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Abstract 

We extend the statistical model used to estimate abundance from commercial catch-
at-age data for many of the major commercial fish species in the world. The model we 
consider combines commercial catch-at-age data and independent survey estimates of 
fish abundance; we extend the model to allow correlated errors among ages within a year 
for the independent survey estimates of fish abundance. We also formulate a method 
for modeling the fishing mortality on the oldest ages of the fish caught. Estimates are 
obtained using maximum likelihood. We conclude that the level of correlation among 
ages is sufficiently large to produce large biases in the standard methods. The statistical 
model that includes correlated errors greatly reduces bias and increases efficiency if the 
correlation in the estimation error is large. 

Introduction 
The management of the most important marine fisheries of the world rely on catch-at-
age models to make estimates of population abundance using commercial catch-at-age data 
and independent estimates of abundance. However, there are severe problems with the 
models presently in use because they can he very biased (ICES 1991). Abundance is usually 
overestimated and the fishing mortality underestimated in the most recent years. This 
can have disastrous consequences for a fishery because it can lead to overexploitation and 
depletion of the population before assessment biologists are aware of the problem. The 
purpose of this paper is to investigate some of the statistical and population dynamics 
modelling assumptions used in the analysis of catch-at-age data. 

We examine two aspects of the formulation of statistical catch-at-age models. First, we 
examine the model error structure. In most models the errors in the estimates of abundanc 
at age are assumed to be independent. However, Myers and Cadigan (1993) demonstrated 
that this assumption is not valid for many research surveys of fish abundance. They found . 

 from analyses of multiple surveys of the same population that there are generally positive• 
correlations in the errors among ages for a given year. For example, if the .  number of three 
year olds were overestimated in 1990, the number of four year olds were usually overestimated 
as well. Myers and Cadigan (submitted) introduced a model that explicitly considers such 
an error structure. However, their analysis mostly focused on testing for changes in natural 
mortality over time in northern cod. The method is extended here to several stocks and its 
utility is assessed using simulations. 

The second problem we address is how to formulation the catch at age model. Normally 
an assumption about the fishing mortality at the oldest age is made that yields an expression 



for the numbers at that age. We consider a general formulation because in the past several 
ad hoc methods have been used and they may yield very different estimates of abundance. 
For example, two alternative formulations of the fishing mortality at the oldest age for cod 
on the southern Grand Banks of Newfoundland produced different estimates of biomass by 
a factor of two (NA FO 1994). 

Our approach for both of these problems is to construct statistical models in a hierarchical 
fashion. That is, our models allow simple and more complex models to be tested using 
standard likelihood ratio methods. We apply our models to four data sets, and use data 
based simulations to test our methods and to determine the conditions under which the 
correlated error model can be expected to improve estimates of abundance 

Methods 
Commercial catch-at-age data is analyzed jointly with research vessel estimated numbers of 
age using statistical virtual population analysis (VPA) models (Ililborn and Walters 1992). 
In these models, population numbers at age are estimated in the last year for which survey 
data are available, and then the age composition for all years is constructed. Although a 
variety of these models have been proposed (Gavaris 1988; Hilborn and Walters 1992; Mohn 
and Cook 1993), they share many common assumptions. We will base our approach on the 
the methods used in the current assessments in eastern Canada, the eastern USA, and by 

ICES. 

Population model 

Some notation is first developed. Na , s, is the number of age a fish in the population at the 
beginning of year y. Ca,y  is the number of age a fish in year y that are caught by the fishery. 
Lowercase letters are used to denote log transformations, e.g. n a , y  = log(Na ,y ). The number 
of ages and years modeled are A and Y, respectively. 

The model for numbers at age is 

Nay  = C., y em / 2  N a n,y+ lem 
	

(1) 

where IR is the natural mortality rate which is usually assumed to be constant for all ages 

and years (Pope 1972). The catches are assumed to occur halfway through the year in (I). 
Let Fait, denote the fishing mortality rate and Z., y  = m+Fa , y  denote the total mortality. 

Fa , y  is defined as: 
Na  

17,1,y = 	 ) 	m. 
!Va4-1,y+1 

Numbers at age A for all other years than Y are computed using F A , y  and the solution for 

NA+1, y +1 in ( 1 ): 

CA, y  exp(MA,y /2) 

— exp(—FA, y ) 
A—I 

a y  E wa Fa,y . 
a=1 

(2) 

where a y  is a parameter to be estimated and ty o  is a predetermined weight constrained such 

that EaArTil  w. = I. The weights, w., are chosen over the ages in which the fishing mortality 
is well estimated. We investigate placing reasonable constraints on the a y 's. 

The above formulation allows the population to be reconstructed, i.e. estimates made 
of N., y , if the numbers at age at the last year and the a y 's are estimated. We will call the 
numbers at age in the last year "survivors" and they will be denoted by S. E Nay and 
sa  n“,y. Given estimates of the S.'s, the numbers at age for all the cohorts represented 
in the last year can be reconstructed using Eq. (1). Given the a y 's, all other numbers at 
age can be constructed using Eq. (2) and (1). Thus, the goal of the procedure is to estimate 
the survivors, So 's, and the a y 's. 

The key assumptions in the population dynamics model are as follows. 



1. The population dynamics is described by Eq. 1. 

2. Catch-at-age is known without error. There is unknown misreporting and aging errors 
in the catches that could lead to considerable error in their reporting. We do not 
address this problem here. 

3. Fishing mortality on the oldest age is a weighted average of the fishing mortality at 
younger ages multiplied by a y . 

4. Natural mortality, In, 'is known and does not change with time. For the cod stocks 
consider, we will follow the usual assumption that m = 0.2 for allyears and ages. 

Statistical models 

Let 11,,,y  be a random index of abundance from a research survey and let r ay  = log(R„,y ). 
We will not distinguish between a random variable and its observation by using the usual 
notation (normally upper and lower case is used for this purpose but the convention is in 
use here for logarithms); however, the distinction will be made when necessary. 

Independent errors 

The usual statistical model used in the analysis of commercial catch-at-age data assumes 

that the deviations in the log survey estimates from the population model are distributed 
as uncorrelated, normal random deviates with constant variance, i.e. 

r a , y 	q a 	n a 4, - t Za i y 	, 

ind 
Eris 	N(0, 0.2 ), 

( 3 ) 

where qa  is the log catchahility of the research surveys at age a and 
ind 

denotes indepen 

dently distributed over years and ages. The parameter t is the proportion of the year that 
has been completed when the survey takes place; for example, if the surveys take place in 
NOvember, we would set t = Z. Ec.• (3) applies to.some subset of the ages and years the 
population model covers. 

The research surveys index of abundance is related to the estimated numbers at age by 
the catchahility of the research gear. Fish at different ages are not caught with the same 
efficiency in'the research surveys; thus the log catchability coefficients (qa 's) are estimated 
for each age separately. 

The parameters we estimate are the A survivors in year Y, the A survey catchability 
coefficients (by age), and the a y 's. Note that sometimes the a y 's are constrained to be equal 
to one parameter that is estimated, a , or constrained to be equal to one. Note that n as  is a 

nonlinear function of the survivors and a y 's. The variance of the cas  (a 2 ) is also estimated. 
Let r be the random A x Y matrix of log survey numbers, 

r1,1 r1,2 

r= 

r2 , 1, r2 , 2 • 

	

fly 

= 

rAI rA 2 rA,Y 

and let r be the AY x 1 vector of log survey numbers formed by stacking the columns of r: 

r,, 

r,2 

LAY x I = 

r,y 



The variance-covariance matrix is E = cov(r) = cr 2I, where I is a AY x AY identity 
matrix. 

Correlated errors 

We consider an alternative statistical model which allows for correlated errors among ages 
in each year. We add a random effect (t:) for years: 

	

rapy 	qa  + nay 	iZapy 	any 	ey, 	 (4) 

	

fa .Y 

	ind 	
N(0, a2 ), 	 ( 5 ) 

 

Sy 

 ind 	
N(0,0). 

This is a .mixed effects model in which all errors are equally correlated within a year but 
are independent between years. The correlation is p = 01(0 2  + 0). The variance-covariance 
matrix is E = cov(r) = 02I+ 0(Iy  UA), where denotes the Kronecker product (defined 
in the Appendix 1), Iy is a Y x Y identity matrix and UA is an A x A matrix of l's. 

Linear models with random components, e.g. mixed models, are a well developed branch 
of statistics (Searle et a(. 1992). Our models are applications of recent research with non-
linear models. 

Maximum likelihood estimates 

Maximum likelihood methods are used to estimate the model parameters under the two 
alternative error structures described above. The loglikelihood (I) is given by 

/ = k — [log(1 E l) + (1. — E(r))' 	— E(r))] /2, 

where k is a constant. The covariance matrix is combined with a weighting matrix to 
accomodate missing surveys and to extend the population beyond the oldest age that survey 
data is used for estimation. The covariance matrix actually modelled is: 

where W is a diagonal matrix of full rank. In this analysis the elements in W are either l's 
or oo's; the co elements correspond to missing surveys and gives these surveys zero weight 
in parameter estiniation. Inferences are based on the marginal likelihoods of surveys with 
nonzero weights. 

Maximum likelihood (or equivalently generalized least-squares) parameter estimates are 
obtained using the iterative algorithms in Gumpertz and Pantula (1992). The derivatives 
of (3) with respect to the survivors, the qa 's, and the ay 's required in this algorithm are 
developed in Appendix 2. Gumpertz and Pantula (1992) present a model with the same 
error structure as assumed here and call it a "onefold nested error structure".. 

It is useful to compare the two error assumptions on the estimation of the survivors, 
the qu 's, and the a y 's. The difference can be understood by fixing 0 and 0 2  and examining 
the resulting estimating functions. Assuming errors are independent leads to a search for 
parameter estimates that minimize the total error sum of squares 

L > e.2,y/02, 	 (6) 
Y a 

where e a , y  = ra y  — ra , y. Assuming errors are correlated within years leads to minimizing 

EE e 2a,pia
2 
	(E. ea y ) 2  

4-d (A + a 2  10) 0'2.  
Y a 

This equation is derived using the inverse formula in Gumpertz and Pantula (1992): 2 -  = 
I® U(A2 — AO/AA; A2 + I/a 2  where A I  = AO + 0 2  and A2 = a2 . If ¢ = 0 then (6) and (7) 
are the same. The total sums of squares in (7) is adjusted by removing a component due to 
the year effects. 

The likelihood ratio test is used to test statistical hypotheses. To test that a subset 
of p parameters is equal to some specified value, models with and without the parameter 

(7) 



constraints are fit yielding reduced and full log-likelihoods. Two times the difference between 
the reduced and full log-likelihoods is asymptotically a chi square random variable with p 
degrees of freedom (Cox and Hinkley 1974). For example, to test that rk = 0 one computes 
twice the difference between the log-likelihoods obtained with independent and correlated 
errors and compares this value with the critical value for a x 1-ct)I  where a is the level of (  
the test. 

The above formulation allows alternative hypotheses about the fishing mortalities at the 
oldest ages (FA , y  's) to be formally tested. a y  may he estimated separately for each year 
which is equivalent to estimating a separate FA,y  for each year. These estimates can then 
be examined for trends with time, etc. If there are no trends, then a common parameter 
ay  = a, y = 1, ...,1', for all y can be estimated. Similarly, a y  can be constrained to be 
constant for one time period and then estimated separately for another time period. 

Results 

We consider four cod populations in detail. We use the latest data in all cases except for 
Labrador cod. For this population we terminated the analysis in 1992 because the fishery was 
closed in that year. The catch data in 1993 is very poorly estimated because it was largely 
recreational, bycatch, and from-non Canadian boats beyond the 200 mile limit (Bishop et 
al. 1994). The methods are applied to data sets consisting of catch-at-age and survey 
estimates-at-age of relative abundance for fish populations in the Northwest Atlantic (Table 
1). All surveys used in the analysis are from directed research trawl surveys. In all cases we 
use the longest survey time series. 

Fishing Mortality at the Oldest Age 

We first consider different assumptions about the fishing mortality at the oldest age, FA , y . 
For each population, we estimate 6 models that represent the range of assumptions commonly 
used in practise. We assume that errors are correlated; results presented later suggest that 
there is little loss of statistical power by assuming random year effects exists when they don't. 
If qA  is estimated then it is necessary to constrain it to equal qA_ I  (or some other reasonable 
assumption) because there is confounding between a and qA. This constraint generally does 
not produce significant changes in model fits. The results (Table 2) demonstrate that the 
assumption FA , y  = FA - 1 , y  is generally the most parsimonious. In no case was there evidence 
that the fishing mortality at age A was significantly different from that at age A- I. 

Note that for Southern Grand Banks cod the loglikelihood of two constrained models is 
greater than for models without the constraints. This appears to be related to the resolution 
of the maximization algorithm (Fisher's scoring method) used; that is, the unconstrained 
solution is not converging at the exact maximum. This is only a problem when the the 
parameter estimate is very close to the constrained value and the loglikelihoods are very 
similar. 

We also estimated the ratio of fishing mortality in age A to A -1 for each year separately. 
In doing so, if the maximum age is less than A it is necessary to constrain a l  , ad (d = 
A-maximum survey age) because there is no survey data for these cohorts. All models with 
year specific a y 's produced, significant increases in loglikelihoods compared to models with 
constant a's. The estimated a y 's are presented in Fig. 1 with 95% Bonferroni confidence 
intervals (the level of the test is divided by the number of estimated a y 's). It was necessary to 
constrain some a y 's because estimates otherwise diverged; for Labrador cod.a 1979  = aisso, 
for Southern Grand Banks cod a1977 = a1 978 = a1979;• and for Eastern Scotian Shelf cod 
a 1978.= a 1990  = a1992 = average of the other a y 's. 

The significant increases in loglikelihoods are caused by only a few a y 's for each stock. No 
patterns are evident in the estimated a y 's indicating that the only reasonable simplification 
of these models is to estimate a common a. We recommend doing this for several reasons: 
First, the errors in the catches at ages A and A- 1 are likely to be relatively large and some 
of the significant a y  's may in fact not be significant if the variability in the catch data could 
be included; the estimates of survivors for younger ages did not change very much whether 
year specific or a constant a is estimated; estimating year specific a's is numerically difficult. 



Correlated Errors 

We next consider estimates for the model under the assumption FA, y  = FA_ ,y  for the 
models with independent and correlated estimation errors (Table 3). 

In all cases there was a very large increase in the loglikelihood with the correlated error 
model, i.e. in all cases 0 was significantly different from zero. Our analysis demonstrates 
most of the variability in the research surveys for Labrador cod is due to correlated errors, 
i.e. cb is much larger than a2  (Table 3). The error components are approximately equal for 
Southern Grand Banks cod and St. Pierre Bank cod. For Eastern Scotian shelf cod is less 
than oz (Table 3). 

There is a large difference in the estimated survivors for the different error assumptions. 
The correlated error model produces lower estimates of survivors in all cases except for 3+ 
survivors in Eastern Scotian Shelf cod. We will use simulations to help to determine the 
importance of these differences. 

The reason for the increase in the loglikelihood is clear from an examination of the 
residuals in the models which assume independent errors (Fig. 2a and 2b). The model 

errors in Eq. (4), i.e. the correlated errors model, should be standardized to compare with 
those in the independent errors model. This is done by multiplying the vector of differences 
between observed and predicted survey numbers by the square-root inverse of the estimated 
covariance matrix (Jones 1993). Including correlated errors greatly reduces the year effects 
apparent in the model errors. The year effects are much greater for Labrador, St. Pierre 
Bank, and Southern Grand Banks than for Eastern Scotian shelf cod. 

A note of caution is in order. The residuals from the independent errors fit and the 
unstandardized residuals from the correlated errors fit show a deterministic pattern since 
1987 for Labrador and Southern Grand Banks cod and throughout all years for Eastern 
Scotian shelf cod. This suggests model misspecification and, potentially, that some of the 
variation due to year effects may be of a deterministic nature rather than a random nature. 
That is, there are trends in the residuals. If the causes for the apparent deterministic year 
effects were known then they could be used to improve the analysis. 

Simulation Results 

We use a simulation study to determine the conditions under wich the correlated error model 
improves abundance estimates. Our simulation study will use data from four populations, 
and will remain as close as possilbe to the data. 

We estimated the bias and efficiency of estimation with correlated and independent 
errors. We generated pseudo-research survey estimates, the assumed population dynamics 
model using the parameter estimates (Ratkowsky 1983, p. 23). Two sets are generated: 
pseudo estimates under the assumption of independence errors and under the assumption 
that the estimates are correlated. For each of the two case, 1000 realizations of the pseudo-
estimatesare obtained for each year and age. We then estimated the model parameters for 
each realization under the assumption of independent and correlated errors. That is, we 
obtained 4000 estimates of abundance, from which we calculated estimates of the bias and 
variance for the estimated numbers at age. 

We examine four cod populations in detail because they represent low (Eastern Scotian 
Shelf cod), medium (St. Pierre Bank and Souther Grand Banks cod), and high (Labrador 
cod) levels of correlated estimation errors among ages. The variance parameters used to 
generate the pseudo-research survey estimates are those given in Table 3. The only difference 
between the two simulated data sets in each iteration is the distributional assumptions used 
to generate the simulated survey estimates. 

We estimate the bias components and efficiency of independent and correlated mles when 
the true distribution of research surveys, are either independent or correlated. We measure 
the bias component and standard deviation in parameter estimates using the simulationed 
parameter estimates. We normalize by dividing the bias and standard deviation calculated 
in the 1000 realizations by the true population numbers used in generating simulation data. 
We summarize the results for the recruits, at age 3, and the total estimated numbers in each 
year (Fig. 3a and 3b). 

Correlated errors mles have lower variances and are less biased than the independent 
errors mles if the errors are significantly correlated for both recruits (Fig. 3a) and 3+ 
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numbers (Fig. 3b). The reduction in bias in the final year for the 3+ numbers is important 
for Labrador cod, from 20% to 9%, and Southern Grand Banks cod, from 50% to 30%. 
Similarly, there is a large reduction in the normalized standard deviation for these two 
populations in the last year. This reduction is particularly important for Labrador cod, 
where the correlated errors mles have reduced the standard deviation of the estimates to 

almost one third of that from the independent error mles. 

If the correlation in the estimation errors are small (Eastern Scotian Shelf cod), or if 
they are assumed to be independent in the simulations, then both the correlated and the 
independent error mles perform similarly (Fig. 3a and 3b). This result shows that if the 
correlated error mles is used on a population with independent errors there is no extra bias 
or loss in efficiency. 

Discussion 
The assumption that research survey estimates of abundance at age are independent has a 
large effect on the estimation of population abundance in catch-at-age models if the assump-
tion is violated. We have introduced a model in which the estimation errors are assumed to 
be correlated. We used a data based simulation study to conclude that the correlated error 
maximum likelihood model has 

• greater accuracy, lower bias and smaller variance, in estimating numbers-at-age if the 
the true estimation errors are correlated, and 

• there is no•loss in accuracy if the ture estimation errors are independent. 

It is crucial that an appropriate error structure be used in the statistical analysis of 
catch at age data. The assumption that the estimation errors in the research surveys are 
independent led to unsupportable inference of an increase in natural mortality during the 
winter of 1991 of Labrador cod(Myers and Cadigan submitted). 

The source of this correlation in the estimation errors is unknown. Environmental condi-• 
tions that would effect catchability, differences in how the crew handles the fishing gear, or 
sampling variability are obvious possible causes. The trends in residuals are a cause for con-
cern; they indicate that there is potential misspecification in the model for the expectation 
of research surveys and that biases other than statistical biases may exist. 

It is useful to consider why including correlated errors improves the model performance in 
estimating abundance. If errors are correlated within a year, then we can use this information 

when estimating the abundance of the youngest ages in the final year in the analysis. For the 
oldest ages in the final year, there will have been typically 5 or 6 surveys of these cohorts. 
Thus, if the survey estimates of these cohorts in the final year is lower than expected, then 
the model will use this information to lower the estimates of abundance for the younger 
ages. That is, by incorporating the correlated structure of the errors, improved estimates of 
abundance are possible because cohorts are observed over several years. 

Our simulation results clearly demonstrate that the correlated error model reduces the 
variability of the estimated survivors and their bias. The tendency Of VPA models to 
overestimate abundance in the last years in which the survey was carried out is well known 
but not well understood (ICES 1991). 

Considerable statistical bias still exists even with the improved modelling of research 
survey errors and it would be desirable to reduce this bias. Smith and Gavaris (1993) 
present two bootstrap bias estimation procedures (one is identical to that used here) and a 
parametric procedure based an a Taylor's series expansion of the loglikelihood formulated 
in Gavaris (1993) for the bias of some derived parameters in a VPA. However, the authors 
do not test whether the bias estimation techniques can be used to provide bias reduced 
estimators and at what cost in terms Of increases in standard errors. Also, the procedure 
Sinith and Gavaris (1993) suggest (Taylor's series) has not been developed for mixed effects 
nonlinear regression models. For these reasons we have not implemented the techniques but 
future research in this direction may lead to improved estimation procedures. 
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Appendix 1 
if A is an rn x it matrix and B is an r x s matrix then the Kronecker product (direct product 
or tensor product) of A and B is 

a 1 1 B a 1 , 2 11 a L„B 
a 2 , 1 B 0 2,211  a 2 ,13 

A 0 B = 

ano  B am ,2B . 

A B is a matrix of order (rnr x ns). 

Appendix 2 
Statistical estimation procedures for both independent and correlated errors require the 
formulation of a model for the expectation and covariance of research surveys. We will 
reformulate Eq. 3 and 4 in matrix notation. Let n be the matrix of log numbers at year 
and age: 

n1,1 	n 1 , 2 	. 
TI2,1 	n2,2 	• 	n2,Y 

= 

• 	nA,1' 

and let 
n,1 
n,2 

!AY 1 = 

ily 

Similarly, let Z be the matrix of total morta ities a age, and let Z is an AY x 1 vector 
of total mortalities. We previously defined r as the random vector variable for research 
surveys. Note that r (the matrix version of r) may have fewer than A rows but to simplify 
notation •  we assume, that r has A rows. The following results are easily modified if this is 
not the case. The expectation of r is: 

E(E) -= 1 01+ n — IZ, 

where 1 is a Y x 1 vector of l's and q is an A x 1 vector of survey catchability coefficients. 
The estimation algorithms used require expressions for the derivatives of E(r) with re-

. 
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spect to the survivors (denoted as s, an A x 1 vector), the a y 's (a, a (Y — 1) x 1 vector), 
and the catchabilities (q). For convenience, let 9' 	[s', a']. The derivatives are: 

OE(r)  
0 	

- 

1 OLAxA, q1 
 OE(r)  

- t ow aw
OZ 	Diag(1/N). 

Diag(1/N) is a diagonal AY x AY matrix with diagonal elements equal 1/Pi a , y . 8E(r)/aq' 
is an AY x A matrix and OE(r)/39' is an AY x (A +Y — 1) matrix. The following results 
are necessary to compute 0E(r)/09 1 : 

 

alva+ 1 ' 9 + 1  ex (M ) 	ae, 	P 	aPY 

=1 :Ear  Na  /(1 — exp(Fas )) aO, 

, A s/ l- exp(Fa,y)) 
1 

 

ONa , y  _ 
eel  

if a < A, y < Y, 

if 
 l

a = A, y <Y, 01= 81, or 
a = A, i < Y, 9;=a;, 

if a = A,i = y,0; =a;, 
if a = i,y =Y,Oi = s i , 
otherwise. 

   

OF 	orst,,a  1-exp(F, v )  if a < A, 
a,y 	 80, 	N.,

„  ao, 	v■ A -1 	8F,,,  
2-,a=1 W a ae, 	otherwise. 

Table 1. 	Fish populations analyzed. Ages and years refer to minimum 
-maximum ages and first-last years used in the analyses. 
The proportion of the year that has been completed When the 
survey took place is t. 

Population Source Survey t Ages Years 

Labrador cod Bishop et a( (1993) Autumn z  3-12 78-92 

Southern Grand Bishop et al (1991) Spring 5 
12 3-12 78-93 

Banks cod 
Eastern Scotian Mohn and July 7 3-11 71-93 
Shelf cod MacEachern (1992) 
St. 	Pierre Bishop et al (1991) Ferburary 2 

12 3-12 80-94 
Banks cod 



Table 2 Model estimates under different assumptions about the fishing mortality 
of the oldest age, FA ,y . Estimates constrained to be 1 are denoted by "1". 
The first line for each population is the assumption traditionally used in assessments. 
The weights used to compute FA, y  are zero for the ages not listed. 
The survey catchability coefficients for the two oldest ages are constrained to be 
equal, i.e. qA _ I  = qA . 

Population 	Ages 	a y 	Log 	P value 
likelihood 

Labrador Cod 	7,8,9 	1* 	-24.766 
7,8,9 	0.911 -24.308 	0.339 
9,10,11 	1* 	-24.237 
9,10,11 	0.839 	-21.462 	0.018 
11 	1* 	-22.504 
11 	1.096 	-21.149 	0.100 

Southern Grand 7,8,9 	1* 	-127.604 
Banks Cod 	7,8,9 	1.045 -127.638 	- 

9,10,11 	1* 	-126.628 
9,10,11 	1.085 	-126.641 

1* 	-128.654 
11 	1.229 -128.250 	0.369 

Eastern Scotian 	6,7,8 	1* 	-204.982 
Shelf Cod 	6,7,8 	0.422 -199.454 	0.001 

8,9,10 	1* 	-193.691 
8,9,10 	0.594 -187.257 	0.000 
10 	1* 	-185.732 
10 	0.941 	-185.227 	0.315 

St. Pierre 	7,8,9 	1* 	-118.460 
Banks Cod 	7,8,9 	0.665 -117.638 	0.120 

9,10,11 	1* 	-116.763 
9,10,11 	0.829 	-116.332 	0.353 
11 	1* 	-116.312 
it 	0.883 -115.760 	0.293 

Table 3. Model estimates for under the alternative assumptions for estimation errors. 
Estimates constrained to be zero are denoted by "-". Numbers 
are in millions at the beginning of the year. Standard errors are in parentheses. 
The parameters are: the variance of the random year effects, 0, the correlation 
of the estimation errors among ages in a year, p, and the residual 
variance of the estimation errors, o-2 . • 

pOpulation 0 2  Log 
likelihood 

Survivors 
at age 3 

Survivors 
at ages 3+ 

Labrador cod 0.311 -114.448 77 (41) 334 (69) 
0.259 0.838 0.050 -18.241 65 (23) 192 (40) 

S. Grands Banks cod 0.631 -160.970 103 (79) 163 (85) 
0.216 0.464 0.250 -127.623 66 (40) 134 (25) 

E. Scotian Shelf cod 0.434 -189.228 39 (25) 110 (32) 
0.056 0.149 0.322 -183.330 36 (22) 112 (34) 

St. Pierre Banks cod 0.422 -148.064 13 (9) 80 (21) 
0.216 0.500 0.215 -115.706 12 (7) 63 (22) 
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Fig. 2a. Model residuals for Labrador and Southern Grand Banks cod under alternative 
statistical models: independent and correlated estimation error mles. In all models we as-
sume that FA, y  = FA-1,y• 
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Fig. •3a. Simulated percentage bias and coefficient of variation for independent and cor-
related error maximum likelihood estimates of recruits at age 3 assuming survey estimates 

are independent or correlated. 



— 16 — 

Bias Component (%) Normalized Standard 
Deviation 

O 

as 0 _o 0 
ct 

—1 

O 

  

       

C 
Eli -8 
(D 
E (h) 

c  _c 
133 

0 

C 
CZ 

70  O 
U) 0 
E YI) _c 
to w 
ro 
w 
C 
co 
of 
c..)0 
u) 0 
Emr; 
0 _c 
Ti5 
Co w 

0 
1 • 

........................ ........... 

	 ' 
,•, 

   

          

       

  

0 

0 
0 

  

       

0 

    

       

1986 1988 1990 1992 1994 	1986 1988 1990 1992 1994 
Year Year 

Fig. 3b. Same as Fig. 3a except for total numbers (3+). 
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