NAFO SCR Doc. 95/3

Northwest Atlantic

Fisheries Organization

Serial No. N2504

SCIENTIFIC COUNCIL MEETING - JUNE 1995

Redfish Subarea 1 (0-400 m): Groundfish Survey Results, 1982-94 and Length Structure of German Landings, 1962-78

by

Hans-Joachim Rätz

Institute for Sea Fisheries, Hamburg Branch Office Bremerhaven Fischkai 35, 27572 Bremerhaven, FRG

Abstract

The 1994 survey results confirmed the severely depleted status of the redfish resource off West Greenland. Since 1982, golden redfish (>=17cm) decreased by 99% in abundance and biomass. Estimates for beaked redfish (>=17cm) vary without a clear trend but were determined to be extremely low since 1992. Since 1986, juvenile redfish (<17cm) were found to be very abundant but recruitment of the stocks failed recently. Length distributions indicate significant year effects for both stocks of golden and beaked redfish, which are dominated presently by small individuals (<30cm). Species and stock identification of juvenile redfish is still unclear, but reappearing peaks at 6, 10-12 and 15-16cm might indicate annual growth increments and represent the age groups 0, 1 and 2 years.

In order to complete available data series, the sampling effort and size structure of commercial catches of golden redfish taken off West Greenland and landed at Cuxhaven or Bremerhaven were presented for the period 1962-78. The calculated size reduction of commercial landings amounts to 2.5cm and seems to be more pronounced in the late 70-ies, when fish length remained under 40cm.

Introduction

Since 1982, the demersal fish assemblage off West Greenland has been monitored annually by German groundfish surveys. The surveys were conducted during fall and represent the only source of information about the status of the groundfish stocks inhabiting the shelf and continential slope in Divisions IB-IF outside the 3 mile zone down to 400m depth. This paper describes the most recent status and trends in stock abundance, biomass and length structure for juvenile, golden and beaked redfish as derived from survey catches. Furthermore, historical sampling effort and length structure of German redfish landings are given as collected by fish market sampling, 1962-78.

Materials and Methods

Abundance, biomass estimates and length structures have been derived using annual groundfish surveys covering shelf areas and the continental slope off West Greenland. Surveys commenced in 1982 and were primarily designed for the assessment of cod. Because of favourable weather and ice conditions and to avoid spawning concentrations, autumn was chosen for the time of the surveys. These were carried out by the research vessel (R/V) WALTHER HERWIG (II) throughout most of the time period, except in 1984 and 1994, when R/V ANTON DOHRN was used and she was replaced by the new R/V WALTHER HERWIG III, respectively.

The fishing gear used was a standardized 140-feet bottom trawl, its net frame rigged with heavy ground gear because of the rough nature of the fishing grounds. A small mesh liner (10nm) was used inside the cod end. The horizontal distance between wing-ends was 25m at 300m depth, the vertical net opening being 4m. In 1994, smaller Polyvalent doors ($4.5m^2$, 1,500kg) were used for the first time to reduce net damages due to overspread caused by bigger doors ($6m^2$, 1,700kg) which have been used previously. All calculations of abundance and biomass indices are based on the 'swept area' method using 22m horizontal net opening as trawl parameter, i. e. the constructional width specified by the manufacturer. The towing time was normally 30 min. at a speed of 4.5 knots. Trawl parameters are listed in Table 1. Hauls which received net damage or became hangup after less than 15 minutes were rejected. Some hauls of the 1987 and 1988 surveys were also included aithough their towing time had been intentionally reduced to 10 minutes because of the expected large cod catches as observed from echo sounder traces.

Fish were identified to species or lowest taxonomic level and the catch in number and weight was recorded. Rcdfish (>=17 cm) were separated to golden (*Sebastes marinus* L.) or beaked redfish (*Sebastes mentella* Travin), whereas juvenile redfish (<17 cm) were classified as *Sebastes spp.* due to time-consuming and difficult species indentification. Total fish lengths were measured to cm below.

The surveys were primarily designed for the assessment of cod. In order to reduce the error of abundance estimates, the subdivision of shelf areas and the continental slope into different geographic and depth strata was required due to a pronounced heterogeneity of cod distribution. The survey area was thus split into four geographic strata. Each stratum was itself subdivided into two depth strata covering the 0-200m and 201-400m zones. Figure 1 and Table 2 indicate the names of the 8 strata, their geographic boundaries, depth ranges and areas in nautical square miles (nm²). All strata were limited at the 3 mile offshore line.

The applied strategy was to distribute the sampling effort according both to the stratum areas and to cod abundance. Consequently, fifty percent of the hauls were allocated proportionally to strata by stratum area while the other fifty percent were apportioned on the basis of a review of the historical mean cod abundance/nm², all hauls being randomly distributed within trawlable areas of the various strata. Non-trawlable areas are mainly located inshore. During 1982-94, 1,268 successful sets were carried out, the numbers of valid sets by year and stratum being listed in Table 3.

Stratified abundance estimates were calculated from catch-per-tow data using the stratum areas as weighting factor (Cochran, 1953; Saville, 1977). Strata with less than five valid sets were rejected from the calculation. The coefficient of catchability was set arbitrarily at 1.0, implying that estimates are merely indices of abundance and biomass. Respective confidence intervals (CI) were set at the 95% level of significance of the stratified mean.

Total fish length (cm below) of German golden redfish landings at the fish markets in Bremerhaven and Cuxhaven was routinely recorded during 1962-78. Before their aggregation by quarter and year, numbers per length group were raised to the weight of an individual landing.

Correlation analysis and linear regressions were conducted using the program CSS-StatSoft, 1991.

Results

Tables 4 and 5 list abundance and biomass indices for golden redfish (>=17cm) by stratum and total, 1982-94. Trends are illustrated in Figure 2. During 1982-94, both indices decreased by 99% from 130 million to 1 million individuals and from 56.000 tons to 500 tons, respectively. Golden redfish declined from all strata, lacking a clear spatial distribution pattern. The length structures in 1982-94 are listed in Table 6 and illustrated in Figures 3a and 3b. Until 1990, length distributions remained relatively unchanged and peaked each year around 30-33cm. Thereafter, the fish size was significantly reduced and the length distributions became scattered due to extremely low catches.

Trends in survey abundance and biomass indices for beaked redfish (>=17cm) are shown in Figure 4 and listed in Tables 7 and 8, respectively. Total estimates are accompanied with high confidence intervals exceeding 100% and vary among 160.000 and 15 million individuals and 30 and 4,300 tons without a clear trend. It should be noted, that estimates of the latest 3 years 1992-94 are very low. In contrast to golden redfish, beaked redfish show a pronounced spatial distribution pattern, i.e. to be most abundant in deep strata. Table 9 list the length distributions in 1982-94, which are illustrated in Figures 5a and 5b. In contrast to golden redfish, size structures show extreme changes between successive years but lack growth indications.

Survey abundance of unspecified and juvenile redfish (<17cm) varied enormously (Fig. 6), while estimates of biomass are low due to low individual size. Since 1985, this redfish category were found to be very abundant, although the indices are accompanied with high confidence intervals (Tab. 10 and 11). They were found to be mainly distributed in northern strata but tend to spread over the total survey area in most recent years. Length structures 1982-94 are listed in Table 12 and plotted in Figure 7 after converting to per cent. Reappearing peaks at 6, 10-12 and 15-16cm might indicate annual growth increments.

Table 13 describes the effort and results derived from quaterly aggregated fish market samples. Calculated mean lengths \pm - standard deviation are illustrated in Figure 8. A linear correlation and regression analysis was carried out with mean length as the dependent and time as the independent variable, resulting parameters being: n=32, p=0.07, r=-0.322, r²=0.104, f(x)=354.932-0.159x.

Discussion

The 1994 survey results confirmed the severely depleted status of the redfish resource off West Greenland and almost non-existence of the exploitable component whithin the area surveyed as has been stressed last year (Râtz, 1994). Since 1982, golden redfish (\geq =17cm) decreased by 99% in abundance and biomass, while estimates for beaked redfish (\geq =17cm) vary without a clear trend but were determined to be extremely low since 1992. Uncertainties of this view araise mainly from the survey design which doesn't cover deeper areas of the stock distribution (Atkinson, 1987), inshore (fjord) and pelagic occurrence and areas north of 67° northern latitude, which is considered to be poor for commercial sized redfish (Pedersen and Nygård, 1992). The recent declines in abundance of golden and beaked redfish is also reflected by groundfish surveys for Greenland halibut (Ogawa et al., 1994) and by-catches during shrintp surveys (Bech, 1994). Due ot time-consuming and difficult species idenfication, juvenile redfish (<17cm) were separately assessed. Since 1986, this component was found to be very abundant but varied without a distinct trend. However, recruitment of the stocks failed recently.

Length distributions indicate significant year effects for both stocks of golden and beaked redfish (>=17cm), which are dominated presently by small individuals (<30cm). Species and stock identification of juvenile redfish (<17cm) is still unclear, but reappearing peaks at 6, 10-12 and 15-16cm might indicate annual growth increments and represent the age groups 0, 1 and 2 years, which is in good agreement with validated age determinations of Nedreaas (1990) for juvenile redfish. In September 1982-84 (1 months earlier than the normal survey time for Greenland), he found peaks at 4, 8-9 and 12cm for the dominating 1982 year class of beaked redfish off Norway and related those to the age groups 0, 1 and 2.

In order to complete available data series, the sampling effort and size structure of commercial catches of golden redfish taken off West Greenland and landed at Cuxhaven or Bremerhaven were presented for the period 1962-78. The linear regression of mean length and time miss slightly significance (p=0.07). During 1962-78, the calculated size reduction of commercial landings amounts to 2.5cm and seems to be more pronounced in the late 70-ies, when fish length remained under 40cm.

References

Atkinson, D. B. 1987. The Distribution and Abundance of Redfish (Sebastes marinus and S. mentella) in Davis Strait (NAFO Subarea 0+1). NAFO SCR Doc. 87/38, Ser. No. N2093; 1-11

Bech, G. 1994. Biomass and Abundance of Greenland Halibut (*Reinhardtius hippoglossoides*) and Redfish (Sehastes spp.) from a Bottom Trawl Survey in NAFO Subarea 1 in 1993. NAFO SCR Doc. 94/9, Ser. No. N2367: 1-12

Cochran, W. G. 1953. Sampling techniques. John Wiley & Sons Inc., New York: 1-330

Nedreaas, Kjell 1980. Age determination of Northeast Atlantic Schastes species. J. Cons. int. Mer, 47:208-230 Ogawa. M., K. Yokawa and O. Jorgensen 1994. Results of a Stratified Random Trawl Survey off West Greenland in 1993. NAFO SCR Doc. 94/31, Ser. No. N2399: 1-12

Rätz, H.-J. 1994. Redfish Subarea 1 (0-400m): Stock Abundance Indices, Species and Length Composition, 1982-93. NAFO SCR Doc. 94/6, Ser. No. N2362: 1-21.

Saville, A. 1977. Survey methods of apprising fishery resources. FAO Fish. Tech. Pap. 171: 1-76

Table 1 Trawl parameters of the survey.

140-feet bottom trawl
22 m
4.5 kn
30 minutes
1.0

Table 2 Specification of strata.

Strat	um	geographi	c boundaries	6	depth	area
	south	north	east	west	(m)	(nm2)
1.1	64°15'N	67°00'N	50°00'W	57°00'W	1-200	6805
1.2	64°15'N	67°00'N	50°00'W	57°00'W	201-400	1881
2.1	62°30'N	64°15'N	50°00'W	55°00'W	1-200	2350
2.2	62°30'N	64°15'N	50°00'W	55°00'W	201-400	1018
3.1	60°45'N	62°30'N	48°00'W	53°00'W	1-200	1938
3.2	60°45'N	62°30'N	48°00'W	53°00'W	201-400	742
4.1	59°00'N	60°45'N	44°00'W	50°00'W	1-200	2568
4.2	59°00'N	60°45'N	44°00'W	50°00'W	201-400	971
Sum						18273

Table 3 Numbers of valid hauls by stratum and total, 1982-94.

Year	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	Sum
1982	20	11	16	7	9	6	13	2	84
1983	26	11	25	11	17	5	18	4	117
1984	25	13	26	8	18	6	21	4	121
1985	10	8	26	10	17	. 5	21	4	101
1986	27	9	21	9	16	7	18	3	110
1987	25	11	21	4	18	3	21	3	106
1988	34	21	28	5	18	5	18	2	131
1989	26	14	30	9	8	3	25	3	118
1990	19	7	23	8	16	3	21	6	103
1991	19	11	23	7	12	6	14	5	97
1992	6	6	6	5	6	6	7	5	47
1993	9	· 6	9	6	10	8	7	. 0	55
1994	16	13	13	8	10	6	7	5	78
Sum	262	141	267	97	175	69	211	46	1268

Table 4 S. marinus (\geq =17cm). Abundance indices (1,000) by stratum and total, 1982-94. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean.

YEAR	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	TOTAL	CI
1982	7015	6340	88792	5512	5736	14876	4087		132357	111
1983	4025	3186	3355	6523	4043	5885	1697		28714	35
1984	1324	3438	460	1209	10671	2776	4214		24091	39
1985	4658	10451	6158	1569	3220	14441	4973		45471	45
1986	6327	4324	2077	3483	21503	2883	2717		43314	43
1987	906	653	1327		9612		659		13157	57
1988	831	2239	342	2255	5938	1954	731		14290	40
1989	421	422	776	690	6489		361		9160	62
1990	120	433	279	709	1038		146	2271	4996	34
1991	227	256	96	691	236	527	21	1671	3724	61
1992	126	106	73	190	193	477	192	835	2193	43
1993	169	481	59	267	80	132	0		1188	53
1994	111	325	156	167	65	46	151	247	1266	42

Table 5 S. marinus (>=17cm). Biomass indices (tons) by stratum and total, 1982-94. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	YEAR	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	TOTAL	CI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1982	1798	1354	34440	2558	3206	9794	2532		55682	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1983	846	945	1572	3042	1873	4815	1084		14178	37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1984	308	894	196	519	4935	2284	2089		11225	47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1985	1020	1819	2968	472	1427	9209	2718		19634	58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1986	1282	1215	752	1229	10122	1705	1762		18068	46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1987	255	247	660		4954		438		6553	63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1988	146	404	118	942	2570	1342	382		5902	41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1989	182	137	272	249	2619		209		3669	64
19914483242261202733100717787419921835206153241704479474919934611219114395503844719943414648642635408047343	1990	39	149	75	275	479		79	1343	2438	46
19921835206153241704479474919934611219114395503844719943414648642635408047343	1991	44	83	24	226	120	273	3	1007	1778	74
19934611219114395503844719943414648642635408047343	1992	18	35	20	61	53	241	70	447	947	49
1994 34 146 48 64 26 35 40 80 473 43	1993	46	112	19	114	39	55	0		384	47
	1994	34	146	48	64	26	35	40	80	473	43

Length (cm)	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
0.5	0	0	0	0	0	0	0	0	0	0	0	0	0
1.5	. 0	0	0	0	0	0	0	0	0	0	0	0	0
2.5	0	0	0	0	0	0	0	0	0	0	0	0	0
3.3	0	0	. 0	0	0	0	U O	0	0	0	0	0	0
4.3	0	0	0	0	0	0	0	0	0	0	0	0	0
5.5	0	0	0	0	0	0	7	0	0	0	0	0	0
. 7.5	0	ň	ő	0	ő	0	, 0	0	0	0	0	ŏ	0
85	0	0	ŏ	0	0	0	0	0	0	0	0	0	0
9.5	Õ	õ	õ	ň	ŏ	ŏ	22	ă	ŏ	0 0	ň	0	Ň.
10.5	õ	õ	õ	Ő	ŏ	õ	15	ŏ	ŏ	ő	ő	ŏ	õ
11.5	0	0	Ō	õ	Ō	ō	0	ō	Ō	Õ	Ő	ŏ	ŏ
12.5	0	0	0	0	0	0	7	0	0	0	7	0	0
13.5	0	0	0	0	0	0	7	0	0	0	0	0	0
14.5	0	0	0	0	0	0	0	0	11	6	0	0	0
15.5	0	0	0	0	0	0	0	9	39	50	14	0	0
16.5	859	662	574	2381	1438	30	686	8	24	21	29	0	0
17.5	1003	629	572	1917	1347	64	321	46	131	86	15	0	0
18.5	955	510	442	1372	1733	51	131	37	58	94	51	35	90
19.5	1068	435	397	1258	1241	76	351	90	45	53	5	94	89
20.5	884	657	332	1434	1047	95	253	131	74	121	44	147	85
21.3	1224	. 014	278	1191	940 11 5 2	132	243	140	120	86	146	22	42
22.5	1701	806	410	1520	1140	264	202	214	132	1.54	80	22	48
23.5	2031	808	532	1204	1787	449	278 464	320	189	131	00 146	23 44	20
25.5	3487	1231	690	1374	1611	381	640	343	749	160	106	109	68
26.5	4690	1408	833	1556	1717	631	765	561	215	184	139	40	91
27.5	6049	1509	994	2049	1879	647	798	678	251	171	95	86	71
28.5	9267	1690	1315	1781	2213	767	769	732	270	192	82	35	40
29.5	11170	199 2	1490	2358	2549	936	913	871	224	273	140	16	65
30.5	10818	2524	2054	3193	3285	1023	1081	1070	410	141	144	74	44
31.5	14994	1941	1978	2321	3090	1155	947	709	329	192	107	41	45
32.5	11490	1797	1928	2872	3224	1028	826	715	266	192	132	49	49
33.5	10177	1422	1684	2080	2926	1234	720	625	205	236	150	35	19
34.5	8118	1188	1424	2144	2505	946	645	430	263	134	129	40	52
35.5	7888	1247	1250	1765	2198	901	721	397	259	184	105	27	54
36.5	5721	980	293	1446	045	495	362	328	213	133	62 57	44	49
385	3801	650	635	1211	631	251	364	115	130	1.50 - 121	21	43 20	37
39.5	2149	453	379	1091	413	251	252	120	82	114	- <u></u>	36	40
40.5	1566	310	320	1107	415	201	234	51	128	102	62	4	5
41.5	995	259	236	537	222	128	127	27	118	25	5	4	11
42.5	472	231	179	572	84	56	64	11	82	65	17	23	29
43.5	598	222	197	430	94	39	65	22	54	28	14	0	16
44.5	234	101	110	243	40	42	53	15	0	27	0	10	23
45,5	152	106	120	221	22	22	45	Û	42	19	0	12	14
46.5	133	119	92	185	25	13	53	0	24	5	0	0	5
47.5	23	48	65	94	17	5	- 16	0	18	14	0	0	0
48.5	42	85	64	94	0	0	4	0	12	6	0	0	0
49.5	41	23	37	68	0	U	6	4	0	0	0	0	0
50.5	37	73	48	11	9	0	0	4	12	0	0	0	0
51.5	46	20	9	11	0	4	0	4	0	0	0	0	0
53.5	20	2Q	14	6	4	0	8	4	0	0	Ő	Å	0
54.5	20	82 50	10	22	8	4	6	4	0	0	0	0	0
55.5	23	39	ŝ	17	12	O	ŏ	ŏ	ŏ	Ő	ŏ	ŏ	õ
56.5		47	5	4	0	õ	6	Ō	ŏ	Ő	Ő	õ	5
57.5	18	16	14	5	0	0	0	Ó	0	0	0	0	0
58.5	11	38	0	6	0	0	0	0	0	0	0	0	0
59.5	32	28	5	6	5	0	6	0	0	0	0	0	0
60.5	18	50	23	0	9	0	0	0	0	0	0	0	0
61.5	5	6	5	3	4	0	3	0	0	0	0	0	0
62.5	9	33.	9	6	· 0	0	0	0	0	0	0	6	0
63.5	9	11	0	0	0	0	0	0	0	0	0	0	0
64.5	32	17	0	0	4	0	0	0	0	0	0	0	0
65.5	11	11	5	0	0	0	0	0	0	0	0	0	0
66.5	5	11	0	0	0	0	0	0	0	0	0	0	0
67.5	0	0	0	0	0	0	0	0	0	0	0	0	0
68.5	2	U ^	0	0	0	0	0	0	0	U A	U A	U A	U A
07.5 70 5	0 5	11	0	0	n N	0	6	0 0	0	0	0	0	n
10.5	2		~	v		~		~	0	0	0	~	~

Table 6 S. marinus (>=17cm). Length disaggregated abundance indices (n*1000), 1982-94.

Table 7 S. mentella (\geq =17cm). Abundance indices (1,000) by stratum and total, 1982-94. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean.

YEAR	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	TOTAL	CI
1982	0	390	17	348	0	2360	0		3116	105
1983	40	1011	70	2528	0	5236	0		8884	66
1984	41	2967	7	1276	0	1115	0		5405	82
1985	0	369	31	27	55	328	0		810	115
1986	2141	414	38	292	5	444	0		3333	76
1987	987	13679	42		56		0		14765	79
1988	150	3187	25	777	60	4619	0		8819	79
1989	0	186	9	102	0		8		303	59
1990	0	10	4	705	50		0	3881	4649	112
1991	0	0	0	0	0	652	0	1773	2425	106
1992	0	35	0	15	0	106	0	· 0	157	94
1993	0	24	. 0	159	7	0	0		190	160
1994	0	271	20	95	94	162	0	. 36	678	54

Table 8 S. mentella (>=17cm). Biomass indices (tons) by stratum and total, 1982-94. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean.

	11	1.2	2.1	2.2	2.1	2.2	4.1	4.2	TOTAL	CI
YEAR	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	IOTAL	U
1982	0	96	6	114	0	893	0		1109	116
1983	16	213	26	1158	0	2857	0		4270	77
1984	6	798	4	490	0	472	0		1771	89
1985	0	96	15	11	27	110	Ó		260	108
1986	223	39	20	110	3	179	0		574	65
1987	84	1184	9		31		0		1307	62
1988	20	425	21	159	45	1878	0		2549	92
1989	0	23	7	15	0		1		46	50
1990	0	5	2	87	7		0	542	643	109
1991	0	0	0	0	0	153	0	445	598	104
1992	0	3	0	2	0	28	0	0	33	105
1993	0	5	0	23	2	0	0		29	130
1994	0	31	3	10	12	25	0	3	84	51

Table 9	S. mentella (>=17cm)	. Length disaggregated abun	dance indices (n*1000), 1982	-94.

Length (on	n) 1987	1092	109/	1025	1096	1097	1099	1090	1000	1001	1003	1002	1004	
Lengen (en	ny 1702	1705	1704	1705	1200	1707	1700	1707	1770	1991	1994	1773	1994	
0.		<i>i</i> 1	0	U	0	0	0	0	0	0	0	0	0	
1.	.5 0) 0	0	0	0	0	0	0	0	0	0	0	0	
2	5 0) (0	0	0	0	0	0	0	Δ	0	0	Ó	
2		, ,	ő	ě	~	0	0	0	0	0	0	0	Ū,	
э.	.) U	, 0	v	U	0	0	U	0	0	0	0	0	0	
4	.5 0) 0	0	0	0	0	0	0	0	0	0	0	· 0	
5	5 () 6	0	0	0	0	0	Λ	0	Ω	0	0	0	
2			ŏ	0	Å	0	0	0	ő	~	0	0	0	
0.	.5 0	, ,	U	υ	Ų	· U	0	U	0	U	0	0	0	
7.	.5 0) ()	0	0	0	0.	0	0	0	0	0	0	0	
8	5 0) (0	0	0	0	0	0	0	n	0	á	0	
0		, o	ő	Ň	0	0	ŏ	ŏ	0	0	Ň	ő	0	
9.	.) (, 0	. V	U	0	0	U	0	0	0	U	0	0	
10.	.5 0) 0	0	0	0	0	0	0	0	0	0	0	0	
13	5 () 0	0	0	0	· 0	0	0	n	0	0	0	0	
10		, U		ő	0	U O	0	, v	ě		0	0	0	
12	.) U) ()	0	0	0	0	0	0	5	0	0	0	0	
13	.5 0) 0	Û	0	0	0	0	0	0	0	0	0	0	
14	5 () 0	Ω	.0	Û	0	· 0	0	0	0	0	0	0	
15		ý Ö	ő	· õ	Š		0	6		-	0	~	0	
. 15		U، ۲	0	U	U	0	· U	2	2	2	0	0	0	
16	.5. 0) 23	95	· 29	657	5220	229	0	0	- 5	0	0 -	0	
. 17	5 9	> 58	. 140	6	967	2177	217	14	72	0	0	0	0	
19	5 20) <u>5</u> 1	107	ŏ	201	2704		10	07	ň	17	č	0.0	
10	.) 25	7 <u>-</u> 21	102	9	304	2/94	99	18	83	9	17	0	266	
; 19	.5 6	5 79	164	41	136	1721	965	. 64	240	31	25	6	163	
20	.5 .28	3 89	149	26	· 98	1922	748	91	636	9	0	12	- 76	
· 21	5 10) 04	155	26	54	272	521	30	1079	71	20	6	20	
21	.5 40	90	155	20	34	· 212	251	30	10/8	. /1	20	0	50	
_ 22	.5 18	3 . 143	130	13	88	131	722	25	1544	300	5	19	<u>,</u> 62	
23	.5 41	124	194	35	78	84	408	:9	640	390	18	6	25	
24	5 26	2 194	140	05	102	127	246	à.	101	610	10	12	22	
24		> 104	100	0.2	105	157	340	0	191	049	20	15	22	
25	.5 105	5 265	- 98	76	30	36	354	19.	76	608	9	19	0	
26	.5 83	362	182	52	42	18	320	0	58	165	18	13	5	
27	5 231	I 5/19	19/	37	20	17	210	0	19	02		25	Ň	
21	.5 231	1 348	104	57	30	47	319	0	10	93	ر	4.5	0	
28	.5 181	1 559	329	46	93	43	265	5	0	- 38	0	25	12	
29	.5 315	5 776	° 457	38	68	0	296	0	4	19	0	0	5	
30	5 571	1450	742	55	74	57	454	Ō		20	Å	12	Å	
50		1452	742		70	52	434	0	Ű	47	v	12	U U	
31	.5 391	1179	664	44	57	36	324	O	0	0	0	0	0	
32	.5 380) 928	522	48	92	24	397	0	0	0	0	6	0	
22	5 247	7 714	440	40`	40	6	207	Ó	Ā	0	Ó	Ō	Å	
33			440	40	47	0	- 391	0	v	U	υ.	U	v	
34	.5 123	563	245	32	106	6	421	0	0	0	0	0	0	
35	.5 93	3 358	139	26	58	0	482	- 5	. 0	5	5	13	0	
36	5 60	127	51	15	12	6	228	0	õ	<u>_</u>	ō	0	ő	
50		2 137	51	15	43	0	220	U	Ŭ,	U	0	U	0	
37	.5 28	8 71	10	4	21	0	129	6	0	0	0	0	5	
38	.5 .5	5 28	24	0	26	4	37	0	0	0	5	0	0	
30	5 10	2 10	11	0	12	Ó	40	5	Ā	0	5	Ő.	à	
37	.5 13	. 10	11	2	15	v	49	3	v	0	2	U	0	
40	5 IS	≯ 6	8	7	0	8	18	0	. 0	0	0	6	5	
41	.5 \$) 14	5	9	18	12	10	0	0	0	0	0	0	
42	5 1/	1 0	0	0	0		17	. 8	Ó	Ó	0	0	Ś	
74		+ 0	0	v	U n	-+	17		0	v	0	U O	5	
4.5	.) S) 6	0	0	8	0	1.5	U	0	- 0	0	Û,	0	
44	.5 5	50	0	0	4	0	0	Û	· 0	0	0	0	0	
45	5 0	a n	5	n	0	0	. 11	Û	0	Δ	0	0	0	
15			5	0	~	ő		0		~	0	0	0	
40	.>	5 U	2	Ų	U	0	U	U	0	U	U	0	U	
47	.5 <u>-</u>	50	0	0	4	0	0	0	0	0	0	0	0	
48	.5 () 0	0	·0	0	0	0	0	0	0	0	0	0	
40	is 2) ⁰		n.	ň	ő	10	Å	Ň	ň	0	Â	Ň	
-+7		, U	U	~	v	v	10	v .	0	v	2	v	v	
50	.) (, O	0	0	0	D	U	0	0	0	0	0	0	
51	.5 () 0	0	0	0	0	0	0	0	0	0	0	0	
52	5 (۱ <u> </u>	0	Ω	Ω	0	0	0	<u>،</u>	Ω	0	n	Ω	
52		, U	~	~	~	~	~	~	~	~	0	~	~	
53	.) (, 0	U	U	U	0	U	U	0	U	U	0	Q	
54	.5 () 0	0	· 0	0	0	0	0	0	0	0	0	0	
55	5 6) (0	0	0	0	Λ	0	θ	0	0	Ĥ	Ω	
56		, o	ő	0	~	ő	ő	ñ	ő	ň	ő	Å	ő	
56		, ,	U	0	0	0	U	0	U	U	U	0	0	
57	.5 () 0	0	0	0	0	0	0	0	0	0	0	0	
58	(5 r) A	Δ	Ô	0	0	0	0	0	0	Λ	Ω	0	
50		- U	~	ň	~	~	~	ň	~	~	~	~	~	
39) د.	, O	U	U	U	Ų	U	U	U	U	U	0	0	
60	.5 () 0	0	0	0	0	0	0	0	0	0	0	0	
61	5 0	ງ ດ້	0	Ω	n	A	0	0	Δ	0	0	n.	۰ ۵	
01		, U	0	v 2	v	v v	~	~	~	~	v	, ,	0	
62	.) () O	0	0	0	0	0	Q	0	0	0	0	0	
63	.5 () 0	0	0	0	0	0	0	0	0	0	0	0	
61	5 (า ก้	0	Δ	, O	Å	n	Δ		A	0	Ā	<u> </u>	
		, v		~	~	v .	~	~	~	~	~		~	
65	.) (, 0	0	0	0	0	0	0	0	0	0	0	0	
66	.5 () 0	0	0	0	0	0	0	0	0	0	0	0	
57	5 0	า ก้	ń	Ó.	ň	0	Ā	n.		Å	n	ň	ň	
) <i>د</i> . س	, v	0	~	v	~	v	~	~	~	~	v	~	
68) ()	0	0	0	0	0	0	0	0	0	0	0	
69),5 (0 0	0	0	0	· 0	0	0	0	0	0	0	0	
	15	- V		ň	~	ň	ň	ň	~	ň	~	~	Ň	
/0	נו	у – ()	U .	U .	U	U	U U	v	U	U	U	0	U	

Table 10 Sebastes spp. (<17cm). Abundance indices (1,000) by stratum and total, 1982-94. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean.

YEAR	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	TOTAL	CI
1982	1057	358	121	27	8	42	22		1635	51
1983	3956	505	14	138	9	17	21		4660	74
1984	5021	3714	20	219	141	28	14		9155	74
1985	4889	9615	54	2712	47	67	55		17438	77
1986	10740	237636	113	1811	. 54	218	38 -		250611	182
1987	12455	113990	4		20		18		126488	120
1988	19679	42481	0	107	20	139	0		62424	50
1989	7717	13160	3071	5370	18		69		29407	45
1990	11256	35932	15417	1538	73		6199	848	71263	65
1991	51939	59845	34871	22668	13692	2508	892	1541	187954	35
1992	25715	19084	12691	17277	17463	13973	41	13718	119960	54
1993	5460	39035	664	11331	355	2773	14		59632	66
1994	3405	12002	9827	4013	1189	1731	10843	9867	52877	49

Table 11 Sebastes spp. (<17cm). Biomass indices (tons) by stratum and total, 1982-94. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean.

YEAR	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	TOTAL	CI
1982	37	13	6	1	0	2	1		60	47
1983	103	21	1	6	0	1	1		133	67
1984	91	104	1	5	5	1	1		208	81
1985	82	367	2	58	2	3	1		515	103
1986	454	6645	3	77	2	6	1		7187	178
1987	265	5021	0		1		0		5286	129
1988	218	1491	0	4	1	5	0		1718	64
1989	111	270	22	49	0		1		453	40
1990	99	369	63	20	0		9	2	563	43
1991	198	797	73	242	29	24	2	15	1380	44
1992	152	385	49	111	74	220	1	65	1056	55
1993	72	512	17	265	6	77	1		950	75
1994	26	216	55	57	30	64	141	277	866	50

Length (cm)	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
0.5	0.	0	0	0	0	0	0	0	0	0	0	0	0
1.5	0	0	0	0	0	0	0	0	0	0	Ó	0	0
2.5	0	0	0	0	0	0	0	0	0	. 0	0	0	0
3.5	0	0	0	0	0	0	0	0	0	0	0	0	0
4.5	0	0	0	0	5	0	•7	0	14	59	0	0	0
5.5	0	6	255	25	36	121	97	40	3468	15519	2396	0	2393
6.5	6	78	584	111	97	850	486	1814	5708	59605	30723	117	9938
7.5	0	219	179	185	459	1394	1940	2111	2758	11108	27897	200	1054
8.5	70	518	425	326	1913	902	9815	2176	8484	15959	5799	1935	4092
9.5	56	580	835	2162	4221	658	7404	4284	11836	23916	11346	9481	9037
10.5	96	359	1432	4165	8596	941	3378	5703	6993	36922	8922	8917	5238
11.5	259	594	2150	1470	19713	2446	1453	4835	7050	16198	5788	5980	2910
12.5	187	719	1284	508	106866	7018	1560	3156	7574	2388	7518	9526	6042
13.5	114	511	680	1599	76492	8667	3243	2148	6284	1648	11462	5615	4357
14.5	384	465	681	2715	14064	18412	8866	1020	4611	1196	6079	6020	2687
15.5	461	609	651	4173	4188	47210	13644	709	3556	1549	1220	5822	2402
16.5	0	0	0	0	5121	31716	4826	572	944	1005	391	3914	1329
17.5	0	0	0	0	6513	6136	2998	505	654	591	379	2105	1241
18.5	0	0	0	0	1400	0	2514	308	824	218	46	0	68
19.5	0	0	0	0	930	0	194	24	133	32	0	0	48
20.5	0	0	0	0	0	0	0	0	133	13	0	0	16
21.5	0	0	0	0	0	· 0	0	0	67	0	0	0	32
22.5	0	0	0	0	0	0	0	0	67	19	0	0	0
23.5	0	0	0	0	0	0	0	0	33	0	0	0	0
24.5	0	0	0	0	0	0	0	0	0	5	0	0	0
25.5	0	0	0	0	0	0	0	0	0	. 0	0	0	0

Table 12 Sebastes spp. (<17cm). Length disaggregated abundance indices (n*1000), 1982-94.

Table 13 S. marinus. Effort, mean fish length and standard deviation of quaterly aggregated samples from German landings at fish markets in Bremerhaven or Cuxhaven, 1962-78.

TIME	No. of Samles	No. of Fish Measured	No. of Fish Landed	Mean Length (cm)	Standard deviation
1962.13	5	1251	450498	43.5	5.5
1962.38	6	1816	608220	41.5	5.7
1962.63	7	1928	577901	45.4	4.8
1962.88	5	1311	280527	43.1	5.1
1963.13	4	927	258571	43.1	6.1
1963.38	4	1353	279930	41.2	5.3
1963.63	6	1594	331636	42.6	5.2
1963.88	7	1955	357015	43.5	5.7
1964.13	6	1717	311738	42.6	5.1
1964.38	5	1491	293952	41.5	4.6
1964.63	2	322	116563	42.5	5.4
1964.88	1	108	21971	44.8	4.2
1965.13	1	323	138286	40.7	4
1965.63	· 1	121	74341	40.6	4.1
1966.13	2	398	30778	47.2	7
1966.38	2	306	51689	41.3	6.3
1966.63	1	110	19542	45.9	4.3
1966.88	1	234	28594	43.2	5.7
1967.13	2	536	156252	40.7	4.2
1967.63	1	221	13575	43.3	3.7
1967.88	3	718	65177	44.7	4.5
1968.13	2	527	111346	40.7	5.8
1968.63	1	383	88629	44.6	4.7
1969.13	2	485	124223	46.5	5.8
1969.88	2	607	230263	44.9	4.4
1971.13	1	313	95345	43.6	5.5
1971.88	1	211	100554	46.7	3.4
1972.63	1	188	95191	42.7	3.8
1975.88	2	434	272509	41	4
1976.88	5	1639	623559	39.1	4.3
1977.13	3	924	355610	38.9	4.5
1978.13	1	206	16553	38.8	5.2

Fig. 1 Survey area and stratification scheme as specified in Table 2.

Fig. 2 S. marinus (>=17cm). Survey abundance and biomass indices, 1982-94.

Fig. 3a S. marinus (>=17cm). Length frequencies, 1982-87.

- 11 -

Fig. 3b S. marinus (>=17cm). Length frequencies, 1988-94.

- 12 -

Fig. 5a S. mentella (>=17cm). Length frequencies, 1982-87.

- 13 -

Fig. 5b S. mentella (>=17cm). Length frequencies, 1988-94.

- 14 -

Fig. 7 Sebastes spp. (<17cm). Percentage length frequencies, 1982-94.

Fig. 8 S. marinus, West Greenland. Mean fish length and +/-standard deviation of quaterly aggregated samples from German landings at fish markets in Bremerhaven or Cuxhaven, 1962-78.