 2 0 0 68 70 92PA0160017 003 KA113 305.0 60 2 0 0 68 70 92PA0160020 007 KB115 300.5 60 1 0 0 39 40 92PA0160020 007 KB115 300.5 60 13 0 1<	92PA0160 92PA0160	041	014 013	KF114 KG113	307.5 299.0 321.5	60 60 60	47 9 0	Ō	1' 0	10	5 2 0 2	13 0
92PA0160016 002 J2113 295.5 60 1 0 0 180 181 92PA0160013 001 J2116 306.5 60 2 0 1 1 35 38 92PA0160017 003 KA113 305.0 60 2 0 0 0 68 70 92PA0160014 004 KA116 306.0 60 1 0 0 39 40 92PA0160020 007 KB115 300.5 60 7 0 0 0 56 62 92PA0160018 006 KD113 329.5 60 13 0 0 1 2 15 STRATUM 24 G 92PA0160025 008 KD117 312.0 60 8 0 0 0 3 11 92PA0160026 009 KD118 327.0 60 30 0 0 1 31	92PA0160 92PA0160 92PA0160	027 037 028	012 015 016	KE119 KF117 KF119	329.0 330.0 346.5 314.0	60 60 60 60	134 57 5 4	000	2 6 3 1 0	5 0 0 0 0	7 3 1 8 0	67 8 13
92PA0160025 008 KD117 312.0 60 8 0 0 0 3 11 92PA0160026 009 KD118 327.0 60 30 0 0 0 1 31 STRATUM 24 I	92PA0160 92PA0160 92PA0160 92PA0160	0013 0017 0014 0020	001 003 004 007	JZ116 KA113 KA116 KB115	295.5 306.5 305.0 306.0 300.5	60 60 60 60	1 2 1 7	0000	0000	1 0 0	35 68 39 56	38 70 40 62
					312.0	60	8				3 1	11 31
	92PA0160	011	005	KA118				0	0	0	33	43

Table 1b. List of trawl hauls of the Norwegian fixed stations in four selected strata.

Table 2. Biomass of shrimp in Denmark Strait based on stratified-random stations only. Stratum numbers with the extension 'G' and 'I' denote Greenland and Iceland part of a stratum, respectively.

STRATUM	SQKM	BIOMASS IN STRATA									
•		TONS	HAULS	STD	MIN	MAX					
5 .	2338	3.0	2	1.8	2	4					
6	2387	3.1	2	4.4	0	6					
7	2387	.77.6	2	109.8	0	155					
8	2387	0.0	1	•	0	0					
9	2387	0.0	2	0.0	0	. 0					
10 .	2387	23.9	2	33.8	0	48					
11	1262	0.0	1	•	0	0					
12	2437	13.3	1	•	13	13					
15	2437	35.8	4	67.0	0	136					
16	2402	145.2	2	136.9	48	. 242					
17	1201	291.8	2	337.3	53	530					
18 I	1358	0.0	1	•	0	0					
20	2487	· 112.2	2	154.9	3	222					
21	2487	7.5	. 1	•	. 7	. 7					
23	2379	230.8	. 4	189.2	10	389					
24 G	512	30.4	1		30	30					
24 1	1975	52.0	3	88.0	0	154					
25 I	2273	0.0	. 1	•	. 0	. 0					
28	2536	2.9	1		3	3					
29	2536	12.4	. 1	•	12	12					
33 I	884	1.8	1		2	2					
TOTAL	43439	1044									

Table 3a. Biomass estimates in four selected strata based on Norwegian fixed stations.

STRATUM SQKM		BIOMASS IN STRATA								
		TONS	HAULS	STD	MIN	MAX				
15	2437	305.0	4	492.0	4	.1033				
16	2402	826.7	5	1136.8	. 3	.2629				
23	2379	129.7	6	183.4	18	486				
24 G	512	80.9	2	65.5	35	127				
24 I	1975	206.4	1		206	206				
TOTAL	9705	1549								

Table 3b. Biomass estimates in four selected strata based on stratified-random stations.

STRATU	I SQKM	BIOMASS IN STRATA								
		TONS	HAULS	STD	MIN	MAX				
15	2437	35.8	4	67.0	0	136				
16	2402	145.2	. 2	136.9	48	242				
23	2379	230.8	4	189.2	10	. 389				
24 G	512	30.4	1		30	30				
24 I	1975	52.0	3	88.0	0	154				
TOTAL	9705	494								

Table 4. Numbers of shrimp (thousands) per length group (carapace length) in total biomass estimate in 1989, based on pooling of individual samples weighted by catch and stratum area.

CPL	Males	Prim. fem.	Mult. fem.	Total
122.5050505050505050505050505050505050505	$\begin{array}{c} 54\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 110\\ 233\\ 274\\ 3692\\ 1246\\ 1786\\ 1786\\ 1286\\ 1793\\ 3867\\ 5081\\ 6027\\ 6064\\ 7834\\ 8432\\ 9692\\ 10277\\ 9612\\ 10041\\ 11586\\ 10731\\ 11832\\ 10277\\ 9412\\ 10041\\ 11586\\ 10731\\ 11859\\ 16376\\ 15955\\ 11832\\ 9174\\ 5884\\ 2511\\ 1208\\ 393\\ 19\\ 9174\\ 5884\\ 2511\\ 1208\\ 393\\ 10\\ 36\\ 36\\ 30\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$\begin{array}{c} 54\\ 0\\ 0\\ 0\\ 0\\ 0\\ 4\\ 110\\ 233\\ 2774\\ 3692\\ 12866\\ 17866\\ 31679\\ 38671\\ 50827\\ 602276\\ 85787\\ 905947\\ 102336\\ 115244\\ 1702605\\ 12336\\ 1152444\\ 17026058\\ 1996227\\ 2093852\\ 1996225\\ 19962058\\ 19960558\\ 1996058\\ 1996058\\ 19962058\\ 19962058\\ 19962058\\ 19962058\\ 1$
LIUCAL	230910	500	134/35	3062/3

Table 5. Numbers of shrimp (thousands) per length group (carapace length) in total biomass estimate in 1990, based on pooling of individual samples weighted by catch and stratum area.

- 6 -

				· · · · · · · · · · · · · · · · · · ·
				x.
•			,	
		- 7 -		
			•	·
Table	6. Numbers of shrimp total biomass estimat weighted by catch and	(thousands) per lengt e in 1992, based on r stratum area.	h group (carapace booling of individ	length) in lual samples

	CPL	Males	Prim. fem.	Mult. fem.	Total
	9.50505050505050505050505050505050505050	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 5\\ 5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 5\\ 0\\ 0\\ 0\\ 24\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
· ·	Total	163644	450	44940	209034

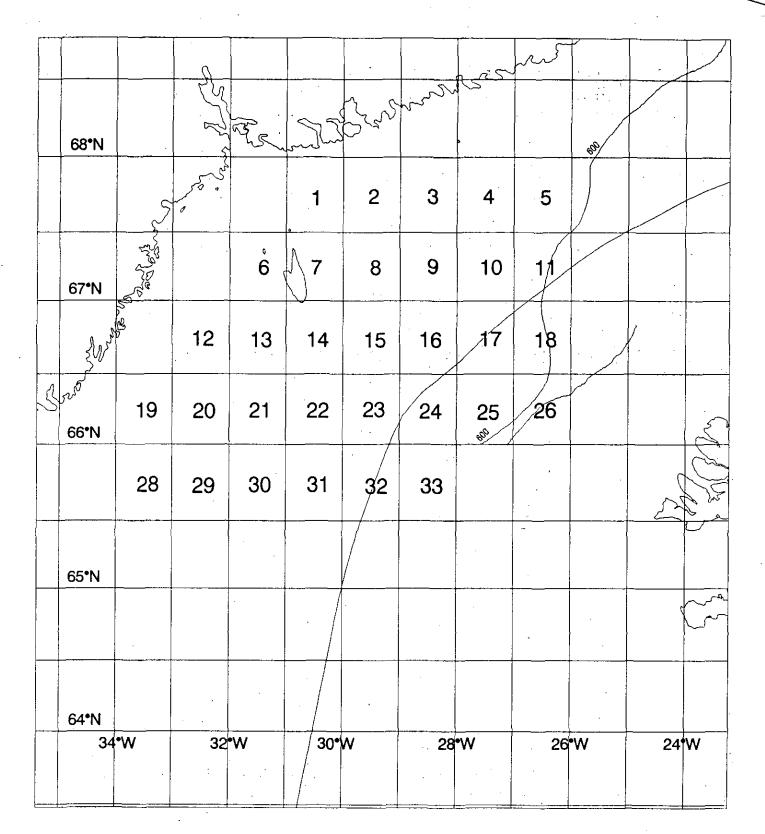
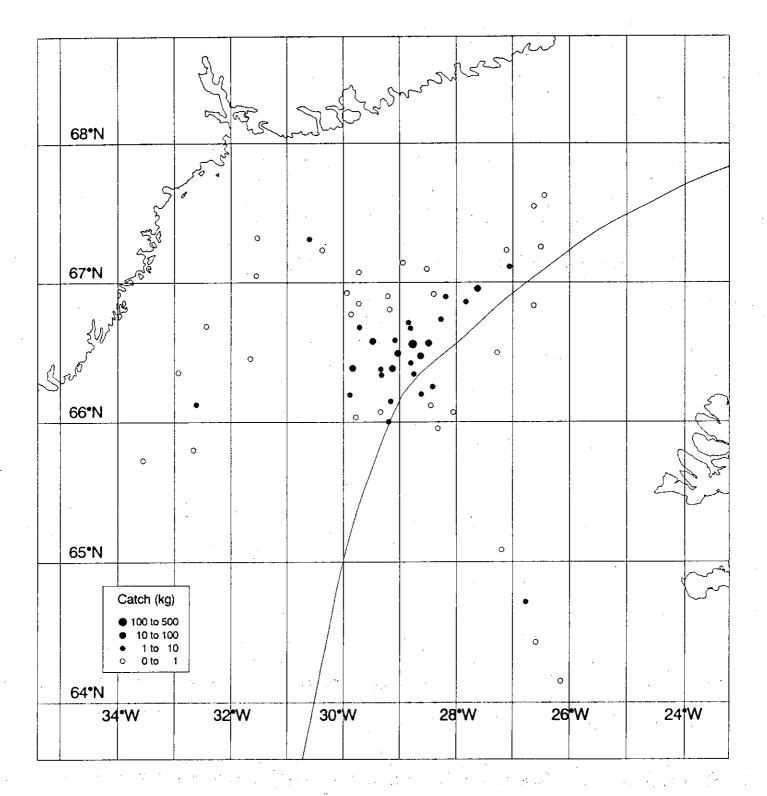
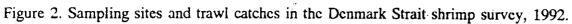




Figure 1. Stratification scheme for the Denmark Strait shrimp survey in 1992. Stratum numbering, the 600 meter depth contour, and the midline are shown.

- 8 -

- 9 -

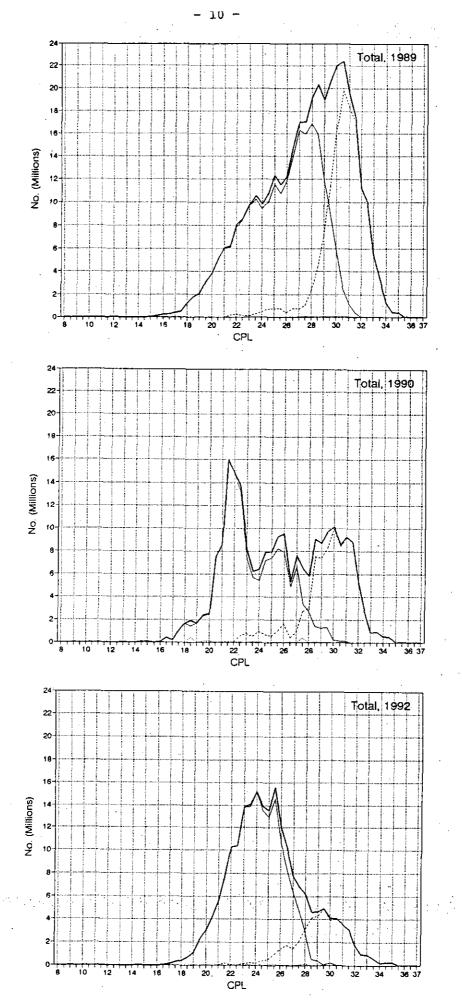


Figure 3. Numbers of shrimp by length group (CL) in the total survey area in 1989, 1990 and 1992, based on pooling of samples weighted by catch and stratum area.

_	<u></u>								1 .	
		24			2	~~~~			· · · ·	
		کر ک		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
68 ° N		ورجر	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-Jul	7,7	-	-			
00 14	<u></u>	2-2-2- 2-2-	~	1	2	3	4	5	j <u> </u>	
		50.								
	5	0								
			6	7	8	9	10	11		
	En la			· ·	10.0	4.8	1.6	0.0		
	England	· · ·			5.9 15.9	1.5 6.3	1.9 3.6	0.0	1	
67 * N	50	12	13	14	15.9	16		18		· ·
-	Ê			10.9	52.1	56.3	41.7			
المجرار الج			× .	2.5	26.4 78.6	28.8 85.1	22.9 64.9		·	
	19	20	21	13.4	23	24		26		
525	13	20	2.0	4.3	13.1	25.7	0.5	20		
	· · · ·		1.1	1.9	9.1	23.5	2.2			
66 ° N	28	29	3.1	6.2 31	22.1/	<u>49.2</u> <u>33</u>	2.,7			
	20	0.5	6.8	0.7	32 0 /0·			•.	:	
1		1.2	5.8	0.5	. 0.0			•		
		1.7	12.6	1.2	0.0	i	•			<u> </u>
					/					
65 ° N					/					
				/	.					
				/						
				· /					• -	
										;
64 • N			<u></u>	<u> </u>						
34	•W	32	w	/ 30•	N	28	•W ·	-26	-W	2

Figure 4. Calculated numbers of shrimp (males, females and total, in millions) per stratum in 1989.

- 11 -

- 12 -

<u></u>				<u> </u>						
68 • N		22 Provent	(Proversion of the second s							
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	o o o		1 0.5 0.1 0.6	2 0.0 0.0 0.0	0.0 <u>0</u> .0 0.0	0.0 0.0 0.0	0.0		
67 <b>•</b> N	and but	10	1.0	102.0 63.0 165.0	0.0 0.0 0.0	0.4 0.2 0.6	0.0 0.0 0.0	11 0.0 0.0 0.0 18	÷	
	6 L.	12 0.4 0.2 0.6	13 0.4 0.3 0.6	0.0 0.0 0.0	2.1 1.7 3.7	19.4 10.5 30.0	2.7 1.6 4.3	0.0		
جری 66 <b>•</b> N	19 0.0 0.0 0.0	20 2.7 0.5 3.2	21 0.6 0.3 0.9	22 0.0 0.0 0.0	23 0.3 0.1 0.4	24 8.1 4.2 12.3	2.5	26 0.0 0.0 0.0		
0.0 0.0 0.0	28 0.0 0.0 0.0	29 1.2 0.1 1.3	30 0.3 0.0 0.3	31 0.2 0.8 1.0	32 0.0 0.0 0.0	33 0.0 0.0 0.0		•		
0.0 0.0 0.0 65•N								· · · · · · · · · · · · · · · · · · ·		
64 <b>•</b> N										
34	•₩	32	•W [,]	/ 30*	W	28	•W	26	•W .	2

Figure 5. Calculated numbers of shrimp (males, females and total, in millions) per stratum in 1990.

							225			
68 <b>*</b> N		2 Proventing	F.C.		() 22 23	r r r	Ą			
	S	- oo		1	2	3	4	5 0.0 0.2 0.2		
67 <b>°</b> N	and bull		6 0.7 0.1 0.8	6.6 4.6 11.3	8 0.0 0.0 0.0	0.0 0.0 0.0	2.6 1.9 4.2	0.0 0.0 0.0		
El Mar	her	12 1.3 0.1 1.4	13	14	19.5 2.1 21.6	52.6 13.6 66.2	49.3 5.3 54.7	18 0.0 0.0 0.0		
^{جریر (} 66•N	19	20 17.0 2.2 19.2	21 0.4 0.1 0.5	22	23 5.7 6.1 11.8	24 7.5 8.7 16.1	25	26		
	28 0.0 0.0 0.0	29 0.4 0.5 0.9	30	31	32	33 0.1 0.1 0.1				2
65 <b>•</b> N										
				. /						-
64 <b>•</b> N										
34	•W	32	•W	/ 30*	W	28	•W	26	•W _	2

Figure 6. Calculated numbers of shrimp (males, females and total, in millions) per stratum in 1992.