NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Fisheries Organization

Serial No. N2465

NAFO SCR Doc. 94/85

SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1994

The Icelandic Shrimp (Pandalus borealis) Fishery at the Flemish Cap in 1994

by

Unnur Skúladóttir

Marine Research Institute, Skúlagata 4, P. O. Box 1390, 121 Reykjavik, Iceland

ABSTRACT

Some 7 Icelandic vessels have been fishing in the waters at the Flemish Cap in 1994. The catch and effort data and catch per unit of effort (CPUE) from 5 vessels are presented here. The CPUE has been falling gradually from the average of 321 kg/hour in 1993 to 248 kg in 1994. Biological samples from three months give rize to several biological observations. Among those the loss of sternal spines among the primiparous females is followed in time as spawning gets near. Also weight length relationships are shown. Modal analysis on LFDs of three major sex categories has been carried out, revealing 5 age groups where the first 3 are male of about 17.3, 21.4 and 23.5 mm respectively (oblique carapace length). The 4th age group consists mainly of primiparous females of the size 25.3 and the 5th age group consists of multiparous females of the size 27.6 mm (age 6+ presumably). A change in the sex ratio was noted between the years 1993 and 1994, where the proportion of males increased from some 40% in 1993 to some 70% in 1994.

INTRODUCTION

The Spanish investigators have been measuring the biomas index of northern shrimp at the Flemish Cap since 1988 in their annual bottom trawl survey of the Flemish Cap (Vázques 1993). In 1993, Canada and Faroe Islands started fishing at the Flemish Cap in April and May. In June 1993 Iceland started fishing at the Flemish cap as well. In this paper there are listed the available data on catch and effort from the Icelandic vessels, as well as the analysis of the few commercial samples obtained from two Icelandic vessels.

MATERIALS AND METHODS

The samples of shrimp used here were obtained from the commercial vessels Skutull and Jon Finnsson. All specimens were measured to the nearest half mm carapace length middorsally. This is called the oblique carapace length (OCL). In all cases the samples were first frozen and then thawed in air. It was attempted to grade the specimens into the usual nine sexual categories, namely males (ma), transitionals (mi), and seven stages of females, using mostly the metod of Rasmussen (1953). The female stages are also divided into two major categories, with or completely without sternal spines (MacCrary 1971). The females with sternal spines would then be divided into two categories, with headroes, termed immature females green in head (gm) and without headroes (mg). The females without sternal spines, hereafter also called mature females, were graded into 5 categories, i.e. females with headroes (ga) females.with external eggs but no eyes visible in the eggs (ea), females with eyes visible in the eggs (em), females having headroes as well as external eyed eggs (eg) and females just without spines (ag).

The weighing was not done on every specimen, but all specimens of the same length class in each sample were weighed together and then the mean weight per length class was fitted for all the samples together. The shrimp were divided into two groups according to presence of external eggs or not. Specimens with very few eggs were included in the ovigerous group.

The method of MacDonald and Pitcher (1979) for age estimation was used on the length frequency distribution (LFD) of the three major categories, namely males, females with sternal spines (also transitionals) and females without sternal spine (tables 1-3). When the modal analysis was carried out on the females the coefficients of variation were kept the same for all components.

RESULTS AND DISCUSSION

44.

Length distributions and weights

The shrimp samples in 1994 were obtained from June, July and the beginning of August (Fig. 1). In all these samples only one transitional was found in June (table 1). In June and July there were besides males, females with developing ovaries, socalled green in head. The females were either with sternal spines, namely spawning for the first time or without sternal spines. The males were more prominent in 1994 as compared to 1993 (Skúladóttir and Einarsson), namely some 70 % against 40% in 1993. This could be due to the 2 and 3 year old males being strong year classes. Also the females with sternal spines do not seem to be as numerous as they were in 1993.

On Fig. 2 the length weight relationships are shown for both eggbearing (ovigerous) and not ovigerous shrimp. As each point is the mean weight per length class from each sample there are down to one specimen for each point at the extremities of the curves.

The preparation for the spawning

According to McCrary (1971) the immature females that some investigators call primiparous females loose their sternal spines just prior to spawning. The samples obtained this year demonstrate this process very clearly. Thus the proportion of females without sternal spines of all females was found to be between 50 an 60 % at June 14th and was found to increase substantially in the last week of July and become 95% by the 2nd of August (Fig. 3). As to spawning there were no ovigerous females found in the sample from the 4th of July, but a few at the 21st of July. There were no samples between those two dates. By July 21st 16 % of the females preparing for spawning this year had already spawned and by August 2nd 38% had spawned. It would thus appear that the main time of spawning is in August. As in 1993 there seem to be no females without sternal spines that are neither preparing spawning (green in head) nor egg bearing so all females seem to spawn every year.

Age composition

The age analysis was carried out on the samples combined for each month, using the LFDs of the three major sex categories as shown (tables 1-3 and Fig. 1). For the sake comparison the results of the summer samples in 1993 are shown. As before it was tried to asign as many components to each LFD as possible. Only three age cohorts could be detected from the male LFD, and three from the LFD of females with sternal spines in June whereas the July LFD only allowed the fitting of one component (tables 5 and 6). As shown before by the gradual loss of sternal spines with time, in August the primiparous appeared to be multiparous and the LFD of females without sternal spines is probably comprised of at least two components, but only one could be fitted (table. 7). In short the main results are that the 2 year old males (1992 -yearclass) are the same mean size as in 1993, (Skúladóttir and Einarsson, 1993) namely 17.1 mm in June 1994. There is some growth from June to August or to 17.5 mm. The 3 year old males (1991 yearclass) are slightly bigger or 21.3 in June 1994 against 20.9 mm in 1993. There is also some growth in the mean size from June to August or to 21.45 mm in August. The 4 year old males are on the other hand slightly smaller in 1994 or 23.7 in June against 23.95 mm in June 1993. The females with sternal spines are a bit more complicated and judging by the SD of 1.59 in July it would seem likely that there are more components than just the one. The mean sizes (OCL) at age from the Icelandic data for year 1994 for the months June, July and August of 17.3, 21.4, and 23.5, 25,3 and 27.6 mm respectively for ages 2,3,4,5,and 6+ agree quite well with the results of Parsons and Weitch (1994) for the same age groups but their samples cover the period from March to June and their mean sizes per age group for the males are also a bit smaller than here presented, as could be expected.

In the tables 4-7 are listed both the proportions within each sex group and the overall proportion for that month. It is noticable that the strong 1988 year-class is still ocurring in considerable proportions in all 3 months as 6 year olds, namely in the overall proportion of 19-24.5%. This is in accordance with the findings of Sainsa (1994) who shows the occurence of the very strong apparently 2 year old year-class that appeared first in the Spanish bottom trawl survey in the year 1990. The 1992 year-class seems to very big and growing in proportions from June to August. The 1991 year-calls also appears to be rather big, whereas the 1989 and 1990 year-classe seem weak. The standard deviations are also shown in these tables. They are usually between 0.76 and 1.3.

Catch, effort and CPUE

In table 8 are listed all the effort and catch data available from the icelandic fishery in 1993. The overall CPUE is 321 kg/hour in 1993 and the total catch was 2243 tonnes. The CPUE was gradually increasing from 374 kg in June to 221 kg in December. Table 9 showes the same as table 8, but for 1994. The preliminary catch for 1994 is 1437 tonnes to this date. It is however known that 2 vessels have not reported yet. The CPUE was low, 216 kg/hour in January to rise in February to 325 kg. after this the CPUE gradually fell to about 218 kg in July to increase again to 312 kg in September. So on the whole there has not been a serious fall in CPUE during the year 1994.

McCrary, J. A. 1971. Sternal spines as a characteristic for differentiating between females of some Pandalidae. J. Fish. Res. Board Can. 28. 98-100.

- 3 -

- MacDonald P.D.M. and T. J. Pitcher 1979. Age-groups from size-frequency data: A versatile and efficient method of analysing distribution mixtures. J Fish. Res. Board Can. 3 6. 987-1011.
- Parsons, D. and P.J. Veitch 1994. The Canadian Fishery for northern shrimp (*Pandalus borealis*) on Flemish Cap(NAFO Division 3M) in 1993 and 1994. NAFO SCR Doc. 94/83, Ser. No. N2462. 9pp (Mimeo).
- Rasmussen, B. 1953. On the geographical variation in growth and sexual development of the deep sea prawn (*Pandalus borealis* Kr.). Fisk Dir. Skr. Havunders. (Rep. Norw. Fish. Invest.) 10 (3). 160 pp.
- Sainza, C. 1994. Northern shrimp(*Pandalus borealis*) on Flemish Cap. NAFO-SCR Doc. 94/81, Ser. No. N2460. 6 pp (Mimeo).
- Skúladóttir, U. and S. Einarsson 1993. The Icelandic shrimp (*Pandalus borealis*) fishery at the Flemish Cap in 1993, with a preliminary analysis of age structure. NAFO SCR Doc. 93/101, Ser. No. N2294. 9 pp (Mimeo).
- Vázques, A. 1993. Results from bottom trawl survey of Flemish Cap in July 1992. NAFO SCR Doc. 93/19, Ser. No. N2196. 22 pp (Mimeo).

Tables 1-3. The length distribution by 3 major categories, namely males, immature females with sternal spines and transitionals combined, and females with no sternal spines. At the bottom there are sums and mean OCL by the 9 sexual categories as explained below.

Table 1.

		lune 199	4	
	റ്	0 0		7
	0			2
mm		Spines	No Spines	
14	0	0	0	0
14.5	1	0	0	1
15	3	0	0	3
15,5	7	0	0	7
16		0	0	20
16.5	2/	0	0	27
17.5	33			33
17.5	20		0	20
18.5	13	0	0	13
19	6	å		8
19.5	8	0	- ŏ	A
20	19	0	0	19
20.5	39	1	Ō	40
21	73	0	1	74
21.5	69	0	Ō	69
22	49	1	0	50
22.5	31	4	1	36
23	27	3	2	32
23.5	23	2	1	26
24	26	10	0	36
24.5	16	17	0	33
25.	• 7	16	2	25
25.5	2	17	7	26
26	0	15	20	35
26.5	0	12	21	33
27	0	6	25	31
27.5	0	6	44	50
28	0	5	38	43
28.5	0	6	22	28
29	0	4	22	26
29.5	0	2	7	9
30	0	0	2	2
30.5	0		3	4
	0		+	
31.5	0			
32 5	<u> </u>	<u> </u>		0
33	õ	ō	ň	ň
33.5	0	ő	i õ	Ő
34	548	128	219	895
	ma	mi	ma	am
Σ	548	1	0	127
mean OCI	20.53	25.50		25.70
%	61.23	0.11		14.19
- _	ad	da	- ea	em
Σ	0	219	ō	0
mean OCL	-	27.50		-
%		24.47		
	eg		•	
Σ	ō			
mean OCL				
%				

The legend used in tables 1-3:

ma	Males.
mi	Transitionals.
m g	Females with sternal spines, no headroes.
gm	Females with sternal spines, with headroes.
a g	Females without sternal spines, no headroes, not berried
	but at times with egghairs.
ga	Females without stemal spines, with headroes, not berried.
e a	Females with green eggs, no eyespots.
e m	Females with eggs with eyespots.
e g	Females with eggs with eyespots and also with headroes.

Table 2.

July 1994									
OCL	ď	00	0	Σ					
		Soines	No Spines	-					
14	0	0		0					
14.5	0	- Č	õ						
14.5	1			1					
. IQ 15.5	10		0	10					
15.5	15	0	0	15					
16.5	33	ő	0	33					
17	62	0	ō	62					
17.5	67	0	Ō	67					
18	57	ō	0	57					
18.5	31	0	0	31					
19	7	0	0	7					
19.5	5	0	0	5					
20	17	0	0	17					
20.5	31	0	0	31					
21	64	0	0	64					
21.5	63	0	0	63					
22	45	0	0	45					
22.5	25	3	0	28					
23	8	1	0	9					
23.5	7	3	1	11					
24	7	2	1	10					
24.5	. 3	9	5	17					
25	0	10	6	16					
25.5	0	14	11	25					
26	0	9	10	25					
20.0	0	<u> </u>	21	20					
27.5	0	1	32	33					
28	<u>0</u>	6	41	47					
28.5	0	0	22	22					
29	0	2	11	13					
29.5	0	2	5	7					
30	0	0	2	2					
30.5	0	0	0	0					
31	0	0	1	1					
31.5	0	0	0	0					
32	0	0	0	0					
32.5	0	0	1	1					
33	0	0	0	0					
33.5	0	0	0	0					
34	558	76	197	831					
	ma	mi	тg	gm					
Σ	558	0	1	75					
mean OCL	19.40		26.00	25.75					
%	67.15		0.12	9.03					
. –	ag	ga	62	em					
Σ	2	168	27	0					
mean OCL	26.50	27.51	26.28						
%	0.24	20.22	3.25						
	eg								
2	U								
mean UCL ₀∕									
/0		L							

				•
1	1	n	2	-
-1	a	ъя	. .	. 1
~	-			~

	August 1994								
OCL	ď	QÔ	Q .	Σ					
mm		Spines	No Spines						
14	0	0	0	0					
14.5	0	0	. 0	0					
15	0	0	0	0					
15.5	3	0	. 0	3					
16	4	0	0	4					
16.5	10	0	0	10					
17	18	0	0	18					
17.5	17		0	17					
195	21		<u> </u>	21					
10.5	5	0	0	5					
19.5	1	ō	0	1					
20	3	ō	Õ	3					
20.5	9	0	0	9					
21	11	0	0	11					
21.5	9	0	0	9					
22	12	0	0	12					
22.5	5	0	. 0	5					
23	6	0	0	6					
23.5	4	0	0	4					
24	2			2					
24.0				4					
25	<u> </u>		<u> </u>						
25.5	<u> </u>	0	1						
26.5	0	0	5	5					
27	ő	0	9	9					
27.5	0	0	5	5					
28	0	0	4	4					
28.5	0	0	2	2					
29	0	. 0	2	2					
29.5	0	0.	1.	1					
30	<u> </u>	0	0	0					
30.5	0		0	0					
			0	0					
31.5	0		0	U					
32	<u> </u>	<u> </u>	0						
33	<u> </u>	1 0	0	0					
33.5	n -	l õ	0	n					
34	152	2	36	190					
	ma	mi	ma	gm					
Σ	152	0	0	2					
mean OCL	19.24			25.00					
%	80.00			1.05					
	ag	ga	9 8.	ទ៣					
Σ	. 0	23	13	0					
mean OCL		27.61	26.50						
%		12.11	6.84						
~	eg			· •					
	U								
L^		L							

Table 4. The mean obligue carapace length (OCI) proportion (PR) within the sex group, overall proportion (OPR) and standard deviation (SD) for each age class from the Icelandic samples in 1993, from June and July1st.

Age	Males			Fer	Females with st. sp.				Females without st. sp.			
	OCL	PR	OPR	SD	OCL	PR	OPR	SD	OCL	PR	OPR	SD
2	17,15	0,1525	0,0644	1,10					[
3	20,87	0,3006	0,1269	0,57					[
4	23,95	0,5469	0,2308	0,99	1				ţ			
5					25,73	1,0000	0,2506	1,12	ļ			
6									26,15	0,8751	0,2869	0,82
7									28,21	0,1249	0,0410	0,82

Table 5. The same as table 4 but from June 1994.

Age	Males			Females with st. sp.			Females without st. sp.					
	OCL	PR	OPR	SD	OCL	PR	OPR	SD	OCL	PR	OPR	SD
2	17,12	0,2926	0,1792	0,97								
3	21,30	0,5198	0,3183	0,78	1							
4	23,70	0,1876	0,1149	0,77	22,43	0,0590	0,0084	0,87	1			
5					25,25	0,7169	0,1025	0,98				
- 6					28,03	0,2241	0,0320	1,09	27,50	1,0000	0,2447	1,37

Table 6. The same as table 4 but from July 1994.

Age	Males			Fer	Females with st. sp.			Females without st. sp.				
	OCL	PR	OPR	SD	OCL	PR	OPR	SD	OCL	PR	OPR	SD
2	17,38	0,5114	0,3434	0,82				-	1			
. 3	21,37	0,4591	0,3083	0,76					1	·		
4	23,86	0,0296	0,0199	0,43	1				1			
5					25,75	1,0000	0,0915	1,59	25,54	0,1303	0,0309	1,03
6									27,60	0,8697	0,2062	1,12

Table 7. The same as table 4 but from August 2nd 1994.

e 9

Age	Males			* Fe	males with	st. sp.		Females without st. sp.				
	OCL	PR	OPR	SD	OCL	PR	OPR	SD	OCL	PR	OPR	SD
2	17,49	0,5843	0,4664	0,84			· · · · ·					
3	21,45	0,3333	0,2666	1,03	1							
4	22,80	0,0825	0,0660	1,09					1			
5					25,00	1,0000	0,0105		1			
6									27.21	1.0000	0.1895	1.30

* Only 2 specimens.

(

Table 8. The catch and the effort from the logbooks of five Icelandic vessels fishing at the Flemish cap in 1993.

Tonnage	Trawl size	Vessel/month	Effort	Catch	CPUE ka/br
		June	n, nours	ry	, syrm
414	3300	Hákon ÞH 25	355	159100	448.6
714	3600	Jón Finnsson RE 506	356	123065	346.0
446	3800/3000	Pétur Jónsson RE 69	426	151510	355.9
793	3600	Skutull IS 180	227	80592	355.3
620	2x3000	*Sunna SI 67	243	88215	363.4
		*Sunna SI 67	243	88215	363.4
		June ∑	1848	690697	373.7
		July			r
414	3300	Hákon ÞH 25	203	72970	359.9
714	3600	Jón Finnsson RE 506	17	6860	395.8
446	3800/3000	Pétur Jónsson RE 69	165	63140	383.2
793	3600	Skutuli (S 180	78	31594	406.5
620	2x3000	*Sunna SI 67	348	100529	288.8
		*Sunna SI 67	348	100529	288.8
		Juły ∑	1159	375622	324.2
		August		•	<u>s</u>
414	3300	Hákon ÞH 25	332	105400	317.6
714	3600	Jón Finnsson RE 506	372	122280	328.6
620	2x3000	*Sunna SI 67	329	97963	298.0
		*Sunna SI 67	329	97963	298.0
		August ∑	1361	423606	311.1
		September	1		
414	3300	Hákon ÞH 25	385	131400	341.7
620	2x3000	*Sunna Si 67	341	116538	341.8
		*Sunna SI 67	341	116538	341.8
		September <u>Σ</u>	1066	364476	341.8
		October			
620	2x3000	*Sunna SI 67	187	40170	215.4
		*Sunna SI 67	187	40170	215.4
		October ∑	373	80340	215.4
		November	-	£	
620	2x3000	*Sunna SI 67	303	89982	297.3
•		*Sunna SI 67	303	89982	297.3
		November S	605	179964	297.3
		December	{		t • •
620	2x3000	*Sunna SI 67	290	64086	220 7
		*Sunna SI 67	230	64000	220.7
		December ∑	581	128172	220.7
	,	Total 1993	6994	2242877	320.7

* The vessel Sunna operates two trawls at the same time. The effort is therefore shown double and the catch is divided by 2.

Tonnage	Trawl size	Vessel/month	Effort	Catch	CPUE
	No of meshes		Tr. hours	kg	kg/hr
	January				
620	2x 3000	*Sunna SI 67	76	16432	216.4
		*Sunna SI 67	76	16432	216.4
		January ∑	152	32864	216.4
	February				
620	2x 3000	*Sunna SI 67	343	111251	324.7
		*Sunna St 67	343	111251	324.7
		February ∑	685	222502	324.7
	March				
620	2x 3000	*Sunna SI 67	280	78394	280.5
		*Sunna SI 67	280	78394	280.5
		March Σ	559	156788	280.5
	June				
305	2700	Andvari VE 100	335	65770	196.1
714	3600	Jón Finnsson RE 506	353	78856	223.6
793	3600	Skutuli IS 180	109	35544	326.1
620	3000/3400	Otto Wathne NS 90	166	42149	254.2
620	2x 3000	*Sunna SI 67	178	55289	310.0
	,	*Sunna SI 67	178	55289	310.0
		June <u>)</u>	1320	332897	232,3
	July		440	70050	177 1
305	2700	Andvari VE 100	442	78250	1/7.1
714	3600	Jón Finnsson HE 506	9	2681	287.4
793	3600	Skutuli IS 180	492	110362	224.4
620	3000/3400	Otto Wathne NS 90	514	106961	200.1
620	2X 3000	"Sunna Si 67	299	74700	250.5
		July S	299	447850	218.0
	August				
305	2700	Aodvari VE 100	258	68422	265.0
1019	3450	Pátur Jónsson BE 69	230	61050	265.4
7010	3450		200	0000	255.3
/93	3600		100	36594	193 5
620	2x 3000		199	36564	103.5
		"Sunna SI 67	199	36584	183.5
	Contombor	August 2	921	211238	££9.3
305	39ptember 2700	Andvari VE 100	104	32415	312.4
000		September ∑	104	32415	312.4
		Total 1994:	5795	1436655	247.9

Table 9. The catch and effort from logbooks of five Icelandic vessels fishing at the Flemish Cap in 1994.

* The vessel Sunna operates two trawls at the same time. The effort is therefore shown double and the catch is divided by 2.

.

Fig. 1. The length frequency distributions of P. borealis at the Flemish Cap in June, July and one sample from the 2nd of August. In June and July a few samples are combined for each month.

Fig. 2. The length (OCL) weight relationship from the 1994 Icelandic data.

Fig. 3. The progressive change of proportion of females without sternal spines against all females from June 14th to August 2nd in 1994.