



Fisheries Organization

#### Serial No. N2319

NAFO SCR Doc. 93/125

## SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1993

# Estimating Fleet Specific F Given Catch Quotas

by

Alan Sinclair

Department of Fisheries and Oceans, Gulf Fisheries Center, P. O. Box 5030, Moncton, New Brunswick, Canada E1C 9B6

#### Introduction

The 1993 TAC's for several cod stocks in Atlantic Canada were greatly reduced from previous years to reduce fishing mortality to the  $F_{0.1}$  target. Following basic fishing theory, a reduction in F would translate into a proportional reduction in effective fishing effort. Fishing effort may be reduced by reducing the efficiency of fishing operations by directing effort to periods when fish are less aggregated and thus harder to catch, or by reducing the efficiency of the gear (e.g. by increasing mesh or hook size). Fishing effort may also be reduced by reducing the time at sea, either by reducing the number of days fished per unit or by reducing the number of units.

This paper presents a methods for estimating the relative change in fleet specific F that is implied by a reduction in stock-wide F. The approach assumes that fleet quotas will be set based on a proportional sharing of the TAC. It requires fleet specific catch at age data as well as estimates of F at age for the population. Data from Div. 4TVn(J-A) cod were used as an example. In this case there are two main fleets, fixed gear, made up of gillnets, longlines and handlines; and mobile gear, made up of otter trawls and seines. The results of such calculations may be useful in planning fleet effort reduction strategies.

# <u>Methods</u>

Estimates of F at age (i) in a given year (j) from SPA were partitioned among gears (k) using the gear specific catch at age.

$$F_{ijk} = \frac{F_{ij} C_{ijk}}{\sum_{k} C_{ijk}}$$

The average F at age for the gear was calculated over a suitable range of recent years. In this case the average over three years, 1989-91 was used.

The current management plan for Div. 4TVn cod shares the TAC among the fleets as 25% fixed and 75% mobile. Assuming a 1993 TAC of 13,000 t, the fleet quotas  $(Y_k)$  would be 3,250 t and 9,750 t respectively.

The relative change in F needed by fleet sector to attain the 1993 TAC was estimated in the following manner. Catch at age by gear  $(C_{ik})$  and the yield to each gear sector  $(Y_k)$  in 1993 were calculated as

$$C_{ik} = N_i \frac{\left(1 - e^{-(M + \sum_{k} F_{ik})}\right) F_{ik}}{M + \sum_{k} F_{ik}}$$

$$Y_k = \sum_i C_{ik} W_i$$

where

Ni

 $M = W_i =$ 

the population at age i at the beginning of 1993 0.2 the average weights used in catch projections

I used an iterative approach to find the gear specific F vectors which satisfied the yield constraints. This consisted of starting with the average F for both gears, then calculating

the catch at age and yield for one gear. The yield was compared to the target quota. The gear specific F was adjusted by the ratio of the target yield to the estimated yield. The process was repeated until the correct F for that gear was found. While holding this F constant, F for the second gear was adjusted to satisfy the respective quota. If the estimated yields differed from the targets, the procedure was repeated. A flow chart is given in Figure 1. The methodology is described in Sinclair (1993).

t

## Example.

An example using data for the Div. 4TVn cod stock is given below. Catch at age and by gear sector were obtained from the relevant assessment documents (Chouinard, et al. (1990), Hanson, et al. (1991), Hanson, et al. (1992)). Winter catches of 4TVn cod in 4Vs were taken from Hanson and Nielsen (1992). These are given in Table 1. The most recent estimates of F for the stock are also given in Table 1 (G. Chouinard, pers. comm.), as well as the annual gear specific F at age.

Table 2 presents the results of the calculations of gear specific F at age, catch at age, and yields from 1993-1997 at fishing mortalities needed to attain a 25%-75% fixed/mobile gear sharing of the 1993 TAC. The line labeled "Mult." in Table 2 gives the effort multiplier needed to attain these catch quotas. The results indicate that fixed gear F needs to be reduced to .98 the 89-91 average. Mobile gear F needs to be reduced to .27 the 89-91 average. The difference in the required reductions is consistent with the recent trend of the fixed gear fleet not catching its quota.

## <u>References</u>

Chouinard, G. A., G. A. Nielsen, L. Currie, J. Murphy. 1990. Stock status of the southern Gulf of St. Lawrence cod stock (4T and 4Vn (Jan.-Apr.)) in 1990. CAFSAC Res. Doc. 90/46

Hanson, J. M., G. A. Chouinard, G. A. Nielsen, L. Currie. 1992. Status of the 4T-Vn (Jan.-Apr.) cod stock in 1992. CAFSAC Res. Doc. 92/55

- Hanson, J. M., G. A. Chouinard, G. A. Nielsen, L. Currie. 1991. Stock status of the southern Gulf of St. Lawrence cod stock (4T and 4Vn (Jan.- Apr.) in 1991. CAFSAC Res. Doc. 91/49
- Hanson, J. M. and G. A. Nielsen. 1992. Catches of 4T-Vn (Jan.-Apr) cod in the 4Vs winter fishery, 1980-1992. CAFSAC Res. Doc. 92/51

Sinclair, A.F. 1993. Partial recruitment considerations in setting catch quotas. Can. J. Fish. Aquat. Sci. 50: 734-42. Table 1: Gear specific catch and F at age for 4TVn cod from 1989-91.

| Catch at age |            |      | •      |             |       |       |       |       |       |
|--------------|------------|------|--------|-------------|-------|-------|-------|-------|-------|
| B-           | Fixed Gear |      |        | Mobile Gear |       |       | Total |       |       |
| Age          | 1989       | 1990 | 1991   | 1989        | 1990  | 1991  | 1989  | 1990  | 1991  |
| 3            | 2          | · 14 | 27     | 54          | 442   | 203   | 56    | 460   | 232   |
| 4            | 96         | 99   | 345    | 1268        | 2516  | 4245  | 1368  | 2638  | 4634  |
| 5            | 282        | 203  | 693    | 4838        | 6570  | 8492  | 5134  | 6833  | 9273  |
| 6            | 619        | 489  | 504    | 10100       | 9431  | 8120  | 10748 | 9999  | 8703  |
| 7            | 783        | 520  | 399    | 8885        | 9041  | 6816  | 9693  | 9642  | 7278  |
| 8            | 609        | 431  | 355    | 6141        | 6140  | 3934  | 6767  | 6628  | 4329  |
| 9            | 645        | 341  | 242    | 6393        | 3921  | 2494  | 7055  | 4294  | 2761  |
| 10           | 772        | 448  | 152    | 4100        | 3955  | 1315  | 4885  | 4435  | 1480  |
| 11           | 223        | 296  | 146    | 705         | 1661  | 750   | 930   | 1975  | 905   |
| 12           | 103        | 79   | 97     | 326         | 282   | 435   | 430   | 364   | 537   |
| . 13         | 50 ·       | 37   | 30     | 98          | 77    | 56    | . 148 | 115   | 87    |
| 14           | 18         | 21   | 10     | 30          | 17    | 15    | 48    | 38    | 25    |
| 15           | 13         | 27   | 3      | 24          | 5     | 14    | 37 ·  | 32    | 17    |
| 16           | 2          | 19   | 5      | 13          | 10    | 3     | 15    | 29    | 8     |
| Total        | 4217       | 3024 | 3008 · | 42975       | 44068 | 36892 | 47314 | 47482 | 40269 |

F at age

|    | · .   |       | Fixed C | Jear  | Mobile Gear |       | Total |         |       |       |
|----|-------|-------|---------|-------|-------------|-------|-------|---------|-------|-------|
| A  | \ge . | 1989  | 1990    | 1991  | 1989        | 1990  | 1991  | 1989    | 1990  | 1991  |
|    | 3.    | 0.000 | 0.000   | 0.000 | 0.001       | 0.006 | 0.002 | 0.001   | 0.006 | 0.002 |
|    | 4     | 0.002 | 0.002   | 0.006 | 0.028       | 0.045 | 0.071 | 0.030   | 0.047 | 0.078 |
|    | 5     | 0.007 | 0.006   | 0.017 | 0.115       | 0.196 | 0.211 | 0.122   | 0.204 | 0.230 |
|    | 6     | 0.019 | 0.018   | 0.025 | 0.318       | 0.345 | 0.402 | 0.338   | 0.366 | 0.431 |
|    | 7     | 0.035 | 0.031   | 0.027 | 0.401       | 0.542 | 0.466 | 0.438   | 0.578 | 0.498 |
|    | 8     | 0.045 | 0.040   | 0.046 | 0.456       | 0.566 | 0.509 | 0.502   | 0.611 | 0.560 |
|    | 9     | 0.052 | 0.056   | 0.049 | 0.518       | 0.640 | 0.506 | 0.572 · | 0.701 | 0.560 |
|    | 10    | 0.114 | 0.090   | 0.058 | 0.603       | 0.795 | 0.498 | 0.719   | 0.892 | 0.560 |
|    | 11    | 0.184 | 0.110   | 0,072 | 0.581       | 0.616 | 0.371 | 0.767   | 0.733 | 0.448 |
|    | 12    | 0.209 | 0.174   | 0.081 | 0.661       | 0.621 | 0.363 | 0.872   | 0.802 | 0.448 |
|    | 13    | 0.247 | 0.166   | 0.154 | 0.484       | 0.345 | 0.288 | 0.731   | 0.515 | 0.448 |
|    | 14    | 0.277 | 0.461   | 0.179 | 0.462       | 0.373 | 0.269 | 0.739   | 0.834 | 0.448 |
| 7+ |       | 0.145 | 0.141   | 0.083 | 0.521       | 0.562 | 0.409 | 0.668   | 0.708 | 0.496 |

Table 2: Estimates of gear specific F at age, catch at age, and yields for fixed and mobile gears fishing 4TVn cod in 1993-97.

|    | Mean F | 89-91  | Frequ | lired for T. | AC of 13 kt | •     |     |
|----|--------|--------|-------|--------------|-------------|-------|-----|
|    | Fixed  | Mobile | Fixed | Mobile       | Total       | Ŵt    | М   |
| 3  | 0.000  | 0.003  | 0.000 | 0.001        | 0.001       | 0.536 | 0.2 |
| 4  | 0.003  | 0.048  | 0.003 | 0.013        | 0.016       | 0.666 | ••• |
| 5  | 0.010  | 0.174  | 0.010 | 0.047        | 0.056       | 0.823 |     |
| 6  | 0.021  | 0.355  | 0.020 | 0.095        | 0.115       | 0.980 |     |
| 7  | 0.031  | 0.470  | 0.031 | 0.126        | 0.156       | 1.154 |     |
| 8  | 0.044  | 0.510  | 0.043 | 0.136        | 0.179       | 1.302 |     |
| 9  | 0.052  | 0.555  | 0.051 | 0.148        | 0.200       | 1.372 |     |
| 10 | 0.087  | 0.632  | 0.086 | 0.169        | 0.255       | 1.478 |     |
| 11 | 0.122  | 0.523  | 0.120 | 0.140        | 0.260       | 1.709 |     |
| 12 | 0.155  | 0.548  | 0.152 | 0.147        | 0.299       | 1.934 |     |
| 13 | 0.189  | 0.372  | 0.186 | 0.100        | 0.285       | 2.467 |     |
| 14 | 0.306  | 0.368  | 0.300 | 0.098        | 0.399       | 3.659 |     |
|    |        |        |       |              |             |       |     |

Mult 0.982 0.267

| Popula | ation |        | Catch   |        |  |  |
|--------|-------|--------|---------|--------|--|--|
|        | 1993  |        | Fixed 1 | Mobile |  |  |
| 3      | 70000 |        | 9       | 48     |  |  |
| 4      | 57116 |        | 163     | 660    |  |  |
| 5      | 45295 |        | 392     | 1858   |  |  |
| 6      | 35176 |        | 615     | 2864   |  |  |
| 7      | 17572 |        | 4.54    | 1858   |  |  |
| н      | 6/8/  |        | 242     | 771    |  |  |
| 9      | 4386  |        | 186     | 536    |  |  |
| 10     | 2137  |        | 147     | 290    |  |  |
| 11     | 1363  |        | 131     | 153    |  |  |
| 12     | 730   |        | 87      | 84     |  |  |
| 13     | 595   |        | 88      | 47     |  |  |
| 14     | 353   |        | 80      | 26     |  |  |
|        |       | Weight | 3250    | 9750   |  |  |



Figure 1: Flow chart for calculating gear specific catch quotas under the fixed percentage yield allocation regime. Gear specific fishing mortalities  $(F_k)$  which satisfy the yield constraints  $(Y_k)$  were found with an iterative procedure described in the methods section.