Northwest Atlantic

Fisheries Organization

Serial No. N2268

NAFO SCR Doc. 93/83

SCIENTIFIC COUNCIL MEETING - JUNE 1993

An Evaluation of Stock Status of Witch Flounder in NAFO Divisions 3NO

by

W. R. Bowering, D. B. Atkinson, D. Power and W. B. Brodie

Science Branch, Department of Fisheries and Oceans P.O. Box 5667, St. John's, Newfoundland, Canada, AlC 5X1

Catch history

Reported catches during the period 1971-84 ranged from a low of about 2,400 tons in 1980 and 1981 to as high as 15,000 tons in 1971 (Table 1), however, from 1975-84 annual catches rarely exceeded 6,000 tons. With a substantial increase in effort in 1985 and 1986, especially by EC-Spain and EC-Portugal, catches rose rapidly to levels of 8,800 and 9,100 tons respectively. This increased effort was primarily concentrated on the "tail" of the Grand Bank in the NAFO Regulatory area of Division 3N. Non-Contracting parties such as South Korea, USA, Cayman Islands and Panama also contributed to increased catch levels. Catches remained relatively high in 1987 and 1988 at 7,500 tons annually, declined to 3,700 tons in 1989 and remained stable at nearly 5,000 tons in 1991-92. Overall catch statistics for this stock, however, are inadequate and must be treated cautiously given that there are catches by non-contracting parties which are not reported to NAFO and are only estimated from surveillance reports. There are also species specific catches which must be determined from formulated breakdowns of landings reported as unspecified flounders.

The main prosecutors of this fishery historically were Canada and the former Soviet Union. Canadian catches fluctuated from between 1,200 and 3,000 tons from 1985-91 but increased to about 4,300 tons in 1992. This increase in 1992 was essentially the result of a quota transfer between Canada and the Russian Federation. Catches by the USSR/Russian vessels declined from between 1,000 and 2,000 tons in the period 1982-88 to less than 100 tons in 1989-90 and to 0 tons annually since then.

The first total allowable catch (TAC) for this resource was introduced by ICNAF in 1974 at a level of 10,000 tons largely based on average historical catches. This level remained in effect until 1979 when it was reduced to 7,000 tons in consideration of declining commercial catch rates. It was further reduced to 5,000 tons in 1981 and has remained at that level to the present. Although the TAC has not changed since 1981 this should not be misconstrued as representing stability in the population size. It is rather a result of the inability of the Scientific Council to provide a more precise estimate due to inadequate data. A comparison of annual catches and TAC's are presented in Figure 1.

Commercial Fishery Data

i) Catch and Effort

Catch and effort data from the directed fishery for the period 1974 to 1989 were obtained from ICNAF/NAFO Statistical Bulletins and were combined with provisional 1990-1991 NAFO data and preliminary Canadian data for 1991-1992.

The catch/effort data were analyzed with a multiplicative model (Gavaris 1980) to derive a standardized catch rate series for hours fished. Effects included in the model

were a combination country-gear-tonnage class category type (CGT), month, NAFO division and year. Individual observations of catch or effort data less than 10 units were eliminated prior to analysis as were categories where there was less than five samples in the database except within the year category type.

The regression was significant (p <.05), explaining 66% of the variation in catch rates (Table 2). The inclusion of CGT and division categories had no significant effect in explaining the catch rate variability. The data available for the analysis is basically from the Canadian fishing in Division 30. The standardized catch rate series (Table 2, Fig. 2) shows little in the way of trends although the 1991 value is the lowest in the series followed by a slight increase in 1992 but is still at a low level. The 1982 and 1990 values are clearly anomously high for reasons unclear. However, if those values were ignored there would appear to be somewhat of an increasing trend from about 1978-85 followed by a declining trend since that time. It must be recognized, however, that most data pertain to fishing on aggregations (prespawning) and significant changes in stock size may not be easily detected until substantial reductions have occurred that manifest themselves in areas of low density.

ii) Catch at Age

Catch at age data were available from the Canadian commercial fishery from 1979-92. The data and catch at age syntheses from 1979-91 were taken from previous documents in which they were described. The 1992 Canadian catch is shown by month, division and gear in Table 3 with the sampling scheme and respective catch breakdown presented in Table 4. The results and accompanying statistics for 1992 are available in Table 5. The catch numbers at age, mean weights at age and catch weight at age for the entire time series are presented in Tables 6, 7 and 8 respectively.

The age structure from the Canadian fishery (almost entirely in Div. 30) has been remarkably stable over the time series (Table 6) ranging from age 5 to age 16 with the bulk of the catch coming from within the age 9-12 category. There appears to be some slight increase in the younger ages in the more recent years, however, the reason for this is not readily apparent. A possible reason is that historically the fishery occurred primarily in winter-spring on pre-spawning concentrations where one may expect larger fish whereas more recently the fishery is spread throughout the year probably over a wider range of sizes. According to Table 7 there does not appear to be any observable change in growth patterns to suggest changes in partial recruitment at age.

Research Vessel Surveys

Stratified-random research vessel surveys have been carried out by Canada on the Grand Bank (including Div. 3NO) during spring since 1971 although during the early period coverage was limited and, in fact, for most years did not cover what may be considered an adequate depth range (survey maximum equal to 200 fathoms or 366 meters) to fully represent the distribution of witch flounder. Since 1990, on the other hand, depth coverage was extended to 400 fathoms or 720 meters which should be more representative but still not cover the entire range of depth distribution as observed in other areas in recent years. In addition to spring surveys, a time series of fall surveys was instituted in 1990 for seasonal comparisons. Mean weights (kg) per set including total biomass estimates and confidence limits as well as biomass estimates by stratum for the spring surveys are presented in Tables 9 and 10 for Div. 3N and Tables 11 and 12 for Div. 30 respectively. A plot of the divisional biomass estimates is presented in Figure 3 for illustration.

. i) Biomass Estimates

Estimated biomass in Div. 3N has been at very low levels throughout the time period and in most years was less than 1,000 tons (Tables 9 and 10; Fig. 3). For Div. 30 estimates of biomass showed considerable annual fluctuations, on average between 6,000 and 12,000 tons particularly in the late 1980's and are considered to be related to distributional differences

(Tables 11 and 12; Fig. 3). Nevertheless, the estimates illustrate a sharp decline in the last few years with the preliminary estimate for 1993 near the lowest observed. The most significant observation is that despite the fact that survey coverage during 1991-93 has been the most complete in the time series it indicates a sharp systematic declining trend to levels as low as anything previously experienced.

A comparison of biomass and abundance of spring versus fall surveys is shown in Table 13. The series is too short to draw any firm conclusions as to significant seasonal comparisons. In 1990 the fall estimate was higher than in spring whereas for 1991 and 1992 the reverse was true. The differences, however, especially for the 1991-92 surveys were not large and put the biomass and abundance in both instances among the lowest levels observed.

ii) Catch at Age

The age structure for the years 1984-92 from both the spring and fall surveys in Div. 30 is shown in Table 14 and Figure 4 (data from Div. 3N insufficient). The age structure is quite similar to that previously described from the Canadian commercial fishery. It is evident that the survey gear is not very proficient at capturing young fish and in fact appears to have much the same selection properties as the commercial gear. Based on previous observations in other areas it is likely that the younger age classes may not be in areas that are very accessible to fishing operations. The fall surveys show a decline in abundance since 1990 to the lowest level estimated although this is not clear from the spring surveys. Considering that there was a significant commercial fishery between the spring of 1992 and the fall of the same year as well as a very low estimate of biomass in the spring of 1993 there is clearly room for concern.

iii) Geographic Distribution

In order to demonstrate the general distribution and associated variability of witch flounder within the stock area a series of annual plots of weight (kg) caught per set for the period 1981-92 (spring surveys) are presented geographically in Figure 5. In order to examine for seasonal differences in distribution similar plots were constructed for for fall surveys in Div. 3NO carried out during 1990-92. A cursory look at distribution plots from the spring surveys indicates that witch flounder is most abundant along the southwest side of the Grand Bank primarily in Div. 30. For most years the only significant abundance outside the Canadian fishery zone is located in Div. 30 although there are some caught along the eastern edge of Div. 3N. In some years the higher catches are more plentiful in over the bank area especially in 1985 and 1988, which may explain the unusually high biomass in those years as these high catches would be associated with large strata. More recently, however, in 1991 and 1992 catches have been concentrated along the deeper slope area of Div. 30 with little caught on the shallower parts of the bank or in Div. 3N. Fall surveys (Fig. 6) show that witch flounder are more widely distributed over the southern half of the Grand Bank but again almost entirely in Div. 30. Reasonable catches in 1990 are relatively plentiful, however, catches declined over the next two years to low levels by 1992.

Prognosis

From the information examined it would appear to be rather clear that the level of biomass in Div. 3N has been and continues to be quite low at least out to a depth of 720 meters. What remains of any consequence of this witch flounder resource is located in Div. 30 and although it cannot be concluded without more detailed evidence, it is conceivable that the stock component in Div. 30 is self sustaining.

In the past, the Scientific Council has been concerned that the surveys have not extended deep enough to adequately assess the population size of witch flounder and as a result was reluctant to fully accept the status of the stock as suggested by the data available. While this may very well have been a correct approach in the past, with the more recent observations it cannot reconcile the differences in the distribution patterns either

between the divisions or between the spring and fall in the present analysis. The stock biomass during most of the 1980's in Div. 30 would suggest stability in the range of 6,000 tons assuming that the anomalously high 1985 and 1988 values are an artifact of fish moving in over the bank occupying large strata resulting in inflated estimates. Since 1990, however, there is evidence of a sharp decline in biomass in Div. 30 to near the lowest observed by the spring of 1993. This is particularly disconcerting since the last three surveys have covered a much more extensive depth range than any previously conducted.

Based upon the data presented here is would appear that the foregoing assessment essentially reflects stock status in Div. 30. If the biomass trajectory of the recent period is correct it would suggest that recent catch levels in this division may have been somewhat higher than that which would maintain stable biomass. It would seem prudent, therefore, that catch levels in Division 30 probably should not exceed 2,000-2,500 tons. With respect to Division 3N, little is known about the level of biomass beyond depths of 720 meters although it is rather inconceivable that it could be substantial. Some catch is taken by Portugal as a by-catch in the redfish fishery although the relatively small catch is more likely the result of intensive fishing effort. Given the state of knowledge for witch flounder in this division a by-catch fishery only may be more advisable.

References

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.

Table 1 . Catches and TACs (t) of witch flounder in Div. 3NO from 1971-93.

	Cc	untry			
Year .	Canada	USSR	Other	Total	TAC
1971	178	14774	13	14965	
1972	3419	5738	20	9177	
1973	4943	1714	34	6691	
1974	2807	5235	3	8045	10000
1975	1137	5019	12	6168	10000
1976	3044	2991		6035	10000
1977	3013	2742	4	5759	10000
1978	1165	2275	33	3473	10000
1979	1193	1868	16	3077	7000
1980	425	1994	1	2420	7000
1981	381	2044	-	2425	5000
1982	1760	1969	3	3732	5000
1983	1674	1942	_	3616	5000
1984	834	1955	13	2802	5000
1985 .	2746	1908	4117	8771	5000
1986	2937	1724	4470	9131	5000
1987	2829	1425	3342	7596	5000
1988	1927	1037	4361	7325	5000
1989	1241	81	2366	3688	
1990°	2670	9	1411	4090	5000 5000
1991"	2624	_	2223	4847	
1992*	4316	_	600	4916	5000
1993	_	_	_	4910	5000 5000

Provisional data.

^bEstimated

Table 2 . Anova results and regression coefficients from a multiplicative model to derive a standardized catch rate series for witch in NAFO Div. 3NO. (1990-1992 based on preliminary data)

REGRESSION OF MULTIPLICATIVE MODEL

.23

24

25

90

91

92

0.696

70.493

70.112

0.159

0.152

0.153

6

										?	REDICTED- CA	TCH RATE			
HOLTIPLB				.812 .659	٠				•	LN T	RABSPORM	RBTRAH	SPORMED		
									YEAR	READ	S.B.	HEAH	\$.B.	CATCE	RPPORT
CAURAR AT		Al	ALYSIS OF		•				1974	 -1.1835	0.0131	0.316	0.036	2807	887
SOURCE OF		B.D	SUMS OF		D	-VALUB			1975	1.3057	0.0180	0.279	0.038	1137	407
VARIATION		DP	SQUARBS			.14000			1976	-1.4392	0.0130	0.245	0.028	3044	1242
748084088			4 36909		-				1977	1.0864	0.0130	0.349	0.020	3013	864
INTERCEPT		1	1.39282	1.39282					1978	1.5270	0.0157	0.224	0.028	1165	520
BRABBAATAR		45	4 400p4	1 7600-4		6.174			1981	1.1455	0.0420	0.324	0.028	381	117
REGRESSION	743	25	1.19081 1.1668 ⁻ 1	4.7608*1		1.513			1982	0.3543	0.0222	0.721	0.108	1760	244
ountry Gear TC		1				2.974			1983	1.0470	0.0133	0.362	0.042	1674	461
Honth		7	1.605B0	2.293E ⁻ 1					1984	1.3234	0.0133	0.302	0.042	834	306
Division		1	1.695B~1			2.199			1985	0.6887	0.0317	0.518	0.064	2746	529
Year	(4)	16	1.02781	6.417B ⁻ 1		8.323			1986	0.8695	0.0131	0.433	0.051	2937	678
			(4/4BA	3 340n-A					1987	0.9687	0.0144	0.433	0.053	2829	723
RBSIDUALS		80	6.168E0	7.710872					1988	1.3537	0.0159	0.266	0.033	1927	723
TOTAL		106	1.57282				•		1989	1.3337	0.0193	0.342	0.048	1241	362
										7.4875					
			REGRESS	ION CORPPICIEN	TS				1990		0.0184	0.633	0.086	2670	422
					CON CONTA	n 10:	A ABC		1991 1992	-1.6765 -1.2953	0.0165 0.0169	0.193 0.282	0.025 0.037	2624 4316	1360 1528
CATEGORY	CODE	γ.	ARIABLE	CORPPICIENT	STD. ERRO		0. 0 3 \$.		1774	1.4773	0.0107	0.404	0.031	9310	1340
CET	3125	INT	ERCEPT	T1.183	0.114		106		AVB	RAGE C.V.	POR THE RET	RANSPORMED	MBAN: 0.1	35	
HTRON	4														
DIVISION	35			Í	-										
YBAR	74	•		ě				ı		•	•				
	3124		4	°0.096	0.078		20	** !	T.RGRM1	D POR ANOV	IA TARER.				
1 2	3164		2	70.034	0.147		5		COADM	, ton who.	. I HODD.				
2	1		3	0.034	0.089		19	٠.	CGT C	ሰቡድ					
	2		1	0.030	0.079		26	•			lland TC 4 B	attan Pess	1		
	3			70.059			12				lland TC 5 B				
	5		5		0.102		5			- newtonn	ITOME IO DE	OCCOM IIAW	1		
	10		6	70.379	0.152		5	•		: Divisios	38				
	11		1	70.447	0.146		6			- Division - Division					
	12		8	70,192	0.136		20		"	- A1419101	7 10		:		
3	34		9	0.128	0.087										
4	75		10	TO: 122	0.159		6								
	76		11	70.256	0.132		10								
	77		12	0.097	0.135		,								
	78		13	0.344	0.151				1	-					
	81		14	0.038	0.225				,						
	82		15	0.829	0.176		•		1						
	83		16	0.136	0.141		. 8								
	84		17	-0.140	0.191		3								
	85		18	0.495	0.147		1								
	86		19	0.314	0.138		8								
	87		20	0.215	0.161		5								
	88		21	70.170	0.151		6								
	89)	22	0.082	0.160		5								

Table 3 . Breakdown of Canadian catches (t) by division, month, and gear of witch in Div. $3N\emptyset$, 1992.

Month	31	1	30	2	Total
	О.Т.	SS+DS	О.Т.	SS+DS	
Jan.	-	-	1	~	1
Feb.	-	-	158	-	158
Mar.	8	-	1340	32	1380
Apr.	-	_	645	219	864
May	-	-	35	25	60
June	1	-	287	41	329
July	1	-	265	25	291
Aug.	3.	-	118	2	123
Sept.	4	-	79	3	86
Oct.	1	-	74	32	107
Nov.	1	-	113	36	150
Dec.	~	-	700	67	767
Total	19		3815	482	4316

Tables 4. Samples used to calculate catch & weights at age for witch in the Canadian fishery in Div. 3NØ, 1992.

Age	Length	Key	Length Frequencey	Catch(tons)	Description
Q1	3Ø	(593)	OT, Feb., 3Ø (728)	159	OT, 3Ø, JanFeb.
-			OT, Mar., 3Ø (2342)	1348	OT, 3NØ, March
			SC, Mar., 3Ø (330)	32	Seine, 30, March
Q2	3Ø	(545)	OT, Apr., 3Ø (1327)	645	OT, 3Ø, April
			DS, Apr., 3Ø (324) SS, Apr., 3Ø (309)	219	Seine 3Ø, April
			OT, May, 3Ø (320)	60	OT, Seine, 3NØ, May
			OT, June, 3Ø, (1254)	329	OT, Seine, 3NØ, June
Q3	3Ø	(296)	OT, July, 3Ø, (1066)	291	OT,Seine, 3NØ, July
			OT, Aug., 3Ø (331)	123	OT, Seine, 3NØ, Aug
			OT, Sept., 3Ø (307)	86	OT, Seine, 3NØ, Sept
Q4	3Ø	(464)	OT, Oct., 3Ø (391)	75	OT, 3NØ,Oct.
			DS, Oct., 3Ø (324)	32	Seine, 3NØ, Oct.
			SS, Oct., 3Ø (370) OT, Nov., 3Ø, (656)	150	OT Sains 2NO Mars
			OT, Dec., 3Ø, (1445)	767	OT, Seine, 3NØ, Nov OT, Seine, 3Ø, Dec.

Table 5.

	AVER	AGE		CATCH	
AGE	WEIGHT	LENGTH	MEAN	STD. ERR.	c.v.
* 4	0.043	21.685	2	1.12	0.48
* 5	0.071	24.853	7	1.82	0.27
* 6	0.163	31.238	36	7.10	0.20
* 7	0.234	34.516	334	29.52	0.09
8	0.300	37.026	973	55.33	0.06
9	0.360	39.468	1314	66.40	0.05
10	0:489	42.324	1464	72.32	0.05
11	0.605	44.924	1965	82.03	0.04
M2	0.751	47.669	1318	66.96	0.05
₩ 13	0.928	50.561	491	37.67	0.08
. *1 4	1.213	54.453	55	9.52	0.17
⊀ 1.5	1.511	57.996	5	1.80	0.38

* TYPE NOTE FOR AN EXPLANATION

Table 6. CATCH AT AGE OF WITCH FLOUNDER IN THE CANADIAN FISHERY IN DIV. 3NO.

AGE	ŀ	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
	+-									0	. 0	0	-	1	-
5	ŀ	0	0	0	0	0	0	2	, 1	-	_	_	=		•
. 6	1	0	0	0	8	0	1	12	9	9	1	0	19	17	36
7	i	8	5	0	43	7	9	67	66	72	35	15	109	54	334
8	ì	46	22	10	393	93	88	337	464	421	222	124	398	394	973
9	i	199	97	31	558	487	246	938	1184	1174	679	334	858	721	1314
10	ì	516	228	95	922	791	387	1254	1513	1270	1056	514	1115	717	1464
11	i	664	177	149	630	740	431	1255	1231	1389	1079	650	1199	1324	1985
12	i	280	35	143	431	452	183	960	649	755	457	468	969	1143	1318
13	i	81	10	- •	293	74	38	222	122	129	105	138	285	374	491
14	ì	24	0		55	17	5	36	10	7	15	10	31	32	55
15	i	0	_		11	4	0	0	0	0	0	0	4	0	5
16	ì	0	_		2	2	0	0	0	0	0	0	0	0	0
	- + -												4001	4777	7002

5+ 1 1818 574 566 3346 2667 1388 5083 5249 5226 3649 2253 4991 4777 7982

Table 7. WEIGHT AT AGE OF WITCH FLOUNDER IN THE CANADIAN FISHERY IN DIV. 3NO.

AGE	ı	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
रवह	† -														
5	ļ	0.000	0.000	0.000	0.000	0.000	0.000	0.090	0.115	0.000	0.000	0.000	0.135	0.049	0.071
6	Į.	0.000	0.000	0.000	0.216	0.000	0.166	0.133	0.160	0.147	0.185	0.000	0.164	0.143	0.163
7	Ì	0.187	0.249	0.000	0.240	0.228	0.248	0.209	0.230	0.212	0.231	0.208	0.213	0.170	0.234
8	1	0.272	0.332	0.267	0.359	0.345	0.343	0.293	0.330	0.299	0.323	0.280	0.296	0.250	0.300
9	ı	0.345	0.445	0.315	0.422	0.431	0.444	0.390	0.425	0.409	0.402	0.378	0.385	0.344	0.380
10	1	0.498	0.662	0.423	0.517	0.526	0.547	0.479	0.533	0.501	0.494	0.466	0.477	0.424	0.489
11	1	0.717	0.905	0.531	0.613	0.706	0.670	0.610	0.664	0.628	0.594	0.570	0.580	0.563	0.605
12	1	0.903	1.264	0.716	0.717	0.920	0.830	0.763	0.839	0.805	0.741	0.703	0.704	0.729	0.751
13	Ī	1.141	1.485	0.883	0.804	1.170	1.051	1.006	0.992	1.011	0.958	0.904	0.873	0.937	0.928
14	Ι	1.239	1.752	1.136	1.067	1.328	1.229	1.189	1.289	1.214	1.153	1.318	1.180	1.182	1.213
15	ł	1.434	0.000	0.000	1.342	1.499	1.552	0.000	0.000	0.000	0.000	0.000	1.427	1.971	1.511
16	l	0.000	0.000	0.000	1.752	1.916	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 8. CATCH WEIGHT (T) AT AGE OF WITCH FLOUNDER IN THE CANADIAN FISHERY IN DIV. 3NO.

AGE	1	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
5	-+- 	0	0	 0	0	0	0	0	0	0	0	0	1	0	0
6	ŀ	0	0	0	2	0	0	2	1	1	0	0	3	2	6
7	1	1	1	0	10	2	2	14	15	15	8	3	23	9	78
8	I	13	7	3	141	32	30	99	153	126	72	35	118	98	292
9	1	69	43	10	235	210	109	366	503	480	273	126	330	248	499
10	i	257	151	40	477	416	212	601	806	636	522	240	532	304	716
11	l	476	160	79	386	522	289	766	817	872	641	370	695	745	1201
12	1	253	44	102	309	416	152	732	545	608	339	329	682	833	990
13	ţ	92	15	96	236	87	40	223	121	130	101	125	249	350	456
14	1	30	0	33	. 59	23	6	43	13	8	17	13	37	38	67
15	1	0	0	0	. 15	6	0	0	0	0	0	0	6	0	8
16	1	0	0	0	4	4	0	0	0	0	0	0	0	0	0
5+	1	1191	422	363	1873	1717	840	2845	2975	2878	1972	1241	2676	2629	4312

Table 9. Average weight per set of witch flounder in NAFO Division 3N from research vessel surveys from 1971-92.

Stratum	ATC 187 1971	ATC 199 1972	ATC 208-9 1973	ATC 222 1974	ATC 233 1975	ATC 245 1976	ATC 263 1977	ATC 277 1978	ATC 289 1979	ATC 304 1980	ATC 327-329 1982	AN 27 1984	AN 43 UT 29 1985	WT 47 1986	WT 58 WT 59 1987	WT 70 1988	M 82 1989
357 358 359 360 361 374 377 377 378 378 382 382	0.0(2) 0.0(2) 0.0(4) 0.0(4) 0.0(3) 0.45(2) 0.68(2)	2.95(4) 8.47(3) 0.11(4) 0.0(3) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2) 0.0(2)	1.20(2) 2.42(3) 20.88(3) - 0.0(4) 0.0(5) 0.0(5) 0.0(5) 0.0(3) 1.36(2) 1.36(2) 2.12(3) 0.0(3)	0.0(4) 0.0(4) 0.0(4) 0.0(2) 0.0(3) 1.13(3) 1.82(2) 1.99(4) 0.0(3)	0.0(4) 1.46(4) 0.0(3) 0.0(2) 0.0(2) 0.0(2) 0.0(2)	43.28(3) 1.36(4) 0.0(5) 0.0(5) - - - 0.0(3)	7.26(2) 6.02(2) 1.82(2) 0.17(4) 0.055 0.065 0.063 0.063 13.17(2) 4.81(2) 4.81(2) 6.81(2) 6.81(2)	2.61(4) 0.0(4) 0.0(4) 0.0(4) 0.0(5) 0.0(5) 0.0(2) 11.81(2) 4.77(2)	6.50(3) 1.13(2) 2.72(4) 3.23(9) 0.14(8) 0.08(12) 0.06(4) 0.0(5) 0.0(5) 1.29(3) 7.57(3) 5.60(3) 5.60(3)	2.05(3) 0.27(3) 1.38(4) 1.18(11) 0.50(7) 0.00(8) 0.00(3) 0.00(3) 0.00(4) 0.00(3) 2.51(4) 2.50(2) 2.50(2) 1.33(3) 1.25(4)	8.50(2) 6.00(2) 6.00(2) 5.86(7) 0.17(6) 0.00(8) 0.00(5) 0.00(7) 0.00(2) 1.50(2)	0.30(2) 1.25(2) 1.25(2) 0.00(3) 0.0	4.25(2) 11.0(2) 1.1(2) 0.27(16) 0.0(7) 0.0(8) 0.0(8) 0.0(8) 0.0(2) 1.13(2) 0.9(2) 3.25(2) 0.3(2)	5.40(2) 1.20(2) 1.90(2) 1.80(13) 0.00(14) 0.00(6) 0.00(8) 1.70(2) 1.80(2) 1.50(3)	7.00(1) 6.88(2) 1.63(15) 0.08(3) 0.00(13) 0.00(13) 0.06(8) 0.06(8) 5.00(2) 11.00(2) 9.50(2) 7.00(2) 9.50(2)	0.25(2) 4.00(2) 4.00(2) 0.26(7) 0.00(10) 0.00(5) 0.00(6) 0.	1
283 723 724 725 726 727		0.0(2)	0.0(2)			0.0(3)	0.0(3)	0.0(3)	0.0(3)	0.00(4)	0.00(2)	0.00(3)		0.00(4)	0.42(3)	0.00(3)	(S)
Biomass (t) Lower limit Upper limit	, 432 t -3982 t 4847	406 -499 1316	754 -984 2491	78 29 126	218 123 560	1674 -1305 4652	768 421 1115	973 -264 2211	1165 409 1921	569 286 852	1166 -974 3306	1439 453 2424	462 -120 1044	639 96 1182	888 463 1313	1265 -567 -3097	316 1040 1671

Table 9. (continued)

WT 136-137" 1993	2.55(2) 3.83(2) 0.41(11) 0.00(7) 0.00(9) 0.00(6) 0.00(6) 0.00(2) 0.00(
WT 105-6 WT 119-120 1991 1992	1.10(2) 1.34(2) 0.00(2) 0.00(14) 0.00(15) 0.00(15) 0.00(2) 1.11(2) 1.15(2) 0.00(2) 0.00(2) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1) 1.20(1)	
UT 105-6 1991	0.00(2) 0.00(2) 0.00(12) 0.00(12) 0.00(10) 0.00(11) 0.00(2)	
WT 94-96 1990	0.77(2) 1.60(2) 0.00(15) 0.00(15) 0.00(10) 0.00(10) 0.00(10) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(2) 0.00(3) 0.00(3) 0.00(3) 0.00(3) 0.00(3) 0.00(3)	
Stratum	357 358 358 359 360 361 362 373 374 375 377 378 378 378 378 379 381 382 381 382 383 724 725 726 726 727 727 727 727 727 726 727 727	

*Preliminary analysis.

Table 10. Estimated biomass (tons) per stratum of witch flounder from research vessel surveys in Div. 3N from 1971-92.

Stratum	Depth (fath)	Area (sq. n. m.)	Units (000s)	1971	1972	1973 1	1974 1	1975 1	1976 19	1977 18	1978 19	1979 1980	30 1982	1984	1985	35 1986	6 1987	1988	1989	1990	1991	1992	1993 a
375	<=30	1593	120	36	0	0	0	0	0	٥	1	0	0	o	0	0	0	0					0
376		1499	113	٥	0	0	0	0	0	٥		0	0	0		0	0		0				
											-	1	1			-	- (-					
360	31-50	2992	225	0	22	0	0	0	305	38	-		•					366 896	2				92
361		1853	139	0	0	0	0	203	Ö	63	0		70	24								0	0
362		2520	189	34	0	ø	o	٥	0	6	0		5 6			44	38	on					0
373		2520	189	0	0	0	0	0	0	٥	69	15	0	0			0			0			0
374		931	70	0	0	0	0	0	0	0	0	0	0	0	0						0	0	10
383		674	51	8	0	0		0		•			0	0		ह		21 0			-	- {	
					}							-		-	1	1				ĺ	l		
359	21-100	421	32	0	268	99	0		1368	28	0	98		1	3	35 (. 09	28 126	6 133		0		10
377		16	œ	0	0	0	80	0	0	66	6		19	0					2 17		0	0	0
382		2	64	۰	0	٥	0	0	0	30	0	0	39	0	0	0	0	9		0	0		0
358	101-150	225	17	0	20	41	0	0	٥	102	0			42	[69
378		139	5	7	မှ	4	30	0	0	20	123	79	92	21	13	12 1	18	91 14	17	7 0	4	12	0
381		182	4	9	12	0	0	15	0	74	155	-		14	17	*			- {				0
																				;			
357	151-200	\$	12	0	0	15	0	0		83	0		25 1	105		52 6			3 20				31
379		106	ထ	o,	0	ιp	4	•	0	114	38	45		12	19		4	88 21		1 27	7 2	თ	0
380		116	တ	0	48	18	17	0		59	0		l	0		28		Ì	7 4				0
723	201-300	155	12	0	0	0	0	0	0	0	0	٥.	0	0	0	0	0				32	! -	30
725		105	æ	0		0	Ф	0	0	0	0	, O	0	0	0	0	0	0	0	0	0 27	თ	18
727		160	12		0	٥	۰	0	0	0	-	0	0	0			0					e	23
								,															
724	301-400	124	6	0	0	0	0	0	0	0	0	0	0		0	0	0				112	71	93
726		72	S.	0	0	0	0	0	0	Đ	0	0	0	0		0	0	0	0	0	0 38		16
728		156	12	٥		0	0	0	0		٥	0	0	0	0	0	0					=	57
																						·	
				432	408	3 5	70	218 . 1	. 1673	116	972 1	1165 5	570 11	1166 14	1438 40	462 64	64 1 96	965 1265	5 316	118	3 263	226	445
Biomass (tons)	2-5																						
Lower limit				-3282	4	-96 -	, 82	-123 -1	-1305	421	-264	409 20	286 -9	-974 4	453 -1;	-120	36 46	463 -567	7 -1040	φ 0	34-734	\$	Š
Upper limit				4847	1316	2491	126	560 4	4652 1	1115 2	2211 19	1921 8	852 33	3306 24	2424 1044	44 1182	32 1313	13 3097		ię-	1259	348	CNK

Table 11. Average weight per set of witch flounder in NAFO Division 30 from research vessels surveys from 1973-92.

	6,031 280 11781	5,237 2955 7519	12,175 4795 19555	5,996 3632 8360	4,675 2502 6848	13,735 7922 19549	6,014 3800 8228	9,187 -5569 23942	4,240 -5549 14030	4,309 -434 9051	1,425 900 1951	2,760 572 4947	2,808 557 5059	9,025 -24552 42602	2,609 1125 4093	4,899 1960 7837	Biomass (t) Lower limit Upper limit
			,	•		•	•		,	•	•	•	,	•	•	•	722
	•		,	,	•	•	ı	•		,	•	ì	•	•		·	721
					•	•	•	•	•		•			•	•	•	720
	,		٠,		•		•	•	•		•		•	•	•	,	719
	•	• .					•	•		,	•	•		,	•	,	718
			,			•	•	•			,	•	,		1		717
	7.24(2)	2.90(2)		2.15(2)	2.10(2)	8.75(2)	0.50(2)		0.85(2)	27.50(2)	0.68(2)	•			į	0.91(2)	
	6.07(2)	6.10(2)			2.60(2)	13.0(2)	4.00(2)	12, 75(2)	1.90(2)	2.75(2)	0.45(4)	,	•	4.99(2)	2.72(2)	0.23(2)	•
	3.95(2)	0.47(2)			17.00(3)	2.0(3)	8.00(2)	7.50(2)	0.25(2)	8.50(3)	1.19(4)	r	2.27(2)	14.07(3)	•	22.40(3)	
	10.76(6)	17.32(7)		12.08(6)	7.70(7)	8.33(6)	25.00(2)	23.83(3)	•	7.50(4)	1.59(5)	11.36(3)	8.78(3)	11.80(2)	7.42(3)	18.77(3)	
	5.27(13)	2.02(13)			0.70(14)	3.32(11)	0.29(7)	0.61(7)		3.14(11)	0.87(6)	0.34(4)	0.23(5)	0.17(4)	2.83(4)	0.09(5)	7
	0.33(12)	0.74(13)			1.60(14)	0.87(9)	2.23(6)	0.39(9)	19.50(4)	0.65(10)	0.91(11)	0.0(5)	0.32(5)	0.0(4)	0.67(4)	0.14(5)	
	0.04(9)	0.00(9)			0.00(8)	0.64(9)	0.13(4)	0.07(6)	0.40(3)	0.0(2)	3.15(7)	0.57(2)	0.0(3)	2,1976)	0.0(3)		
	0.00(3)	0.00(3)		3.40(3)	0.10(3)	0.0(3)	4 00(2)	0.45(4)	6.75(2)	,	2,42(3)				0.0(2)	2,95(2)	
	1.66(8)	8.50(10)	12.13(8)	5.21(9)	5,30(9)	32,22(9)	0.70(5)	0.28(5)	,	4.40(5)	0.32(7)	0.14(5)	3 63(4)	10,74(3)	5.00(2)	13,26(5)	
	13.65(5)	12.33(5)		12.57(6)	11,60(5)	20.7(5)	0 45(2)	1 67(3)		2 17(3)	7770	1 25(2)	(2)27 2	4 5/(2)	(2)(7)	2 80.43	
	2,42(2)	0.00(2)		1.30(2)	2.00(2)	0.5(2)	0.50(2)	15 00(2)	. •	12 50(2)	0.28(6)	1 50(2)	K 81(2)	15 80(2)	1 25/2)	0.5(2)	32,5
	10.18(2)	2.50(2)		0.10(2)	1.90(2)	12, 15(2)	0.0723	2 25(2)		7 17(3)	0 0723	(2)67		(2)69 7		(2)0	445
	1.85(2)	1.55(2)		0.07(2)	2.50(2)	3.25(2)	0.0(2)	9.07(4)		1.75(2)	0.38(3)	1.36(3)	0.11(2)	1.36(2)			334
	5.88(2)	0.40(2)		0.00(2)	0.30(3)	2.38(2)	0.40(2)	19.38(4)		3 25(2)	0.34(2)	1.51(3)	0.23(2)	1.59(2)	0.68(2)	,	333
	29.52(5)	10.35(5)		22.96(5)	15.50(6)	61.5(5)	19.0(2)	72.75(4)	!	15.50(2)	0.40(4)	10,76(3)	9.69(3)	12,41(3)	3.40(2)		
	•	0.00(2)		0.03(2)	0.50(4)	5.5(3)	28.83(3)	0.07(4)	,	6.25(2)	0.76(3)	6.14(2)		0.0(2)	0.0(2)	0.0(2)	
	0.00(10)	0.00(11)		0.00(11)	0.00(9)	0.0(10)	0.0(4)	0.0(7)	1.13(4)	0.0(2)	1.62(7)	0.42(6)	0.0(3)	0.0(3)	0.15(3)	0.15(6)	
	0.12(7)	0.24(9)	3.29(7)	0.00(9)	0.00(8)	0.0(8)	0.0(5)	0.0(6)	0.0(2)	0.0(2)	0.04(6)	0.96(5)	1,36(3)	29.96(2)		0.0(2)	
、	WT 94-96 1990	WT 82 1989	WT 70 1988	WT 58-59 1987	WT 47 1986	AN 43 1985	AN 27 1984	327-329 1982	318-319 1981	ATC 303 1980	ATC 291 1979	ATC 277 1978	ATC 263 1977	ATC 245 1976	ATC 233 1975	208, 209 1973	Stratum
									ATC				•			ATC 207.	

Table 11. (Continued)

	-	1	
1993*		0.00(6) 0.00(7) 0.00(7) 2.56(4) 2.48(2) 1.14(2) 1.14(2) 3.90(2) 1.08(6) 0.00(6) 0.00(6) 0.00(6) 0.18(7) 1.27(4) 1.76(2) 1.57(2) 2.72(2) 2.72(2) 2.73(2) 2.73(2) 2.73(2) 3.43(2) 7.57(2)	N/N
1992	WT 119-120	0.00(8) 0.00(10) 0.00(10) 13.85(5) 2.88(2) 7.73(2) 7.73(2) 74.90(2) 0.00(2) 0.	5833
1991	WT 105-6	2.24(9) 0.00(11) 17.68(6) 19.55(2) 1.80(2) 24.93(2) 12.54(5) 0.00(10) 0.00(10) 0.00(1) 0.00(2) 2.08(3) 7.00(2) 3.85(2) 15.20(2) 15.20(2) 15.20(2) 15.20(2) 17.32(2)	2664
	Stratum	329 330 331 332 333 334 334 335 336 337 338 339 340 351 351 351 352 355 356 717 718 719 720 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 721 720 720 720 720 720 720 720 720 720 720	

*Preliminary.

 ${
m Table} \ 12$. Estimated biomass (form) per stratum of witch flounder from research vessel surveys in Division 3O from 1973-92.

	5		25	1973	1975	1976	285	18/81	19/9	1880	נ	1987	5	382	8	1961	1326	203	200	- 50	766	2000
	Œ.	(sq. n. M.)	(\$000)																			
														j				ŀ		•	•	
330	31-50	2089	157	አ	*	0	0	8	7 5	0	111	0	0	0	0	0	5	0	0	0	0	0
331		456	z	0	0	0	0	210	5 9	214	0	~	286	2 8	11	-	Z	0	0	0	0	_
338		1896	142	1883	22	1530	517	8	4 e	627	0		8	4590	755	742	1728	1211	237	0	99	\$
340		1716	129	0	0	282	0	2	406	0	25	თ	17	85	0	‡	0	0	ĸ	0	75	0
351		2520	189	92	127	0	5	0	172	123	3689	7.	4 22	165	303	163	613	140	8	0	0	0
352		2580		11	8 7 8	33	45	8	99	803	0	118	99	3	136	2	813	391	1021	23	8	35
353	1	1282	86	1806	714	1136	845	1093	153	722	-	2293	2406	803	741	1162	4205	1667	1035	۰	₹	122
															.							-
329	51-100	1721	129	0	0	3870	176	124	မာ	0	0	0	0	0	0	0	425	31	16	283	0	0
332		1047	62	0	267	975	762	84 6	۳	1218	0	5718	1493	4833	1218	1804	3181	613	2320	1390	1088	ğ
337		25	7	8	4	465	258	8	0	\$	0	119	32	2113	825	16	539	877	971	892	349	278
339		585	‡	130	٥	0	0	2 5	106	0	982 238	2	176	0	*	149	8	0	0	0	0	0
355		474	36	797	0	50	81	0	42	302	6	267	285	71	605	151	231	12	<u></u>	*	2	휣
															ļ							-
333	101-150	151	Ξ	0	8	18	3	17	4	37	0	220	2	77	က	0	g	G	67	222	33	ĸ
336		121	6	Ģ	Ξ	<u>‡</u>	62	7	ო	*	0	136	Ø	တ	48	7	23	o	23	5 2	089	4
358	,	103	œ	2	21	39	0	0	က	21	15	98	31	É	20	37	-	47	4	3	리	7
																				Ì		
334	151-200	35	7	0	0	6	1	6	6	12	0	9	0	ដ	11	0	9	=	5	12	53	æ
335		8	•	0	0	8	0	n	0	31	0	우	0	ß	•	0	27	=	\$	7	266	*
356		61	40	*	0	0	٥	0	3	126	4	0	2	\$	2	2	6	13	33	18	57	ដ
		į																				
717	201-300	93	7	0	•	٥	•		-	٥	0	0	0	0	0	0	0	0	0	4	38	=
719	•	76	ø	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	67	Š	9
721		76	9	0	0	٥		٥		0	9	0	•	0	۰	٥	٥	0	0	S	8	12
718	301-100	141	60	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	٥	0	9	00	8
720		105	60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	8	€
722		83	7	٥	0	0	0	0	0	٥	٥	0	٥	0	٠	9	٥	0	9	8	8	က်
Blomess (tons)				4900	2609	9023	2809	2761	1426	4310	4241	9186	6015	13736	4681	2865	12146	5234	6033	788	3888	1549
Lower Ilmit				1960	1125	-24552	557	572	_	* **		-5569	3800	7922	2502		4795		280	1299	1936	ž
I fame r Danie				100	***			•										41.1			-	ž

Table 13. Comparison of results from spring and fall research vessel surveys in 1990-92 for witch flounder in Div. 3NO.

Index	Div. 3N	Div. 30	Total
Abundance ('000)	145	9293	9438
Biomass (t)	83	6031	6114
Abundance	489	11351	11840
Biomass	434	8955	9389
Abundance	672	5880	6552
Biomass	263	3482	3745
Abundance	957	3212	4169
Biomass	777	2106	2883
Abundance	501	6982	7483
Biomass	216	3885	4101
Abundance	1700	6026	7726
Biomass	1267	3536	4803
in 200 fm surveyed.			
	Abundance (1000) Biomass (1) Abundance Biomass Abundance Biomass Abundance Biomass Abundance Biomass Abundance	Abundance ('000) 145 Biomass (t) 83 Abundance 489 Biomass 434 Abundance 672 Biomass 263 Abundance 957 Biomass 777 Abundance 501 Biomass 216 Abundance 1700 Biomass 1267	Abundance ('000)

Table 14. Mean number per set of witch flounder, by age, from Canadian research vessel surveys in Div. 30 during 1984-92 (S=spring, F=fall).

				1 ,		Ϋ́	ear		A ST AND AND STATE OF	·····			ter and the second of the second of
	Age	1984	1985	1986	1987	1988	1989	1990 (S)	1990 (F)	1991 (S)	1991 (F)	1992 (S)	1992 (F)
	1	*	-	-	•	-	-	•	•		<u> </u>	•	-
	2	-	-	-	•	-	-	0.04	-	-	-	-	-
	3	-	-	-	-	0.01	-		0.01	-	•	-	-
	4	-	0.01	0.02	` -	•	-	-	-	-	-		-
	5	-	0.10	0.01	0.01	0.01	-	-	0.01	0.02	0.01	0.04	-
	6	0.06	0.08	0.06	0.07	0.02	-	0.01	0.01	0.06	0.01	0.04	0.03
	· 7	0.12	1.22	0.26	0.22	0.12	0.02	0.19	0.11	0.15	0.07	0.19	0.27
	8	0.94	5.88	0.66	0.50	0.97	0.07	0.58	0.44	0.36	0.25	0.58	0.74
	9	1.59	5.44	1.09	. 1.59	1.85	0.25	0.67	0.89	0.45	0.29	0.88	1.04
	10	1.70	2.58	0.90	1.60	2.93	0.59	1.13	1.66	0.69	0.41	1.05	0.80
	11	2.51	0.47	1.00	1.23	4.48	1.39	1.94	2.34	1.24	0.75	1.13	1.00
	12	1,14	0.04	0.52	0.96	3.52	1.89	1.64	1.81	0.88	0.51	0.76	0.49
)	13	0.26	-	0.13	0.25	1.19	1.00	0.81	1.06	0.32	0.05	0.33	0.07
]	14	0.16	_	0.01	-	0.11	0.18	0.11	0.10	80.0	-	0.01	0.06
ŧ	15	•	-	-	-	-	0.02	-	-	-	-	-	•
Total		8.48	15.82	4.66	6.43	15.21	5.41	7.10	8.44	4.26	2.35	5.04	1.70

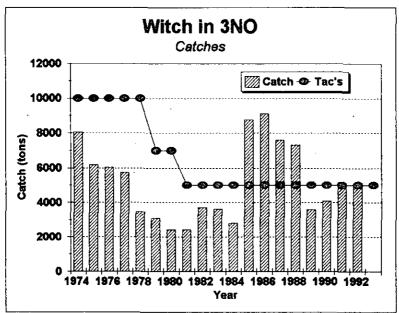


Fig. 1. Commercial catches of witch flounder in Div. 3NO from 1974-92 and TAC's 1974-93. The catch in recent years includes estimates of those non-reported.

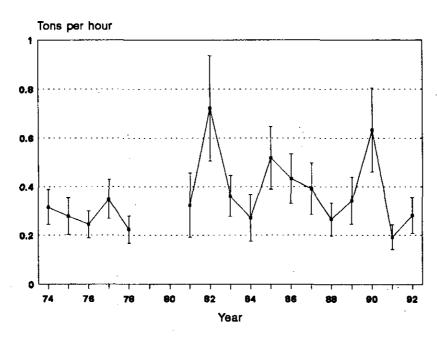


Fig. 2. Standardized CPUE with approximate 95% confidence intervals for Witch flounder in Div. 3NO from 1974-1992.

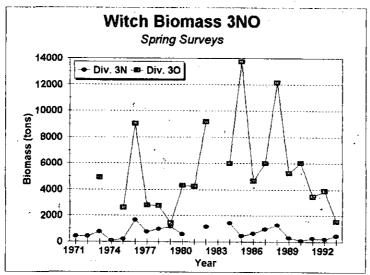


Fig. 3 Biomass estimates of witch flounder in Div. 3NO from Canadian spring surveys during 1971-93.

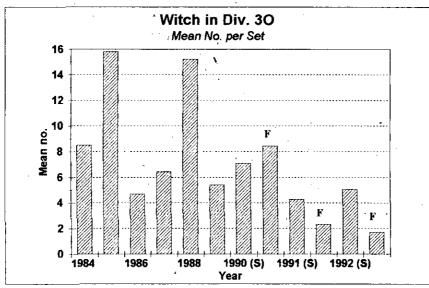
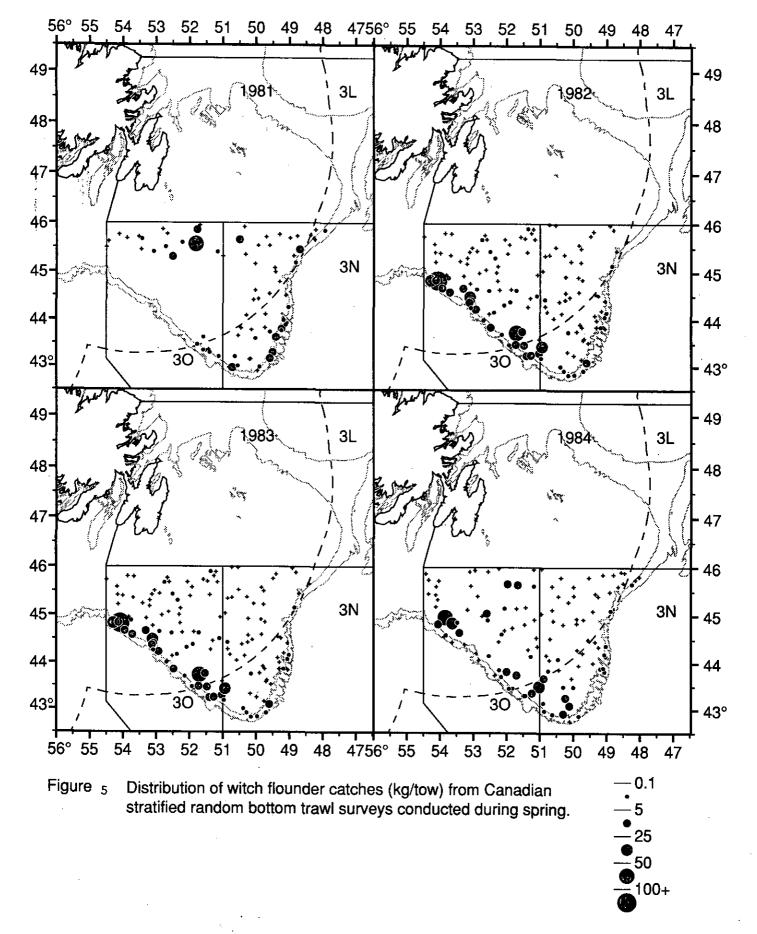
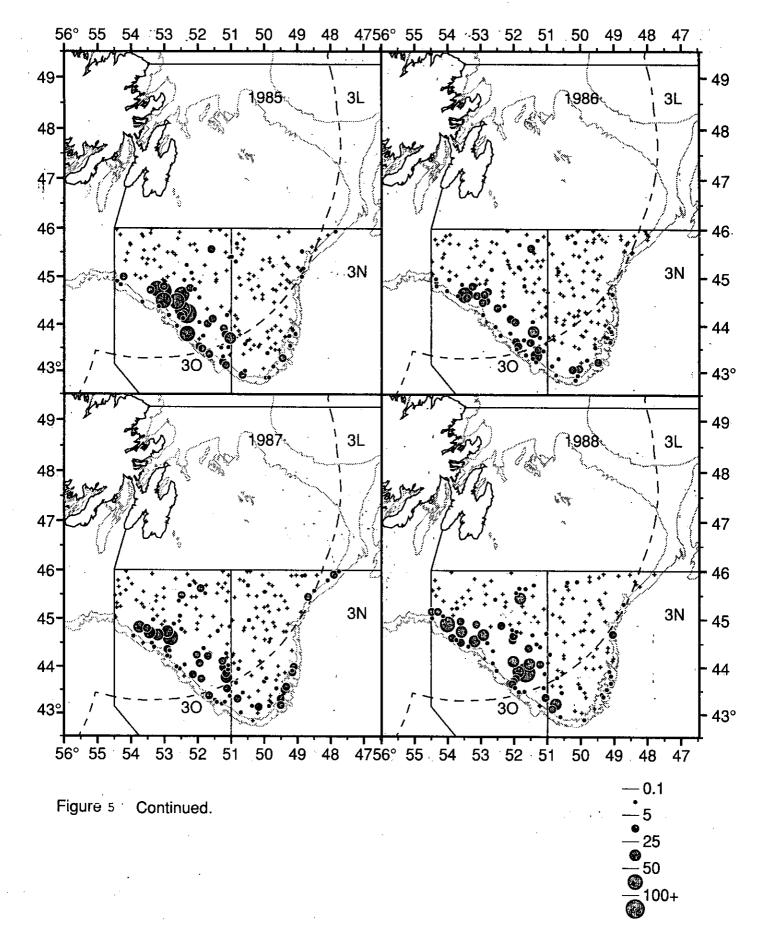
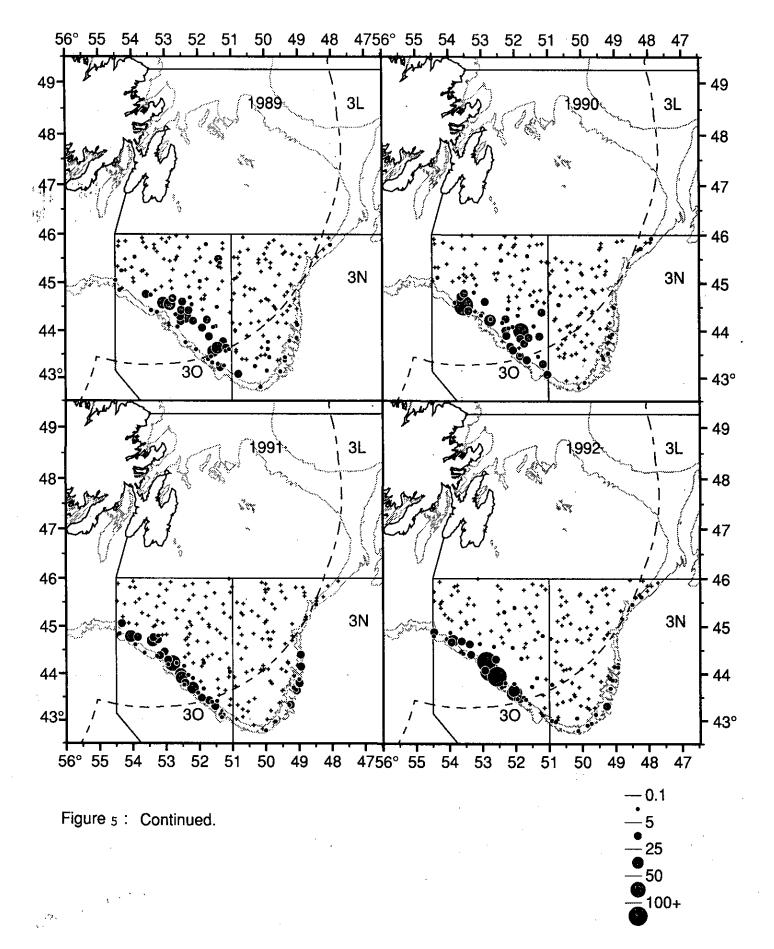
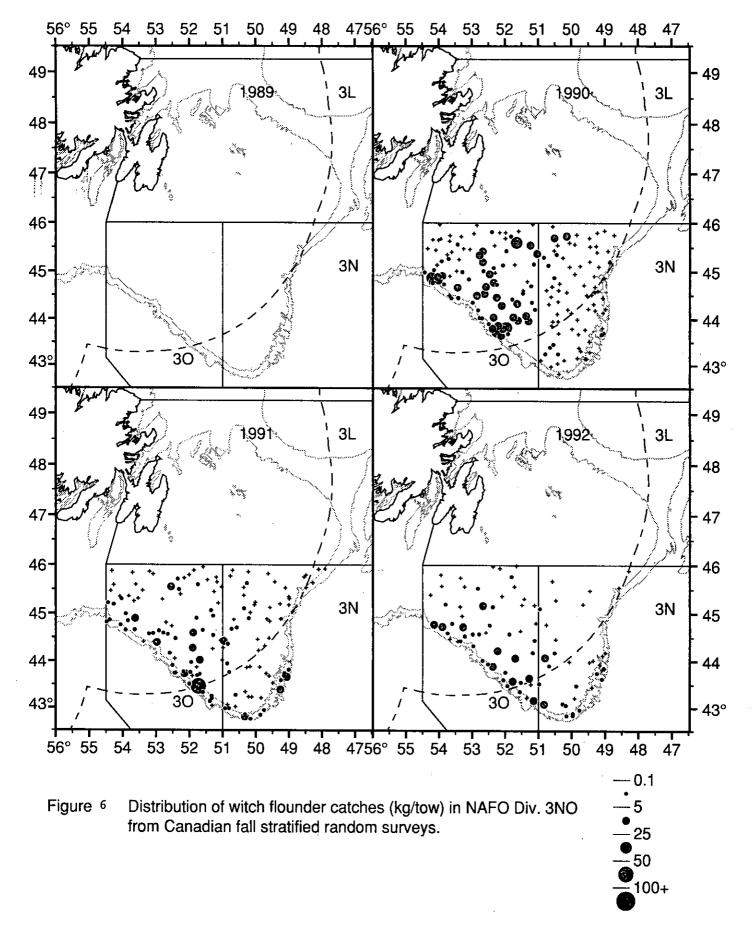






Fig. 4 Mean number of fish caught per set of witch flounder from Canadian research vessel surveys in Div. 30 during 1984-92 (S=spring, F=fall).

