Northwest Atlantic

Fisheries Organization

Serial No. N2297

NAFO SCR Doc. 93/104

SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1993

Northern Shrimp (Pandalus borealis) Stock on Flemish Cap in June-July 1993

by

Carmen Sainza

Instituto de Investigaciones Marinas Muelle de Bouzas, Vigo, Spain

The shrimp population (<u>Pandalus borealis</u>) during the survey on Flemish Cap in June-July 1993 was analyzed. The survey was conducted from June 23th to July 8th. Results are presented in this paper and compared with those previously observed.

MATERIAL AND METHODS

The survey was conducted following the same method as in previous year (Vázquez, 1993). The 1993 survey comprise 101 valid tows. Two of the deepest strata: 14 and 18, were not sampled. Only one tow was made in stratum 17. Shrimp biomass in missing strata were calculated assuming the constancy of the ratio between the biomass in that stratum and the biomass in strata of the same depth range zone, as well as in the above and below contiguous depth range zones. The previous five surveys were used to calculate a mean value of this ratio.

Whenever shrimp appeared in the trawls, samples of approximately 1 Kg were taken. Samples were conserved by freezing for laboratory analysis, following the same procedures as in previous years (Mena, 1992).

Sex was identified by observation of the endopod of the first pleopod (Rasmussen, 1953). Individuals changing sex were included with the males. Females were classified into inmature (first time spawners) and mature (spawned previously) according to their sternal spines (McCrary, 1971). No ovigerous females were found this year as also occured in 1992 survey, because the spawning period in this zone begins at the end of July or early August (Mena, 1991) and the survey was earlier.

The oblique carapace length (OCL): distance from the base of the eye to the posterior dorsal edge of the carapace (Shumway et al., 1985) was used as a size reference. The lateral carapace length (CL) (Horsted and Smidt, 1956) was used in all previous surveys. The relationship between both measurement was analyzed with data from 1992 survey. Length frequency distributions from all previous surveys were

La Charles Williams

actually transformed to the equivalent oblique carapace length size reference.

RESULTS

Total shrimp biomass by the swept area method in the last six years is shown in the Table 1. The increase observed in 1991 and 1992 was followed for a notable reduction in 1993.

Length frequencies by sex are shown in Table 2. Length frequencies by strata (Table 3) follow the characteristic distribution of this species observed in previous years: shrimps do not appear in depths shallower than 257 m (140 fathoms). The smaller individuals (OCL between 13 and 18.5 mm) occupy shallower strata, between 259 and 368 m (141-240 fathoms). Individuals greater than 18.5 mm of OCL are distributed in depths between 259 m (141 fathoms) and 552 m (300 fathoms). Shrimps are scarce in greater depths than 552 m.

Shrimp biomass estimated by strata from 1988 to 1993 is shown in Table 4. Strata characterized by the abundance or scarcity of shrimps are approximately the same every year, which indicates that their distribution pattern is stable.

REFERENCES

- Horsted, S.A. and Smidt, E.-1956. The deep sea prawn (<u>Pandalus</u> <u>borealis</u>) in Greeland waters. <u>Meddr. Danm. Fisk.-og HavUnders</u>, I(11): pp 1-118.
- McCrary, J.A.- 1971. Sternal spines as a characteristic for differentiating between females of same pandalidae. <u>J. Fish. Res. Bd. of Canada</u>, 28: pp 98-100.
- Mena, I.- 1991. Northern prawn (<u>Pandalus borealis</u>) length distribution and fecundity in Flemish Cap. <u>NAFO SCR Doc.</u> 91/29, 7 pp.
- Mena, I.- 1992. Northern prawn (<u>Pandalus borealis</u>) stock in Flemish Cap. <u>NAFO SCR Doc</u>. 92/66, 2pp.
- Rasmussen, B.- 1953. On the geographical variation on growth and sexual development of the deep sea prawn (<u>Pandalus borealis</u>, Kroyer). <u>Fisk Dir. Skr. Ser. HavUnders.</u>, 10 (3): pp 1-160.
- Shumway, S.E., H.C. Perkins, D.F. Schick and A.P. Stikney 1985. Synopsis of biological data on the pimk shrimp, <u>Pandalus borealis</u> Kroyer, 1883. <u>NOAA Techn. Rep. NMFS</u> 30.
- Vázquez, A.- 1993. Results from bottom trawl survey of Flemish Cap in July 1992. NAFO SCR Doc. 93/19.

TABLE 1 - Total biomass estimated by swept area method and average catch per mile.

Year	Biomass(t)	Average	catch p	er mile	(Kg)
1988	2164	1.54 ±	0.28		
1989	1923	1.37 ±	0.24		
1990	2139	1.53 ±	0.21		
1991	8211	5.83 ±	0.71		
1992	16531		1.86		
1993	9256		1.04		

TABLE 2 - Length frequencies by sex.

25.5 - 275	Length	Ind M	F:	inmat	mat	ovig	
31.5 - 4	10.0 - 10.5 - 11.5 - 12.5 - 12.5 - 13.5 - 13.5 - 14.5 - 15.0 - 15.0 - 16.5 - 17.5 - 18.5 - 19.5 - 20.5 - 21.5 - 22.0 - 21.5 - 22.0 - 23.0 - 21.5 - 22.0 - 23.0 - 24.5 - 25.5 - 26.5 - 27.5 - 28.5 - 29.5 - 29.5 - 29.5 - 20.5 - 20.5 - 21.0 - 21.0 - 22.0 - 23.0 - 24.5 - 25.0 - 26.0 - 27.5 - 28.5 - 27.5 - 28.5 - 29.5 - 29.5 - 20.0 - 21.0 -	52 182 377 1085 2580 3145 3584 2680 1449 379 531 666 1314 3017 2306 2862 1777 1687 741 602 1364 1849 1362 846 520 275 115 21 25		11 8 24 50 88 334 469 364 303 237 672 1343 2109 2168 2002 1672 1554 372 176	19 17 18 53 78 67 52 286 971 1791 4012 5993 6407 6133 4420 2850 2037 1330 69 79		M - male F - female inmat- inmature mat - mature

frequencies x 10000

TABLE 3 - Length frequencies by strata ('0000).

Depth (m): 186-257 259-368			372-552		554-73 <u>6</u>		
Strata: 6 7	8 9	10 11	12 13	15	16 17	19	total
length 10.0 - 1 10.5 - 11.0 - 11.5 -							1
	24 89 3 278 2 351 1 492 323 2 222 1 117 77 8 77 101 13 162 61 162 15 231 2 66 77 5 284 51 146 344 18 497 127 453 209 505 148 1 805 186 291 111 223 24 8 62	586 533 222 366	164 113 78 9 51 113 9 51 113 9 298 46 127 18 228 55 222 27 153 37 206 9 664 790 27 614 24 607 1062 51 1807 76 1874 94 2090 170	89 93 152 133 203 349 634 531 1052 1616 1906 2266 3095 2086 1365	14 9 9 47 79 54 5 25 31 5 48 5 62 19 70 28 92 38 126 46 58 28	177 92 232 205	52 182 377 1085 2580 3145 2689 3144 2680 1449 5317 1341 3058 2164 2234 2172 1887 3111 3658 2164 2172 1887 3185 3980 6441 8524 7826 599 3398 2409
28.5 - 84 29.0 - 29.5 -		10, 00	365 42 200 6 112 22	796 271 176	163 14 76 33 32 23	81 42 51	1546 625 416
30.0 - 30.5 - 31.0 - 31.5 -			52 17 14 6 6	17	31 5 16 5 11 5	38 11 8 4	217 69 79 4

TABLE 4 - Total biomass stimated by strata (t).

trata	Depth (fathoms)	1988	1989	1990	1991	1992	1993
1 -	70- 80				_	_,	
2 -	81-100	- .	. – .	_	–	,	- <u>- </u>
3 -	101-140		_	_	5	_	. 1
4			-	-	: ·	- ·	_
5 -	n			_	4	8	
6 -	. н	_	_	2	19	3	3
7 -	141-200	18	20	212	713	2134	1404
8 -	TT .	9	51	46	158	1130	545
9 -	Hr ·	57	47	24	150	88	109
10 -	et .	115	44	188	1499	2278	972
11 -	tt	89	_	105	733	2714	794
12 -	201-300	786	582	313	1733	3329	1786
13 -	'n	64	58	41	63	28	120
14 -	n	255	218	407	814	1640	(1161)
15 -	11	404	328	558	1485	2522	2029
16 -	301-400	308	234	239	171	303	133
17 -	Ħ	2	10	-	_	_	36
18 -	Ħ		-		_	_	(-)
19 -	• .	56	331	4	663	354	163
total	(t)	2164	1923	2139	8211	16531	9256

(no sampled strata)

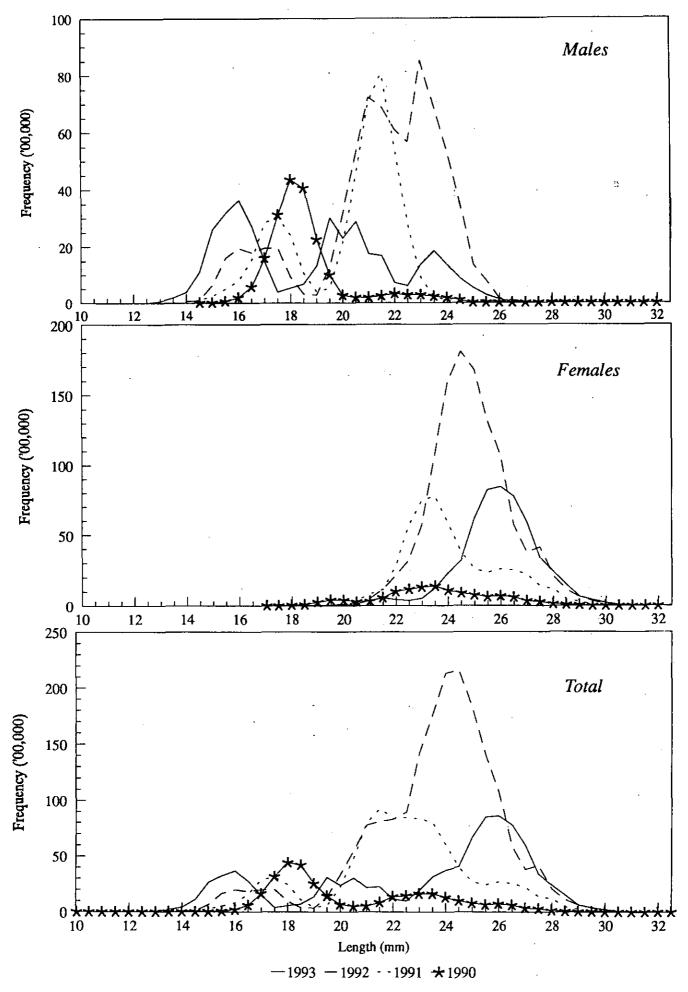


Figure 1. Shrimp length distribution on Flemish Cap, 1990-1993.

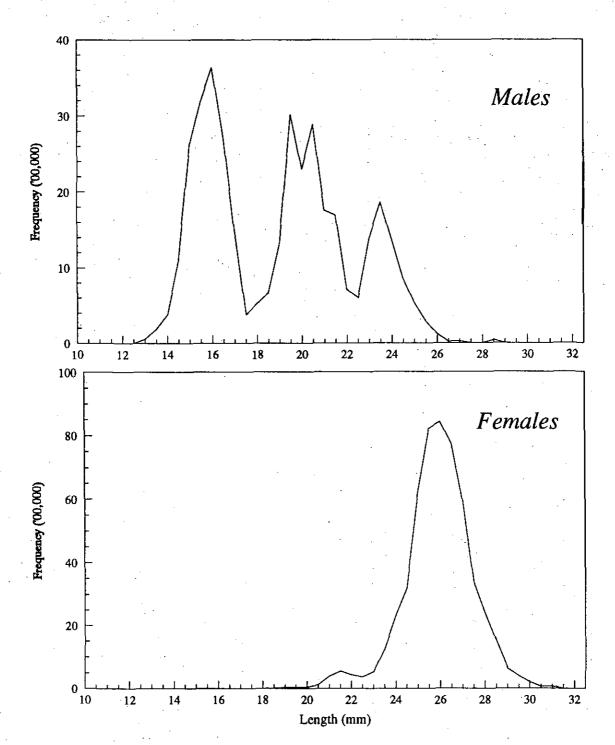


Figure 2. Shrimp length distribution on Flemish Cap in June-July 1993.