NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2254

NAFO SCR Doc. 93/70

SCIENTIFIC COUNCIL MEETING - JUNE 1993

Stratified-Random Trawl Survey for Shrimp (Pandalus borealis) in NAFO Subarea 0+1 1992.

bv

D. M. Carlsson and P. Kanneworff

Greenland Fisheries Research Institute, Tagensvej 135, 1. DK-2200 Copenhagen N, Denmark

and

D.G. Parsons

Science Branch, Department of Fisheries and Oceans P.O. Box 5667, St. John's, Newfoundland, Canada, AlC 5X1

INTRODUCTION

In July-August 1992 a stratified-random trawl survey was carried out in NAFO Divisions 1A through 1E and a part of Subarea 0 with the scope of assessing the trawlable biomass of the offshore shrimp (*Pandalus borealis*) stock in Davis Strait, and to collect information on the composition of this stock.

The survey was carried out in almost the same area as similar surveys in 1988-91, however, data from a stratified-random survey in September 1992 covering the Divisions IE and IF have been included in the estimation of the total trawlable biomass in Subarea 1 offshore and adjacent parts of Subarea 0.

MATERIALS AND METHODS

The July-August survey was carried out in the offshore area between $61^{\circ}52'5N$ and $72^{\circ}30'N$ from the 3-mile limit off the Greenland coast in depths between 150 m and 600 m including that part of Subarea 0 which is adjacent to the shrimp areas in Subarea 1 (Fig. 1). The September survey ranged from $63^{\circ}52'5N$ in the north to Cape Farewell, overlapping in stratum W6 with the former survey.

The surveys were conducted with a 722 GRT stern trawler as earlier used (Carlsson & Kanneworff, 1992). Also, the same trawling gear was used (Skjervoy 3000/20 with bobbin gear and a double-bag with 44 mm mesh size in the codend). Trawl doors were of the type 'PERFECT GREENLAND', size 370*250 cm, weight 2420 kg.

SCANMAR equipment was used to measure the distance between the trawl doors. Taking into account information on the rigging of the trawl the mean wingspread was estimated to 23.1 meters by The Danish Institute of Fishing Technology (U.J. Hansen, pers.comm.).

The duration of the hauls was held as close as possible to 60 minutes. In order to minimize the influence of vertical migration of shrimp all trawl operations were planned to be carried out only in the daytime (0900-1900 UTC).

In the area south of $69^{\circ}30'N$ the stratification was made on basis of depth contours. This area was divided into subareas (Fig. 1), and each of these was further divided into four depth strata (150-200 m, 200-300 m, 300-400 m and 400-600 m). Due to scarce information on bottom topography the area between $69^{\circ}30'N$ and $72^{\circ}30'N$ was divided into separate shrimp grounds as defined by the distribution of the fishery. Depth stratification of the areas south of W7 (Julianehaab Bay) was made on basis of less precise depth information than for areas W1-W7. Two depth strata were identified, 100-200 m and 200-600 m.

A time frame of approximately five weeks for the first trawl survey and two weeks for the September-survey was set, and hence 134 hauls were taken within the shrimp stratification scheme (150-600 meters depth range) with trawling operations in the day-time only (Fig. 2). In Julianehaab Bay 16 trawling sites were occupied covering an area of 12,500 km². In the main survey area the coverage was about 750 km² per haul. In some of the strata in the northern area a lower coverage was accepted, being areas with very low shrimp densities. The average coverage in those strata was thus about 1400 km².

Hauls were allocated to the strata proportionally to area. However, a minimum of two hauls per stratum were always scheduled, so additional hauls were placed in some of the smaller strata. Within the strata trawling sites were chosen at random according to the NAFO 'Manual of Groundfish Surveys in the Northwest Atlantic' (Doubleday, 1981). The mean biomass with standard deviation by stratum was calculated by the swept area method, assuming a catchability coefficient of 1. Sums of the calculated biomasses were made by region north of $69^{\circ}30'N$, south of $69^{\circ}30'N$ in the Greenland zone, and the Canadian zone, respectively).

2 -

Based on data from 1988-91 a new method was introduced for describing the distribution of shrimp biomass in the area south of 69°30'N by Carlsson & Kanneworff (1992). Shrimp densities in the depth range 150-600 meters were estimated on basis of the survey stations by the computer programme 'Spline Survey Designer Software System' (Stolyarenko, 1987), and maps with isolines for different levels of the estimated 1992-density were produced for the present paper.

Shrimp samples were taken from all catches, provided that the catch was not too small or damaged. Shrimps were sorted by sexual characteristics, and oblique carapace length was measured to the nearest 0.1 mm and afterwards pooled in 0.5 mm groups. Samples were weighted by catch and stratum area to obtain estimates of total number of shrimp by sex and length group for each stratum and for the total survey area.

Abundance estimates at length for male shrimp, derived from the research trawl survey samples from 1988 to 1992 (Fig. 5), were analyzed for age composition according to the methods used by Parsons and Veitch (1991). Tables were constructed for mean lengths, proportions and abundance at age, the last including a composite female age group. Estimates of total mortality (Z) also were derived for age 5+ and 6+.

RESULTS AND DISCUSSION

Shrimp catches from the trawl hauls (Table 1-2) were used to estimate the trawlable biomass for all strata. Table 3 gives the biomass estimates for all strata in the three regions based on data from the July-August survey, and Table 4 shows estimates from the September survey in strata W6-W7 and the Julianehaab Bay.

Calculation of the trawl swept area is heavily dependant on the trawl geometry in terms of wing spread and shape of the trawl opening. A trawl positioning system (SCANMAR) has been used during the trawl surveys in order to estimate the wing spread directly. However, only in 1989 the sensors were placed at the wings, while in 1988, 1991 and 1992, the sensors were mounted on the trawl doors. The system did not function in 1990. A retrospective study on the various riggings of the trawl during the five years has been undertaken, taking into account the door types, length of the sweep lines, trawling speed, and the available distance measurements (U.J. Hansen, Danish Institute of Fisheries Technology, pers. comm.). New estimates for the effective wing spread have been obtained and included into the biomass calculation programme. The following text table shows the revised figures for the wing spread at the bottom together with the estimated trawl opening area and the estimated height above the bottom of the headline.

	Year	Wing spread Op m	ening area m²	Headline height m	
	1988	23.1	278	15.5	
•.	1990	23.1	282	15.7	ł
	1991 1992	24.8 23.1	286 287	14.9 16.0	ŀ

Some uncertainties about the 1989-estimates still remain due to fishing with a different type of trawl door (BMW, oval type) than in the other years, and lack of reliable information on the overall rigging of the trawl that year. This situation is unfortunate for the understanding of the sampling performance of the trawl, especially as the first appearance of the strong 1985 year class in survey catches was in 1989. Recalculation of the biomass estimates for the period 1988-91 caused only small changes in total values, the difference between 1989 and the other years becoming less pronounced.

When comparing the size of the estimated total biomass from the trawl surveys of the five years (Table 5, Fig. 3) a fairly stable situation is indicated, except for 1991 when a significantly lower total biomass was estimated.

The estimated biomasses for the strata W1-W3 and C1+C3 have been fairly stable through all five years. The observed increased value for C3 in 1992 was caused by one large catch of 1200 kg (Table 1). As was the case in 1989 and 1991 a larger part of the stock was found this year in the southern areas around Sukkertoppen Deep and Godthaab Deep. The steady decline in biomass in the northernmost areas (N1-N7) from 1988 to 1991 did not continue into 1992. During the present survey relatively good catches were taken, mainly in N4, being the most important area for the commercial fishery north of 71°N throughout the years.

Information on the significant changes in stock abundance between areas from year to year can be obtained by analyzing figures for the proportion of biomass in different strata relative to the annual totals (Table 6). In 1992, the stock was more concentrated than observed in earlier years in depths between 300 and 400 meters (60% of the stock, Table 7), however, one larger catch was taken in shallow water in the northern part of W6, dominated by small shrimp.

By means of the 'spline' computer programme (Stolyarenko, 1987) the shrimp densities have been calculated in order to visualize distribution of stock concentrations (Fig. 4). Similar calculations were carried out by Carlsson & Kanneworff (1992) for the years 1988-91. The concentrations in the most important area for the commercial fishery between 68° and 69°N remained stable, and the earlier observed southern displacement of the stock from 1990 to 1991 has continued in 1992.

Overall length-frequency distributions of shrimp for the traditional survey area (strata N1-N7, C1, C3, W1-W6) in 1988-92 are given in Fig. 5. The text table below shows total numbers of males and females as calculated by year. Different from the table given by Carlsson and Kanneworff (1992) for 1988 to 1991 the female group is not separated in primiparous and multiparous females, as the surveys are conducted in the period when primiparous female shrimp begin to loose sternal spines prior to spawning, and the relative proportion of the two groups cannot be estimated with confidence.

No. of shrimp (billions)	1988	1989	1990	1991	1992
males females	23.9 10.0	32.9 6.4	22.4 8.2	14.0 5.3	24.9 6.5
Total	33.8	39.3	30.6	19.2	31.3

The table shows an increase in numbers of both males and females from 1991 to 1992 and an increase in total number of shrimp to the level of 1988 and 1990. The overall 1992 distribution suggests that the increasing number of males is in part due to recruitment of the 1987 year class (19.5 mm CL), and - less important - the 1989 year class (15.5 mm CL).

Figures 6a-c show length frequencies by stratum in 1991 and 1992. The strata north of $69^{\circ}30'N$ are combined (stratum NW = N1-N4, NS = N5-N7), as are strata on the Canadian side of the midline (stratum C = C1+C3). Overall frequencies for stratum NW, NS, and C show increasing numbers of both males and females in 1992, males peaking at 19.5, 21 and 22-23 mm CL in NW, at 23.5 mm CL in NS, and at 19.5 and 22.5 mm CL in C. In strata W1 to W6 shrimp abundance is increasing to the north (W1+W2) and to the south (W5+W6), but decreasing in W3 and W4. In W1 and W2 a prominent peak of males is found at 22 mm CL, smaller male groups being present but not numerous. In W5 and W6 the increase is occurring in the smaller male groups, in W6 especially a length group peaking at 17.5 mm CL, probably the 1988 year class.

Ageing of the overall length distributions produced estimates of mean length at age (Table 9) similar to those obtained from a previous ageing study by Savard et al. (1989). The estimates were also consistent with the results of Parsons and Veitch (this meeting) for the fishery in Div. OA and the analysis by visual examination of the same distributions of 1988 to 1991 as described by Carlsson and Kanneworff (1992).

Proportions at age (Table 10) show the relative strength of the 1985 year class in 1989, 1990 and 1991. The year class was not well-represented as age 3 in the 1988 survey and was expected to change sex between 1991 and 1992.

Abundance at age estimates (Table 11) track the 1985 year class well up to 1991, but in 1992 suggest that the presumed 1986 year class is also strong and the 1985 year class not as abundant as expected. It can not be justified whether this is due to consistent differences in availability of different year classes to the survey gear, or whether the 1985 year class did not fulfil the expectations of growth and transition to primiparous females in 1992. A possible interpretation of the 1992 overall distribution is that only part of 1985 year class (the larger, fast-growing specimens) did change sex in 1992, while the smaller slowgrowing specimens remained males. The length frequency distribution of the remaining male component might then superimpose the 1986 year class, which is assumed to be poor - as indicated by the analysis of 1988-91 overall distributions. This scenario (as described by Rasmussen, 1953), implies that a representative separation of the year classes is not possible by the method used.

Total mortality estimates (Z) calculated from this study indicate that shrimp are not fully recruited/available to the research gear and/or survey area at age 5. Estimates for age 6+ appear more realistic except for 1990.

CONCLUSIONS

The total biomass estimate from the stratified trawl surveys indicate a general stable situation from 1988 to 1992, apart from a lower level found in 1991 (about 65% of the overall level). The biomass in the areas north of 69°30'N exhibit a significant decrease in 1988-91, and an increase to the 1988-level in 1992, in accordance with higher catch rates and catches in 1992 (Carlsson and Kanneworff, 1993).

Some consistency has been found with regard to the progression of identifiable size groups of shrimp between years. In 1989 a significant recruitment of the 1985 year class (19.5 mm CL) to the survey was obvious. Recruitment of other year classes was low, especially in 1991. The 1985 year class was expected to contribute significantly to the group of primiparous females in 1992 with a mean carapace length at 24 to 25 mm. 1992 data do, however, suggest a strong component of males between 22 and 24 mm CL, and less then expected recruitment to the female group.

These anomalies suggest that either the 1985 year class was overestimated in past

surveys (1986 year class underestimated) or that the former did not change sex, as expected, resulting in the apparently high abundance at age 6 in 1992 (two year classes overlapped in length). Both cases might also apply.

The 1992 survey data show recruitment of the 1987 year class, although this year class does not appear to have the same strength as the 1985 year class. Some recruitment of the 1988 year class is indicated in Div. 1D (stratum W6), but in the overall picture the relative strength this year class diminishes. Also the 1989 year class mode is evident in the 1992 data. It is, however, too early to evaluate its strength.

REFERENCES

- Carlsson, D.M. & P. Kanneworff, 1989. Report on a stratified-random trawl survey for shrimp (*Pandalus borealis*) in NAFO Subarea 0+1 in July 1988. NAFO SCR Doc. 89/40. Serial No. N1617.
- Carlsson, D.M. & P. Kanneworff, 1990. Report on a stratified-random trawl survey for shrimp (Pandalus borealis) in NAFO Subarea 0+1 in July-August 1989. NAFO SCR Doc. 90/46. Serial No. N1763.
- Carlsson, D.M. & P. Kanneworff, 1991. Report on stratified-random trawl surveys for shrimp (*Pandalus borealis*) in NAFO Subarea 0+1 in July-August 1990. NAFO SCR Doc. 91/70. Serial No. N1954.
- Carlsson, D.M. & P. Kanneworff, 1992. Report on stratified-random trawl surveys for shrimp (*Pandalus borealis*) in NAFO Subarea 0+1 in July-September 1991 and a comparison with earlier surveys. NAFO SCR Doc. 92/67. Serial No. N2121.
- Doubleday, W.G. (Ed.), 1981. Manual of groundfish surveys in the Northwest Atlantic. NAFO Sci. Coun. Studies, 2:7-55.
- Lehmann, K.M. & H. Degel, 1991. An estimate of shrimp discard from shrimp factory trawlers in Davis Strait and Denmark Strait. NAFO SCR Doc. 91/40. Serial No. N1920.
- Parsons, D.G. & P.J. Veitch, 1993. The Canadian Fishery fro Northern shrimp (Pandalus borealis), 1979-1992. NAFO SCR Doc., in print.
- Rasmussen, B., 1953. On the geographical variation on growth and sexual development of the deep sea prawn (*Pandalus borealis*, Krøyer). Fisk.Dir.Skr.Ser.Havunders. 10(3): 1-160.
- Savard, L, D.G. Parsons and D.M. Carlsson, 1989. Age and growth of northern shrimp (Pandalus borealis) in Davis Strait (NAFO SA 0+1). NAFO SCR Doc. 89/94. Serial No. N1694.
- Stolyarenko, D.A., 1987. The spline approximation method and survey design using interaction with a microcomputer: Spline Survey Designer Software System. ICES C.M. 1987/K:29, 24pp.

Table 1a. List of trawl stations in strata west of the midline, and north of 69°30'N in the Davis Strait survey, July-August 1992. Catches are given in kg.

.

STATION- IDENTIFICATION	AREA- CODE	DEPTH	TR- TIME	SHR	COD	GHL	RED	MIX	TOTAL
			STE	RATUM C1-3					
92PA0120058 056	KX437	326.0	60	46	0	3	2	6	56
92PA0120057 058	KZ435	372.5	60	488	Ó	26	169	31	714
02010120050 052	UV 424	557.0	STE	RATUM C1-4	~	. 12	2.0	-	4.0
92PA0120059 055 92PA0120056 063	LA434	556 0	60 60	1 7	0	10	32 12	3	48
							+ e		20
			STF	RATUM C3-2					
92PA0120061 047	KT437	276.5	60	. 2	0	1	0	2	5
92PA0110039 050	KV439	289.0	62	53	0	1	. 3	2	59
· · ·			STE	RATUM C3-3					
92PA0120062 045	KT438	348.0	60	1198	0	9	19	13	1238
							- <u>-</u>		
			STI	RATUM C3-4	_		_		
92PA0120063 040	KP437	519.0	60	0	0	10	4	3	17
92PA0120060 051	K1435	336.5	6U			10	6	4	21
			SI	TRATUM N1					
92PA0120032 115	MM005	268.5	34	3	0	5	0	15	23
92PA0120029 116	MN001	358.0	60	46	0	2	0	71	119
92PA0120030 118	MN003	314.0	60	38	Q	2	0	29	69
92PA0120028 117	MN439	306.5	61 60	120	0	3	0	_3	6
92PA0120031 119		399.3				86 		31 	245
			SI	TRATUM N2					
92PA0120023 108	MB437	379.0	60	90	0	3	0	13	107
92PA0120043 109	MD003	308.0	56	13	0	0	0	5	19
92PA0120034 112	MH003	229.0	30	0 -	0	0	0	0	0
92PA0120035 113	MHUUS	164.0	6U 60	0	0	0	0	2	2
52FA0120035 114		103.3		·				5	J
			SI	TRATUM N3					
92PA0120037 110	MF007	283.5	60	46	0	0	0	3	50
92PA0120036 111	MG008	186.0	61	0	0	0	0	1	1
92220120041 105	MB007	379 5	60	FRATUM N4	n	7	0	110	200
92PA0120040 106	MB010	355.5	60	277	ត	าร์	ñ	77	371
92PA0120042 107	MD005	317.5	60	280	ō	1	ō	30	311
02010120010 089	T N A 3 G	344 5	51 60	TRATUM N5	· •	1	,	1.0	
92PA0120019 089	LR437	344.5	60	1	0	1	1	70 T0	ΤĘ
92PA0120021 095	LS437	411.5	60	20	ŏ	2	i	15	
92PA0120022 094	LS439	361.5	60	134	ŏ	4	4	39	181
92PA0120044 100	LX440	502.5	60	0	0	1	0	2	3
92PA0120026 102	LZ440	451.5	60	124	0	21	1	37	183
92PA0120024 103	MA43/	366.5	58	0	0	0	0	0	Õ
92PA0120025 104	MA439	350.5						4	5
			ST	TRATUM N6					
92PA0120051 092	LS003	365.5	60	50	0	9	5	38	101
92PA0120049 091	LS005	261.5	60	Ō	Q	0	0	0	0
92PAU120048 093	LS008	167.5	52	0	0 0	0	0	0	0
92PAUL20045 099 92PA0120050 007	T2002	464.0	6U 60	1 77	0	4 ว	4	14	22
92PA0120027 101	LZ002	473.0	61	57 60	0 n	3 24	1	19	102
							·	·	
			SI	FRATUM N7					
92PA0120047 096	LS011	174.5	60	Õ	ō	. <u>o</u>	0	4	4
92PA0120046 098	LT011	191.0	60	U	0	0	0	10	10

- 5 -

2 J. 14 - 1 4 - 14

Table 1b. List of trawl stations in strata between 67°00'N and 69°30'N, east of the midline in the Davis Strait survey, July-August 1992. Catches are given in kg.

STATION- IDENTIFICATION	AREA- CODE	DEPTH	TR- TIME	SHR	COD	GHL	RED	MIX	TOTAL
92PA0120065 080 92PA0120011 085 92PA0120016 082	LG012 LH005 LH007	167.0 185.0 167.0	ST 60 60 60	RATUM W1-1 0 0 0	0 0 0	0 1 0	0 0 0	1 1 0	1 3 0
92PA0110047 073 92PA0120064 071 92PA0120013 076 92PA0120012 085 92PA0120014 081 92PA0120017 087 92PA0120015 084	LD006 LD007 LF004 LG004 LG005 LJ003 LJ010	240.0 204.0 228.0 216.5 225.0 210.5 214.5	ST 60 26 60 60 60 60	WRATUM W1-2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	10 0 2 0 0 1 3	10 0 3 0 0 1 3
92PA0110041 052 92PA0120008 067 92PA0110044 064 92PA0110048 061 92PA0120007 062 92PA0120055 069 92PA0120055 069 92PA0120009 075 92PA0120010 077 92PA0120053 083	KX002 LA001 LA002 LA007 LA439 LB005 LB437 LD004 LE440 LF440 LG438	384.5 319.5 343.0 378.5 348.5 314.5 365.5 322.0 311.5 305.0 333.5	ST 60 60 62 64 60 61 60 60 60 61 60	RATUM W1-3 160 174 256 721 159 870 239 341 140 6 276	2 0 0 0 1 0 0 0 0 0 0 0	17 12 25 77 31 49 3 50 8 2 1	20 7 36 58 165 21 13 39 12 0 4	6 26 31 18 24 181 21 65 64 7 19	205 219 347 874 379 1121 276 495 223 15 300
92PA0120054 074 92PA0120052 086	LE436 LH438	559.0 420.5	51 60 60	TRATUM W1-4 0 216	1 0 0	5 17	62 142	3 19	70 393
92PA0120067 070 92PA0120069 078	LD014 LF015	166.0 159.0	51 61 60	RATUM W2-1 0 0	0 0	0 0	0 1	1 7	2 8
92PA0110050 066 92PA0110053 060 92PA0120066 079	LA011 LA014 LF013	272.0 294.5 215.0	57 60 .60 60	1784 TUM W2-2 833 230 0	2 0 0 0	1 17 0	5 23 0	15 12 1	853 281 1
92PA0110051 059 92PA0110055 054	KZ014 KZ015	305.0 340.0	51 60 60	TRATUM W2-3 887 212	3 0 0	28 8	40 3	2 6	956 230
92PA0110054 057 92PA0110052 065	KZ015 LA016	503.0 534.0	51 60 62	FRATUM W2-4 331 739	4 0 0	52 73	13 14	10 35	407 860
92PA0110032 033 92PA0110033 035 92PA0120003 043	KL007 KM006 KS006	160.5 181.0 158.0	50 50	TRATUM W3-1 0 0 0	L 0 0 0	0 0 0	0 0 0	2 2 0	2 2 0
92PA0120006 036 92PA0110031 034 92PA0120005 038 92PA0120005 037 92PA0110034 039 92PA0120004 041	KL004 KL005 KM001 KM002 KN004 KR005	223.5 219.0 239.5 229.5 221.0 229.0	52 60 62 60 60 60 60	IRATUM W3-2 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0	0 0 0 0 0	2 10 2 1 1 3	2 10 3 1 1 3
92PA0120001 032 92PA0110036 042 92PA0110037 044 92PA0110043 048	KJ006 KR440 KS439 KV003	363.0 315.0 373.5 386.5	S7 60 60 60 61	IRATUM W3-3 888 958 474 1052	3 0 0 0	4 2 31 45	866 38 35 156	2 9 5 7	1759 1006 544 1260
92PA0120002 031 92PA0110038 046 92PA0110040 049 92PA0110042 055	KK004 KT439 KV001 KX004	517.5 413.5 425.0 411.5	57 60 64 63 60	FRATUM W3-4 6 295 47 177	1 0 0 0 0	10 34 7 49	50 78 4 97	6 2 0 5	71 409 57 328

Table	1c.	List	of	trawl	station	ns in	strata	between	61°52′	'5N and	d 67°00′	N in the
	Davi	is Str	rait	surve	ey, July	/-Augi	ust 1992	2. Catche	es are	given	in kg.	• •

STATION- IDENTIFICATION	AREA- CODE	DEPTH	TR- TIME	SHR	COD	GHL	RED	MIX	TOTAL
			ST	RATUM W4-1					
92PA0110020 021	32010	190.5	60	0	0	٦	0	· 1	۵
92PA0110021 022	KA009	178.5	60	õ	õ	ŏ	ŏ	· 1	1
92PA0110026 024	KB009	198.0	60	0	ō	ŏ	ō	5	5
92PA0110029 029	KE008	166.5	63	0	0	Ó	Ō	ĩ	ĩ
92PA0110028 028	KE009	167.0	- 60	0	0	0	0	7	$\overline{\gamma}$
			ST	RATUM W4-2					,
92PA0110025 023	KB007	278.5	64 60	0	0	1	1	. 6	8
								⊥ 	
			ST	RATUM W4-3					
92PA0110023 027	KD007	358.0	63	1701	0	0	331	2	2034
92PA0110030 030	KH007	338.0		821	0		31	2	862
83880110033 030	12007	E 7 2 0	ST	RATUM W4-4	•	_			
92PA0110022 020 92PA0110024 026	KD006	479 5	58	0	2	20	8	. 4	11
								·	
A000 011004 0 010			ST	RATUM W5-1	_	-			
92PA0110013 017	JL020	154.5	60	0	0	. 0	0	1	1
92PA0110019 019		1/1.5				U 		0	1
			ST	RATUM W5-2					
92PA0110009 009	JD020	263.0	60	96	0	0	13	3	112
92PA0110016 013	JH015	268.0	61	427	0	0	2	1	430
92PA0110017 015	JJ014	262.0	60	0	0	0	0	0	. 1
92PA0110014 014	JJ020	241.0	61	1730	0	0	19	4	1752
			ST	RATUM W5-3					
92PA0110010 010	JF021	359.0	60	294	0	1	66	8	369
92PA0110015 011	JG013	335.5	63	0	9	1	24	6	41
			ST	RATUM W5-4					
92PA0110011 012	JG021	469.5	60	1265	0	13	15	8	1301
92PA0110012 016	JK020	436.0	60	57	0	2	10	3	71
92PA0110018 018	JM013	543.0	60	. 0	0	5	6	4	15
			 ST	BATUM W6-1					
92PA0110002 002	HL027	166.5	60	0	0	0	0	. 3	3
92PA0110008 008	JA023	194.0	60	809	ō	ō	3	6	. 817
92220110001 001	H 1031	223 5	60	RATUM W0-2	0	3	2	13	170
92PA0110003 003	81.028	219.5	60	378	ŏ	0	2	13	118
6000 011 000 C 00C			ST	RATUM W6-3	-	•			
92FAUL10005 005	HV022	324.0	60 60	225	12	15	11	12	254
>2EMOIT00/ 00/				410 			4 /	30	521
			ST	RATUM W6-4					
92PA0110004 004	HN025	530.5	60	0	0	0	23	12	35
92PA0110005 005	HT023	510.5	65	0	0	0	28	80	108

. . t

. . .

Table 2. List of trawl stations in the area Cape Farewell - 63°52'5N in the September 1992 survey.

STATION- IDENTIFICATION	AREA- CODE	DEPTH	TR- TIME	SHR	сор	GHL	RED	MIX	TOTAL
		 cm		THETANDUAR				**	
92PA0140043 999	GE051	399.0	60	0 0	15 BAI	. 0	12	3	15
92PA0140045 999	GE053	305.0	69	õ	ŏ	ŏ	1	ĭ	13
92PA0140042 999	GF050	363.5	54	Ō	Õ	· 0	ī	ī	2
92PA0140044 999	GF052	183.5	42	0	Ō	Ō	õ	ō	ō
92PA0140048 999	GF054	249.0	45	1	0	0	1	0	2
92PA0140047 999	GF055	195.0	60	Ο.	0	0	0	5	5
92PA0140041 999	GG050	161.0	60	0	0	0	1	2	3
92PA0140046 999	GG055	176.0	60	0	0	· 0	0	1	. 1
92PA0140040 999	GH048	295.0	48	3	0	0	16	0	19
92PA0140050 999	GK048	125.0	60	0,	0	0	• 0	0	. 0
92PA0140049 999	GK050	125.0	60	0	0	Q -	0	0	0
92PA0140036 999	GMU40	230.0	60	0	0	0 0	0	4	4
92PAU140038 999	GMU42	110.5	60	U	0	0	0	0	. 0
92PA0140035 999	GNU4U	112.0	60	Ű	U	U	l	1	2
92PAU140037 999	GNU4Z	712.0	60	150	0	Ŭ O	0	0	1
JZFA0140033 333	614044	340.3		100		· · ·		0	152
			ST	RATUM W6-2					
92PA0140028 999	HG031	297.5	34	238	0	1	9	8	256
92PA0140027 999	HJ031	223.0	60	29	ŏ	5	õ	4	37
92PA0140016 999	HX023	229.5	60	178	Ó	Ō	2	1	181
			ST	RATUM W6-3					
92PA0140029 999	HG031	346.0	65	1047	0	2	18	6	1074
92PA0140024 999	HM026	328.5	60	1	0	0	_3	2	• 6
92PA0140022 999	HP025	362.5	. 60	426	10	2	76	12	525
92PA0140015 999	HX023	306.5	60	375	Q	Q	15	7	396
			ST	BATUM W6-4					
92PA0140026 999	H T029	546 5	44		n	n	۵	۵	0
92PA0140019 999	HR026	402.5	60	474	2	2	Ř	3	488
92PA0140017 999	HX024	464.0	60	347	2	2	17	10	377
			5	TRATUM W7					
92PA0140034 999	GT035	115.0	60	1	0	0	-0	5	, 6
92PA0140033 999	HA032	120.5	61	0	0	0	0	1	1
92PA0140032 999	HE031	104.0	60	0	D	0	0	2	2
~~ ~~ ~~~~~~~~			 51	W W7-1	***	~			
92PA0140031 999	HE030	170.5	60		0	٥	0	2	٦
							-	•••	

STRATUM	SQKM			BIOMASS 1	N STRATA		
		TONS	HAULS	STD	STDERR	MIN	MAX
AREA C1 300-400 M	655	1820.6	2	2105.2	1488.6	332	3309
AREA C1 400-600 M	312	5.4	2	4.3	3.0	2	8
AREA C3 200-300 M	660	181.3	2	240.2	169.8		351
AREA C3 300-400 M	1192	14754.7	. 1			14755	14755
AREA C3 400-600 M	623	2.2	2	3.2	2.2	0	4

Table 3a. Estimated trawlable biomass in strata west of the midline in the Davis Strait survey July-August 1992.

Table 3b. Estimated trawlable biomass in strata north of 69°30'N in the Davis Strait survey July-August 1992.

STRATUM	SQKM			BIOMASS I	N STRATA		
		TONS	HAULS	STD	STDERR	MIN	MAX
AREA N1	3649	1871.7	5	2304.1	1030.4	3	5727
AREA N2	11789	2518.1	5	4624.6	2068.2	0	10654
AREA N3	367	88.9	2	125.7	88.9	0	178
AREA N4	2249	9717.3	3	3996.7	2307.5	7093	14317
AREA N5	5990	2470.3	8	4189.2	1481.1	0	10556
AREA N6	15926 -	4498.1	6	4905.5	2002.7	0	10112
AREA N7	1159	0.0	_2	0.0	0.0	0	0

Estimated trawlable biomass in strata south of 69°30'N east of the line in the Davis Strait survey July-August 1992.

STRATUM	SQKM	•	•	BIOMASS 1	IN STRATA		
•		TONS	HAULS	STD	STDERR	MIN	MAX,
AREA W1 150-200 M	2363	3.5	: 3	6.1	. 3.5	0	11
AREA W1 200-300 M	5213	3.1	7	8.1	3.1	٥	22
AREA W1 300-400 M	9239	30958.5	11	28648.6	8637.9	536	94813
AREA W1 400-600 M	752	790.3	2	1117.6	790.3	. 0.	1581
AREA W2 150-200 M	1499	0.0	2	0.0	0.0	0.	0
AREA W2 200-300 M	2477	9881.6	3	12317.4	7111.4	0	23681
AREA W2 300-400 M	1453	10685 5	2	8867.9	6270.6	4415	16956
AREA W2 400-600 M	559	3279.1	2	1536.9	1086.8	21'92	4366
AREA W3 150-200 M	2215	0.0	3	0.0	0.0	0	0
AREA W3 200-300 M	4810	4.6	6	8.8	3.6	0	22
AREA W3 300-400 M	2714	23094.6	4	7291.9	3645.9	12335	28435
AREA W3 400-600 M	3361	4639.1	4	4578.1	2289.1	195	10317
AREA W4 150-200 M	4204	0.7	5	1.7	0.7	. 0	4
AREA W4 200-300 M	1736	0.0	2	0.0	0.0	· 0	0
AREA W4 300-400 M	745	10096.3	2	4650.2	3288.2	6808	13384
AREA W4 400-600 M	1915	1.1	2	1.6	1.1	0	2
AREA W5 150-200 M	1995	8.2	2	8.8	6.2	· 2	14
AREA W5 200-300 M	3454 .	21638.9	4	31875.3	15937.7	0	68567
AREA W5 300-400 M	1797	3132.3	2	4425.4	3129.2	3	6262
AREA W5 400-600 M	2806	11521.7	3	18881.6	10901.3	0	33312
AREA W6 150-200 M	1095	3826.9	2	5412.0	3826.9	0	7654
AREA W6 200-300 M	1491	3906.4	2	1921.0	1358.3	2548	5265
AREA W6 300-400 M	1300	3685.6	2	1397.4	988.1	2698	4674
AREA W6 400-600 M	884	0.0	2	0.0	0.0	0	O

٩,

Table 4. Estimated trawlable biomass in strata in the Davis Strait survey September 1992.

STRATUM	SQKM		-	BIOMASS I	N STRATA		
		TONS	HAULS	STD	STDERR	MIN	MAX
AREA W6 200-300 M	1491	2899.6	3	3190.0	1841.7	328	6469
AREA W6 300-400 M	1300	4916.8	4	4140.6	2070.3	14	9916
AREA W6 400-600 M	884	2371.8	. 3	2073.1	1196.9	· 0	3838
AREA W7 150-200 M	2419	0.0	1	•	•	0	o
AREA JHB 100-200 M	6806	3.0	9	7.1	2.4	0	21
AREA JHB 200-600 M	5719	1230.9	7	3134.1	1184.6	0	8336

Table 5. Sums of estimated biomasses in main regions 1988-92.

AREA	B I O 1988	M A S S 1989	IN YE 1990	A R 1991	1992
WEST	140332	176525	151402	108406	141158
CANADA	9305	3836	11425	4668	16764
NORTH	21901	11342	11733	6032	21164
TOTAL	171538	191703	174560	119106	179089

Table 6a.

Stratum areas per depth stratum in % of total survey area, and calculated biomass estimates per depth stratum in % of total yearly biomass from surveys 1988-92 in the area 61°52'5N - 69°30'N.

					<u> </u>
	D E P 150-200 M	т н S 200-300 М	т _{В А} 300-400 м	т U M 400-600 м	TOTAL
W1 AREA	2.3	5.0	8.8	0.7	16.8
1988-BIOM	0.0	0.8	19.5	0.0	20.3
1989-BIOM 1990-BIOM		5.2 1.5	17.2	0.0	18.8
1991-BIOM	Ŏ.Ī	0.1	18.6	0.0	18.9
1992-BIOM	0.0	0.0	17.3	0.4	17.7
W2 <u>AREA</u> 1988-BTOM	1.4	2.4	$\frac{1.4}{7.6}$	0.5	<u></u>
1989-BIOM	- ŏ.ŏ	6.0	10.7	0.9	17.5
1990-BIOM	0.0		17.0	5.8	26.1
1992-BIOM	0.0	5.5	6.0	ĭ.8	13.3
W3 AREA	2.1	4.6	2.6	3.2	12.5
1988-BIOM 1989-BIOM	0.0	12.3 17.2	5.9	4.5	24.9 27.0
1990-BIOM	ŏ.ō	6.0	10.0	4.5	20.4
1991-BIOM 1992-BIOM	0.0	0.0	12.9	2.6	15.5
W4 AREA	4.0	1.7	0.7	1.8	8.2
1988-BIOM	7:7	3.2	0.2	2.3	13.5
1990-BIOM	0.0	6.4) ŏ.7	0.Ō	7.2
1991-BIOM		6.0			12.1
WE ADEA	1.0	2 1	1.0	27	9.0
1988-BIOM	0.0	3.4	2.7	3.7	9.8
1989-BIOM	3.4	9.9	5.2	1.5	20.0
1990-BIOM	0.0	6.4	3.6	3.0	13.0
1992-BIOM	0.0	12.1	1.7	6.4	20.3
W6 AREA	1.0	1.4	1.2	0.8	4.6
1989-BIOM	-	-	_	-	_
1990-BIOM	0.1	$\begin{bmatrix} 3.1\\ 3 1 \end{bmatrix}$		1.1	
1992-BIOM	2.2	2.2	2.1	ō.ŏ	6.4
C1 AREA	_	-	0.6	0.3	0.9
1988-BIOM 1989-BIOM		-		0.0	
1990-BIOM	-	-	2.4	0.0	2.4
1991-BIOM 1992-BIOM		-	2.1	0.0	1.0
C3 AREA		0.6	1.1	0.6	2.4
1988-BIOM			4.3	0.3	4.3
1990-BIOM	-	1.6	2.3	0.3	4.1
1991-BIOM	-		2.1		2.4

Table	6b.	Stratum	areas	in	% of	total	survey	area,	and cale	culated	biomass	3
		estimate	es in %	of	total	yearly	biomas	s from	surveys	1988-93	l in the	2
		area 69°	'30'N -	· 72°	°30'N.				-			

- 13 -

	TOTAL
N1 AREA 1988-BIOM 1989-BIOM 1990-BIOM 1991-BIOM 1992-BIOM	3.5 1.5 2.2 1.7 1.4 1.0
N2 AREA	11.3
1988-BIOM 1989-BIOM 1990-BIOM 1991-BIOM 1992-BIOM	3.20.61.20.01.4
N3 AREA 1988-BIOM 1989-BIOM 1990-BIOM 1991-BIOM 1992-BIOM	0.4 0.0 0.1 0.2 0.5 0.0
N4 AREA 1988-BIOM 1989-BIOM 1990-BIOM 1991-BIOM 1992-BIOM	2.1 2.7 1.4 2.0 1.5 5.4

	TOTAL
N5 AREA	5.7
1988-BIOM	1.5
1989-BIOM	1.7
1990-BIOM	0.7
1991-BIOM	0.1
1992-BIOM	1.4
N6 <u>AREA</u> 1988- <u>BIOM</u> 1989-BIOM 1990-BIOM 1991-BIOM 1992-BIOM	$ \begin{array}{r} 15.2 \\ 1.6 \\ - \\ 0.4 \\ 1.5 \\ 2.5 \\ \end{array} $
N7 AREA	1.1
1988-BIOM	2.2
1989-BIOM	0.0
1990-BIOM	0.6
1991-EIOM	0.0
1992-BIOM	0.0

Table 7. Relative distribution (%) of estimated biomasses 1988-92 in depth strata south of 69°30'N.

- 6		· · ·			
	YEAR	D E E 150-200	Р Т Н S 200-300	T R A T U 300-400	J M 400-600
	1988	8.9	28.0	49.9	13.2
	1989	5.3	55.6	32.1	7.0
	1990	0.3	25.8	58.8	15.1
	1991	0.5	19.9	60.6	19.0
	1992	2.4	22.6	62.2	12.8

Table 8. Summary of age and growth data for samples of northern shrimp from Davis Strait, 1983-87, combined (from Savard et al., 1989).

Age	Min - max lengths (mm)	Range	Mean length (mm	In)	crement (mm)
1	7.4 - 9.8	2.4	8.4		
2	10.9 - 13.1	2.2	12.3	>	3.9
િર	14 5 - 16 6	21	15 7	>	3.4
	17.6 10.0	1 0	10 5	>	2.8
4	17.6 - 19.4	1.0	10.5	>	2.1
5	19.1 - 22.1	3.0	20.6	>	2.1
6	21.3 - 23.8	2.5	22.7	ĺ	0.0
7	23.0 - 26.6	3.6	24.9	>	2.2
8	24.4 - 28.0	3.6	26.3	>	1.4

from Greenlandic research trawl samples, 1988 - 92.							
Year	88	89	90	91	92		
Age (yr)	<u> </u>		-				
2	12.62	12.8	12.29	12.91	13.46		
3	14.97	15.68	14.26	16.01	15.3		
4	17.62	17.55	17.07	17.6	17.47		
- 5	20.14	19.79	19.41	20.04	19.59		
6	22.51	22.35	21.49	21.76	22.22		

- 14 -

Table 10. Proportions of shrimp at age estimated								
fro	m Greenland	lic researct	n trawl sam	ples, 1988 -	92.			
Year	88	89	90	91	92			
Age (yr)								
2	0.023	0.014	0.038	0.013	0.034			
3	0.047	0.145	0.048	0.052	0.118			
4	0.19	0.501	0.144	0.141	0.151			
5	0.392	0.219	0.534	0.181	0.271			
6	0.348	0.121	0.236	0.613	0.427			
Total	1	1	1	1	1			

fro	m Greenlan	dic trawl su	rveys, 1988	- 92.	
Year	88	89	90	91	92
Age (yr)					
2	549	461	852	182	846
3	1122	4775	1076	726	2932
4	4534	16499	3227	1970	3753
5	9354	7212	11967	2529	6736
6	8304	3985	5289	8564	10610
7+	9970	6398	8146	5257	6459
Total	33832	39331	30556	19228	31336
Z (5+)		0.98	0.27	0.61	-0.04
Z (6+)	۶	1.05	0.24	0.94	0.76

Fig. 1.

Stratification scheme for West Greenland offshore shrimp surveys showing stratum numbering as used in the text.

Fig. 2a.

a. Sampling sites and trawl catches in the West Greenland offshore surveys in the period July-September, 1992, southern part.

Fig. 2b.

Sampling sites and trawl catches in the West Greenland offshore surveys in the period July-September, 1992, northern part.

Estimated total biomass 1988-92 for groups of strata in the Davis Strait. Fig. 3.

Figure 4a. Contour map with estimated shrimp densities 1992 for the area $61^{\circ}N-64^{\circ}N$ as calculated with the 'spline' method, based on survey data. Sampling sites are also given.

. .

ъ J

Figure 4b. Contour map with estimated shrimp densities 1992 for the area $64^{\circ}N-67^{\circ}N$ as calculated with the 'spline' method, based on survey data. Sampling sites are also given.

Figure 4c. Contour map with estimated shrimp densities 1992 for the area $67^{\circ}N-70^{\circ}N$ as calculated with the 'spline' method, based on survey data. Sampling sites are also given.

Fig. 5.

Numbers of shrimp by length group (CL) in the total survey area in 1988-92, based on pooling of samples weighted by catch and stratum area.

20

- 21 -

8

3

ģ

.. .

- 22 -

Numbers of shrimp by length group (CL) in strata W4-W6 in 1991-92, based on pooling of samples weighted by catch and stratum area. 6c. Fig.

8

ы Сы Сы

16 18

10 12 14

30

8

CPL 2

Ē

11

12

φ

ĘĦ

ุ่ม

8

8

Ŷ

5

20-

5

8

å

(2170illiiM) .0M

2

5

200-

0001

500-200ģ

(sugiliiM) .oN

8 8

8

- 23 -

W6, 1991

ź

199

ŝ

100

1991

ž

10001

Ô6

8

8 8