NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2583

NAFO SCR Doc. 95/68

SCIENTIFIC COUNCIL MEETING - JUNE 1995

Assessment of the Greenland Halibut Stock Component in NAFO Subarea 0 + Divisions 1B-1F

by

O. A. Jorgensen and J. Boje

Greenland Institute of Natural Resources, Tagensvej 135 DK-2200 Copenhagen N, Denmark

1. TAC, description of the fishery and nominal catches.

Between 1979 and 1994 TAC has been at 25,000 tons for SA 0+1, including Div. 1A. In 1994 it was decided to make separate assessments for Div. 1A and Sub 0+Div.1B-1F. TAC for Sub. 0+Div.1B-1F was set to 11,000 tons for 1995.

In the period 1982-1989 nominal catches of Greenland halibut in Sub. 0+Div.1B-1F fluctuated between 300 and 4,500 tons. From 1989-1990 catches increased from 2,200 tons to 15,500. In 1991 catches dropped to 11,000 tons and then increased to 17,800 tons in 1992, the highest in the time series. Since then catches have gradually decreased through 12,900 tons in 1993 to 10,598 tons in 1994. The increase in catches from 1989 to 1990 was mainly due to a new trawl fishery by Canada and Norway in Div. OB. The increase from 1991 to 1992 was due to the introduction of a fishery by Russia in Div. OB.

In 1983 annual catches in Division OB was at about 4,500 tons. Catches then dropped to a level of 1,000 tons or lower where they remained until they increased from 907 tons in 1989 to 14,513 tons in 1990. Catches decreased in 1991 to 8,606 tons, to increase again in 1992 to 12,358 tons. Catches then decreased through 7,441 in 1993 to 4,722 tons in 1994 (Table 1). 4,322 tons were taken offshore by trawlers chartered by Canada (Russian and Japanese) and 400 tons were taken by long-lines inshore in Cumberland Sound. The trawl fisheries took place in July-October and the inshore long-line fishery in February-May, respectively.

The catches in Subarea 1 (Div. 1B-1F) were below 1,500 tons during the period 1982-1990. In 1991 catches increased to 2,376 tons and further through 5,500 tons in 1992 and 1993 to 5,876 tons in 1994. In 1994 5,673 tons were caught offshore in Div. 1CD, mainly by Norway and Japan, 663 tons were taken offshore by a Greenlandic longliner and 203 tons were taken inshore (Table 2).

2. Input data

2.1 Research trawl surveys

Since 1987 bottom-trawl surveys have been conducted in Subarea 1 jointly by Japan and Greenland. In 1994 a survey was conducted, in August (SCR Doc. 95/23). The survey covered Div. 1B to 1D at depths between 400 and 1500 m. The trawlable biomass was estimated to be 31.300 tons compared to 37.700 tons in 1993. As in 1993 estimate the estimate from 1994 is significantly lower than the estimates from 1992 (62,000 tons) and 1991 (77,00 tons) (Table 3). The decrease between 1993 and 1994 was mainly due to a decline in the estimated biomasses in Div. 1B and depth stratum 1000-1500 m in Div. 1D, while the estimate for 1C increased. Abundance estimates for Div. 1CD for the period 1988-1994 are given in Table 4. Total abundance fluctuated between 35 mill. and 53 mill. from 1988 to 1991, and declined gradually from 53 mill. to 25 mill. in 1994. From 1993 to 1994 the decline is seen for all age groups, except age 4 and 5.

From July to August 1994 a trawl survey with a shrimp trawler was conducted off West Greenland between 59°N and 72°30'N, from the 3-mile limit to the 600 m depth contour line. (SCR Doc. 95/19). Estimated trawlable biomass in the offshore areas increased from 2,943 tons in 1991 to about 9,000 tons in 1992 and 1993 and further to 12.222 tons in 1994, of which 17% was located in Div. 1A. The catches were almost exclusively comprised of one and two year old fish. The abundance was estimated to 253 mill, which is at the same level as in 1992 and 1993 and somewhat higher than the 70-80 mill. recorded in 1990 and 1991.

In the summer of 1994, an exploratory trawl was fished in the outer part of Cumberland Sound outside the winter fishing ground. The trawlable biomass ranged from 0 kg km⁻² at < 275 m to 2,678 kg km-2 at 900 m depth. Exploratory longline and gill net sets during the summer in the traditional winter fishing area yielded low catches (SCR Doc 95/50).

2.3 Commercial fishery data.

From the offshore fishery in Div. 1CD length frequency samples were obtained from the Japanese trawler 'Shinkai Maru' and from the Greenlandic longliner 'Bjalto'. Furthermore, length frequency samples from the inshore fishery in Div. 0B and 1D were available.

Catch weight-at-age was calculated from data sampled in 1994 from the Greenland/Japan survey, the Greenlandic trawl survey and from the commercial offshore long-line fishery. Table 5 and 6 shows catch-at-age and weight-at-age, respectively. The relative age distributions for trawl and offshore longlines are given in Fig.1. The shift towards younger age groups seen in 1993 has become more evident in 1994 (Table 5). In the latest years, however, three different age readers have been involved in otolith reading, and there seems to be some discrepancy in there results. Catch-at-age data were also available from OB inshore.

Maturity data were available only from the inshore areas in Div. OB, where 97% of the fish sampled were females. All fish were either immature or not in spawning condition.

Standardized catch rate series were calculated by means of division, tonnage, month and year based on available logbog data from the offshore otter trawl fishery in Subarea 1 (1CD) in 1988-1994. The catch rate series was fairly constant during the period 1988-1992, but have shown a decrease of about 30% since 1992.

Catch rates for the Japanese trawler 'Shinkai Maru' were available for the period 1987-1994. No values were obtained from 1993, as there was no commercial fishery by this vessel in West Greenland waters this year (Table 7). Average catch rates from the Norwegian trawl fishery in Divisions OB and 1CD and from Russian/Baltic States trawl fishery in Division OB were available for the period 1991-1994 (Fig. 2, Table 8). Catch rates from 'Shinkai Maru' decreased substantially from 1992 to 1994. Norwegian catches in SA 1 also decreased from 1991-1993, but seems to have stabilized between 1993 and 1994. Norwegian catch rates in SA 0 have increased from 1991 to 1993, while Russian/Baltic catch rates have been stable in the same period. Most of the unstandardized CPUE series are, however, incomplete and it is difficult to make any firm conclusions about the development based on them.

Inshore in Div. OB CPUE decreased, in terms of number of fish, gradually from 1989 to 1991. In 1992 the CPUE, increased to slightly above the 1987 level, where it has remained since. The age compositions in the catches have remained the same through out the years, with ages 10, 11 and 12 being the most abundant, comprising 65 % of the catches. The mean-weight-at-age has decreased significantly during the last three years.

3. Biological studies.

It is uncertain whether adult Greenland halibut in Cumberland Sound contribute to the spawning population in Davis Strait. The shallow sill (about 300 m) between Cumberland Sound and Davis Strait may act as a barrier between the areas and prevent Greenland halibut from passing freely between the two areas. Water temperatures on top of the sill during the summer are colder than -0.5 degrees celsius, while temperatures near the bottom of the Sound are slightly above 0 degrees. It may be that cold water above 300 m depth acts as a barrier to adult migration. A stock identification program based on genetic and morphological indicators, now in progress, may contribute to the solution of the problem concerning the status of the inshore stock component.

- 3 -

4. Assessment.

4.1 Yield per Recruit Analysis.

The recent level of total mortality was estimated by means of a catch-curve using data from the offshore longline fishery in Div 1D in September. Z was estimated from a regression on age 11-17 and was found to be 0.62. Assuming a natural mortality of 0.15, overall F is 0.47. The input parameters for the Y/R analysis is given in Table 9. $F_{\rm (max)}$ and $F_{\rm (0.1)}$ were estimated to be 0.36 and 0.25, respectively (Fig. 4). STACFIS considered the Yield per Recruit analysis unreliable due to uncertainty in the estimation of weight-at-age and relevant partial recruitment pattern.

<u>4.2 Extended Survivors Analysis (XSA).</u> Abundance estimates from RV 'Shinkai Maru' for the age groups 9-13, during the period 1988-1994, standardized CPUE data from SA 0 for the age groups 5-15 during the period 1990-1993 (Atkinson et al. 1994) and CPUE data from SA1 for the age groups 5-13 during the period 1988-194 were used to tune the catch-at-age data using a XSA. Natural mortality was set to 0.15, catch-at-age and weight-at-age data used are shown in Table 6 and 7. STACFIS considered the XSA unreliable due to uncertainty in the age determination. Furthermore, the XSA results showed that neither the survey data nor the two CPUE series did match the catch data as shown by high log-catchability residuals, systematic shift in the residuals by year and unrealistic high F values for the older age groups. The output from the analysis is given in Appendix 1.

4.3 Pope's Cohort analysis

A Pope's Cohort analysis was performed using the catch-at-age data in Table 6, mean weight-at-age data for the period 1988-1994 and M=0.15. F_{term} was estimated from the catch curve mentioned earlier and is shown in Appendix 2. Fbar is the average of age 8-11. The recruitment used for the prognosis is the average recruitment in the period 1987-1993. The fishing pattern is considered to be unchanged in 1996. STACFIS considered the analysis unreliable due to ageing problems and problems inestimating reliable $F_{\scriptscriptstyle term}.$ The output from the analysis is shown in Appendix 2.

Prognosis.

Subarea 0 + Div. 1B-1F.

After 1989 the offshore fishery in subareas 0+1 (Div 1B-F) has expanded considerably. This increased exploitation is expected to cause a change in the stock composition in the area towards younger fish and a lower total biomass. The decline both in the commercial catch rates and in the survey biomass are however marked and suggests a high exploitation level.

5. References

Atkinson, D.B., W.R. Bowering and W. Brodie. 1994. Analysis of Data Collected by Observers During the Greenland Otter Trawl Fisheries in Subarea 0 During 1988-1993. NAFO SCR Doc. 94/47.

Bech, G. 1995. Recruitment of Greenland halibut at West Greenland NAFO SCR Doc. 95/19.

Pike, D.G. and J.A. Mathias. 1995. Status of the Greenland halibut Fishery in Cumberland Sound, Baffin Island. NAFO SCR Doc. 95/50.

Yokawa, K., H. Shimuzu, O. Jorgensen and H. Yamada. 1995. Results of a Stratified Random Bottom Trawl Survey off West Greenland in 1994. NAFO SCR Doc. 94/23.

Table 1. Greenland halibut landings (metric tons) by year and country for Subarea 0 from 1983 to 1994.

							YE	AR				
Country	83	84	85	86	87	88	89	90	91	92 ^a	93 ^a	94 ^a
CAN	-	-	-	-	-	2	-	589	256	2194	883	400
E/DEU	-	-	335	-	~		-	-	-	-	-	-
EST	-	-	-		-	-	-	-		-	631	-
FRO	765	370	525	240	388	963	596	2252	2401	463	609	-
JPN	-	-	-	-	-	· -	-	113	232	337	252	599
LAV	~	-	-			-	-	-	-	-	83	-
NOR	-	-	-	-	-	·_	282	10031	3959	-	754	-
RUS	3772	,109	179	32	-	. 59	29	1528	1758	9364	4229	3723
Total	4537	479	1039	272	388	1024	907	14513	8606	12358	7441	4722

^a Provisional data.

Table 2. Greenland halibut landings (metric tons) by year and country for Subarea 1 from 1983 to 1994.

<u> </u>					YEA				······	······		
Country	83	84	85	86	87	88	89	90	91	92 ^a	93 ^a	94 ^a
E/DEU	14	15	-	-	-	-	-	-	-	-	46	217
GRL	4136	6509	9127	8333	8385	7003	7492	8352	10209	12171	13054	866
FRO	-	-	-	-	-	-	-	54	123	151	130	-
JPN	-	26	5	-	907	1581	1300	988	677	2903	1432	819
NOR	-	2	-	-	-	-	· -	-	611	2432	2957	3194
RUS	-	-	-	-	-	-	-	-	-	-	5	-
1A	4136	6509	9127	8333	8385	7003	7492	8352	9244	1217]	12136	14067
1B-F	14	43	5	0	907	1581	1300	1042	1523	5486	5488	5876 ^b
Total	4150	655 2	9132	8333	9292	8584	8792	9394	11620	17657	17624	19943 ^b

^a Provisional data. ^b Including 780 tons non-reported catches.

Table 3. Biomass estimates (000' tons) from Greenland/Japanese surveys and USSR(RUS)/DDR(FRG) surveys for the years 1987-1993 in Subareas 0+1.

	USSR (F	USSR (RUS) /DDR (FRG) SURVEY		JAPAN/GREENLAND SURVEY			
	0.B	1BCD	1ABCD	1BCD	0B+1ABCD		
1987	37	56	58 ^a	54 ^a	91		
1988	55	47	63	53	118		
1989	79	<u> </u>	-	63 ^c	142		
1990	72	88	56 ^b	53 ^b	128		
1991	46	-	79	77	125		
1992	38	-	64	62	102		
1993	-	_ ·	-	38	-		
1994		-	-	31	-		

- no survey ^a In 1987 the survey did not cover the depth stratum 1000-1500 m.

^b Average values of two surveys.

^c Estimate only for Division 1CD

Table 4. Shinkai maru abundance 1988-1994

μ
9

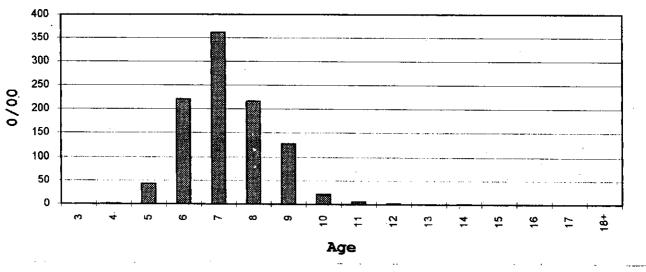
1994	97526	95556	236180	1673950	5992432	7808977	4534467	2889085	522848	203918	160081	106146	119445	105161	43591	13053	21180	4187	-		-	781	24627781	
			2	16	, 29;	78(45:	28(. 25	. 2(1(10	. 11	10	7	-		,		-	÷	24627781	2462	
1993	246951	830089	804394	1346292	4360004	8827242	7951066	3598001	1033467	546716	237588	153837	146353	109022	44209	37815	25271	1818	606			30300740	30300740	
1992	177352	603235	1176244	142248	5400272	13675362	14699904	6837729	1628587	851909	379638	229556	209676	164241	72466	78903	52681	11442	3814			47675260	47675260	
1991	81442	203924	475877	1450093	6430029	15945431	. 16536178	7490318	1985161	1049217	491207	325502	320871	222022	53230	90491	62013	6388	5536	5110		53230040	53230040	
1990	39653	180794	381028	939230	3425214	9446792	11313019	5834808	1681039	858729	343344	190215	175170	135833	66475	72065	49672	12655	5625	2109		35153470	35153470	
1989	666	33120	135846	851510	5343530	14409742	15878658	8368264	3122991	1876087	951817	640065	473411	350603	56094	61352	, 17980					52572070	52572070	
1988	233667	824877	904683	1149580	3528429	9682494	, 11513663	6011974	1964384	1108287	528384	348397	304134	212210	81195	102960	62093	16208	5403		7718	38590740	38590740	
AGE	2	т	4	ß	9	L	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	TOTALS	CHECK	

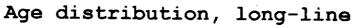
Table	5 C	atch nu	mbers at	tage (*1000)			
			1989,			1992	1003	1994,
I LAR,	1907,	1900,	1909,	1990,	1,7,7,1,	1)32,	1995,	1774,
AGE								
5,	2,			121,	22,	50,	322,	371,
6,	31,	29,	36,					
7,	182.	190,	244,	3192,	1775,	2931,	2631,	3241,
8,	296	354.	408.	2884.	2734.	4253.	2408.	2029.
9,		245	212	1602	1453	2567	1059	1194
10,	193, 77,	115	. 75	769	549	038	611	2029, 1194, 208,
		11J,	13,	410	225,	200,	245	200, 60
11,	40,	ou,	. 4/,	419,	220,	390,	· 245,	. 02,
12,	18,	. 01,	40,	400,	147,	230,	144,	35,
13,	10,	58,	44,	243,	110,	152,	79,	22,
14,	9,	46,	42,	143,	59,	82,	73,	62, 35, 22, 20,
15,	6,	35,	26,	34,	39,	45,	46,	6,
16,	3,	15,	12,	. 3,	7,		36.	1.
17,	4	4.	26, 12, 2,	1.	2,	2,	6,	ο,
/ +gp,	2	1.	0, 1197,	o.	0.	0.	3.	ο,
TOTALNUM	873.	1234.	1197	10712	7445	12334	8424	9099,
TONSLAND	1295	2605	2207	15555	10982	17844	12020	10598,
SOPCOF %								
SUFCUP 6	, IVI,	100,	100,	100,	100,	100,	100,	100,
	•							
Tabla	6 (atch we	ainhte a	t age (ka)			
Table			eights a			1002	1002	1004
Table YEAR,			eights a 1989,			1992,	1993,	1994;
YEAR,						1992,	1993,	1994,
YEAR, AGE	1987,	1988,	1989,	1990,	1991,		-	
YEAR, AGE 5,	1987, .289	.290	1989, .290	1990, .380	.338	.326	.590	. 337
YEAR, AGE 5, 6,	1987, .289 .508	1988, .290 .510	1989, .290 .510	1990, .380 .560	1991, .338 .538		.590	
YEAR, AGE 5, 6,	1987, .289	1988, .290 .510 .740	1989, .290	1990, .380	.338	.326	.590 .760 1.000	.337 .599 .942
YEAR, AGE 5,	1987, .289 .508	1988, .290 .510 .740	1989, .290 .510	1990, .380 .560	1991, .338 .538	.326	.590 .760 1.000	.337 .599 .942
YEAR, AGE 5, 6, 7, 8,	1987, .289 .508 .739	1988, .290 .510	1989, .290 .510 .740	1990, .380 .560 .810	1991, .338 .538 .795 1.124	.326 .558 .802 1.132	.590 .760 1.000 1.290	.337 .599 .942 1.261
YEAR, AGE 5, 6, 7, 8, 9,	1987, .289 .508 .739 1.078 1.410	1988, .290 .510 .740 1.080 1.420	1989, .290 .510 .740 1.080 1.420	1990, .380 .560 .810 1.100 1.520	1991, .338 .538 .795 1.124 1.577	.326 .558 .802 1.132 1.594	.590 .760 1.000 1.290 1.840	.337 .599 .942 1.261 1.830
YEAR, AGE 5, 6, 7, 8, 9, 10,	1987, .289 .508 .739 1.078 1.410 1.965	1988, .290 .510 .740 1.080 1.420 2.050	1989, .290 .510 .740 1.080 1.420 2.000	.380 .560 .810 1.100 1.520 2.110	1991, .338 .538 .795 1.124 1.577 2.275	.326 .558 .802 1.132 1.594 2.283	.590 .760 1.000 1.290 1.840 2.460	.337 .599 .942 1.261 1.830 3.119
YEAR, AGE 5, 6, 7, 8, 9, 10, 11,	1987, .289 .508 .739 1.078 1.410 1.965 2.582	1988, .290 .510 .740 1.080 1.420 2.050 2.800	1989, .290 .510 .740 1.080 1.420 2.000 2.680	1990, .380 .560 .810 1.100 1.520 2.110 2.940	1991, .338 .538 .795 1.124 1.577 2.275 3.225	.326 .558 .802 1.132 1.594 2.283 3.027	.590 .760 1.000 1.290 1.840 2.460 3.250	.337 .599 .942 1.261 1.830 3.119 4.281
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238	.326 .558 .802 1.132 1.594 2.283 3.027 4.031	.590 .760 1.000 1.290 1.840 2.460 3.250 4.060	.337 .599 .942 1.261 1.830 3.119 4.281 5.937
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910 4.960	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336	.590 .760 1.000 1.290 1.840 2.460 3.250 4.060 5.190	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643 5.789	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010 6.160	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870 6.200	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910 4.960 6.270	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504 6.813	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336 6.764	.590 .760 1.000 1.290 1.840 2.460 3.250 4.060 5.190 6.090	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035 8.911
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643 5.789 6.605	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010 6.160 7.440	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870 6.200 7.640	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910 4.960 6.270 7.880	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504 6.813 8.348	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336 6.764 7.803	.590 .760 1.000 1.290 2.460 3.250 4.060 5.190 6.090 7.350	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035 8.911 10.307
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643 5.789 6.605 7.987	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010 6.160 7.440 8.880	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870 6.200 7.640 9.420	1990, .380 .560 .810 1.100 1.520 2.940 3.910 4.960 6.270 7.880 7.990	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504 6.813 8.348 10.077	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336 6.764 7.803 8.585	.590 .760 1.290 1.840 2.460 3.250 4.060 5.190 6.090 7.350 8.010	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035 8.911 10.307 11.910
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643 5.789 6.605 7.987 9.557	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010 6.160 7.440 8.880 9.860	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870 6.200 7.640 9.420 10.580	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910 4.960 6.270 7.880 7.990 9.560	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504 6.813 8.348 10.077 9.557	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336 6.764 7.803 8.585 11.951	.590 .760 1.290 1.840 2.460 3.250 4.060 5.190 6.090 7.350 8.010 9.240	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035 8.911 10.307 11.910 13.800
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643 5.789 6.605 7.987	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010 6.160 7.440 8.880 9.860	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870 6.200 7.640 9.420 10.580	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910 4.960 6.270 7.880 7.990 9.560	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504 6.813 8.348 10.077	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336 6.764 7.803 8.585 11.951	.590 .760 1.290 1.840 2.460 3.250 4.060 5.190 6.090 7.350 8.010 9.240	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035 8.911 10.307 11.910 13.800
YEAR, AGE 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,	1987, .289 .508 .739 1.078 1.410 1.965 2.582 3.522 4.643 5.789 6.605 7.987 9.557 11.334	1988, .290 .510 .740 1.080 1.420 2.050 2.800 3.880 5.010 6.160 7.440 8.880 9.860 11.334	1989, .290 .510 .740 1.080 1.420 2.000 2.680 3.730 4.870 6.200 7.640 9.420 10.580	1990, .380 .560 .810 1.100 1.520 2.110 2.940 3.910 4.960 6.270 7.880 7.990 9.560 11.347	1991, .338 .538 .795 1.124 1.577 2.275 3.225 4.238 5.504 6.813 8.348 10.077 9.557	.326 .558 .802 1.132 1.594 2.283 3.027 4.031 5.336 6.764 7.803 8.585 11.951 11.951	.590 .760 1.290 1.840 2.460 3.250 4.060 5.190 6.090 7.350 8.010 9.240 10.250	.337 .599 .942 1.261 1.830 3.119 4.281 5.937 7.035 8.911 10.307 11.910 13.800

Table 7. CPUE in Div. 1C+D by the Japanese trawler Shinkai Maru in the period 1987-1994.

Year	min.	Catch (tons)	CPUE tons/hour
1987	39,285	877	1.34
1988	75,878	1,566	1.24
1989	61,845	1,298	1.30
1990	52,020	963	1.11
1991	42,210	657	0.93
1992	16,000	328	1.23
1993	-	-	_
1994	18,956	242	0.77

DIVISION		1990	1991	1992	1993	1994		
08	min		236,259		24,191			
Norwegian trawlers	catch (t)		3,032		379	379		
	CPUE		0.77		0.94			
0B	min	255,660	241,980	964,680	615,600			
Russian and Baltic	catch (t)	1,332	1,438	5,731	3,361			
trawlers	CPUE	0.31	0.36	0.36	0.33			
1C (NOR)	min		12,279	19,702	20,222			
	catch (t)		176	243	182			
	CPUE .		0.86	0.74	0.54			
1D (NOR)	min		42,495	207,802	238,500	261,931		
	catch (t)		687	2,459	2,226	2,532		
_	CPUE		0.97	0.71	0.56	0.58		


Table 8. CPUE in Divs. OB and 1C+1D by Norwegian factory trawlers 1991-1994 and by Russian/Baltic States trawlers in Div. OB 1990-1993.


Table 9. Input parameters for Yield per Recruit analysis.

-

_			
Age	<u>Mean weight</u>	<u>Relative S</u>	<u>Natural</u> Mort.
5	` <u>0.337</u>	0.62	0,15
<u>6</u>	0.599	0.89	0.15
7	0.942	<u>1.0</u>	0.15
<u> </u>	1.261	0.93	0.15
<u>9</u>	1.830	0.86	0.15
10	3.119	0.58	0.15
<u>11</u>	4.281	0.36	<u>0,15</u>
<u>12</u>	5.947	0.18	<u>0.15</u>
<u>13</u>	7.035	0.07	0.15
<u>14</u>	<u>8.911</u>	0.07	<u>0.15</u>
<u>15</u>	<u>10.308</u>	0.07	0.15
<u>16</u>	<u>11.910</u>	<u>0.07</u>	<u>0.15</u>
<u>17</u>	<u>13.800</u>	0.07	0.15
<u>18+</u>	<u>13.800</u>	0.07	0.15

Age distribution, trawl

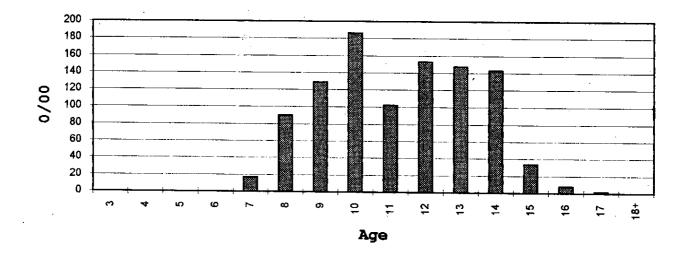
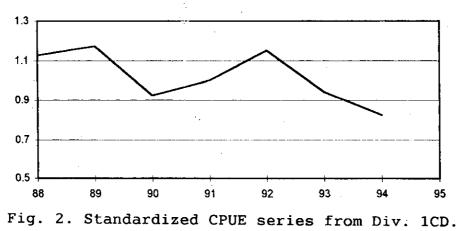



Fig. 1. Age distribution in the off shore trawl and longline fishey in SA 0+1.

- 8 -

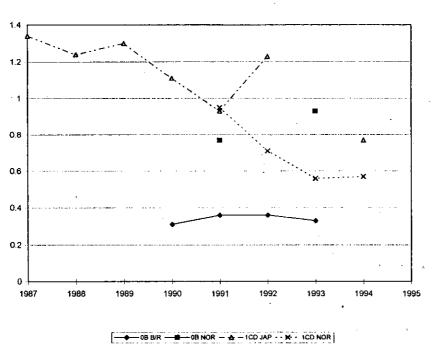


Fig. 3. Unstandardized CPUE Series from SA 0 and SA 1.

Yield pr recruit SA 0+1 1994

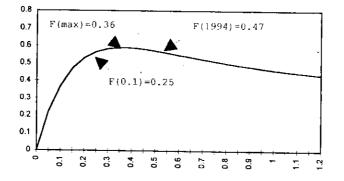


Fig. 4. Yield pr Recruit analysis for SA 0+1 for 1994.

APPENDIX 1...

Lowestoft VPA Version 3.1

10/06/1995 4:47

Extended Survivors Analysis

GREENLAND HALIBUT NAFO SUBAREAS 0+1

CPUE data from file c:\vpa\data\tunred.dat

Catch data for 8 years. 1987 to 1994. Ages 5 to 18.

Fleet,	First,	Last,	First,	Last,	Alpha,	Beta
,	year,	year,	.age ,	age		
SHINKAI MARU SURVEY ,	1988,	1994,	9,	13,	.000,	1.000
CPUE SUB.0 ,	1989,	1994,	5,	15,	.000,	1.000
CPUE SUB. 1 ,	1988,	1994,	5,	13,	.000,	1.000

Time series weights :

Tapered time weighting applied Fower = 3 over 20 years

Catchability analysis :

Catchability dependent on stock size for ages < 7

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 7

Catchability independent of age for ages >= 15

Terminal population estimation :

Survivor estimates shrunk towards the Lean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet =

. 300

Prior weighting not applied

Tuning had not converged after 30 iterations

Total absolute residual between iterations 29 and 30 = .02274

Final year F v	alues								١	
Age ,										
Iteration 29, Iteration 30,										
iteration 30,	.01//,	.1120,	. 3443,	.5706,	1.0343,	.0291,	.0115,	.3369,	.0514,	1.0334

Age , 15, 16, Iteration 29, 1.6203, 5.0606, Iteration 30, 1.6203, 5.0833, 17 .0000 .0000

1

Regression weights , 921, .954, .976, .990, .997, 1.000, 1.000

Fishing	mortali	ties				•	
Age,	1988,	1989,	1990,	1991,	1992,	1993,	1994
F	000	000		007		~ ~ ~	A 10
5,	.000,	.000.	.011,		.003,	.017,	.018
6,	.003,	.003,	.089,	.028,	.072,	.059,	.113
7,	.041,	.033,	.362,	.202,	.454,	. 393,	. 344
8,	.145,	.110,	.627,	.471,	1.254,	.730,	.571
9,	.168,	.115,	.761,	.608,	1.366,	1.201,	1.054
10,	.106,	.067,	.724,	.564,	1.218,	1.551,	.829
11,	.119,	.055,	.598,	.406,	.954,	1.245,	.612
12,	.161,	.092,	.826,	.386,	.992,	1.302,	. 537
13,	.409,	.158,	.840,	.506,	.940,	1.151,	.651
14,	.796,	.554,	1.039,	.435,	.885,	2.300,	1.033
15,	1.152,	1.604,	1,190,	.796,	.644,	3.759,	1.620
	1.567,		.761,	.792,	1.165,2	20.593,	5.083
17,	.823,	.886,	.939,	.583,	.920,	5.848,	.000

XSA population numbers (Thousands)

									•	
•			-	11 -					ß	
YEAR, 5,	AGE 6, 7	, 8,	9,	10,	11,	12,	13,	14,		
1988 , 1.53E+04, 9.35F	E+03, 5.09E+03	, 2.82E+03,	1.71E+03,	1.23E+03,	7.68E+02,	4.43E+02,	1.86E+02,	9.03E+01,		
1989, 1.31E+04, 1.32E 1990, 1.22E+04, 1.13E	E+04, 1.13E+04	, 6.68E+03,	3.24E+03,	1.61E+03,	1.00E+03,	7.78£+02,	4.61E+02,	2.39E+02,		
1991, 1.26E+04, 1.04E 1992, 1.72E+04, 1.08E	E+0 4, 8.71E+03	, 6.26E+03,	3.65E+03,	1.44E+03,	6.38E+02,	3.85£+02,	2.78E+02,	1.52E+02,		
1993, Z.28E+04, 1.48B 1994, Z.28E+04, 1.93B										
Estimated population abur	dance at 1st	Jan 1995						· .		
, 0.00E+00, 1.92E+	+04, 1.49E+04,	7.32E+03, 2	2.45E+03, !	5.92E+02,	1.49E+02,	6.82E+01,	\$.57E+01,	2.22E+01,		
Taper weighted geometric	mean of the W	'PA populatio	ons:							
, 1.54E+04, 1.14E-				1.04E+03,	5.53E+02,	3.36E+02,	1.898+02,	1.04E+02,		
Standard error of the wei , .2846, .34	1ghted Log(VPA 420, .4054,		s):" .3409,	.4558,	.6377,	.6934,	.7304,	.6081,		
, .2040, .3		. 3724,	.3409,	.4330,	.0377,	.0954,	.,304,	.0001,		
	AGE	· · · · ·					•			
YEAR, 15,	16, 17									
1988, 5.51E+01, 2.04E 1989, 3.51E+01, 1.50E	E+01, 3.67E+00),								
1990 , 5.27E+01, 6.07E 1991 , 7.26E+01, 1.38E 1992 , 9.54E+01, 2.82E	E+01, 2.44E+00),								
1992, 9.54E+01, 2.82E 1993, 5.41E+01, 4.31E 1994, 8.06E+00, 1.08E	E+01, 7.57E+00),				•				
Estimated population abur						,				
, 1.02E+01, 1.37E+			· ·							
Taper weighted geometric	mean of the V	/PA populati	ons:							
, 4.19E+01, 1.19E-	+01, 5.26E+00,									
Standard error of the wei	ighted Log(VPA	population	B) :	* .						
, .7718, 1.15	526, 1.1231,	•			•					
Log catchability residual	ls.		•							
			÷							
Fleet : SHINKAI MARU SURV	JEY									
Age , 1988, 1989, 19 5 , No data for this	fleet at this	s age	1994							
δ , No data for this 7 , No data for this	fleet at this	s age								
8 , No data for this 9 , .15, .25, - 10 ,16, .27, -	.25, ~.01,	sage .03; .19, .02, .23,	34 03							
11 ,17, .10,	.48, .04,	.12, .35, .07, .33,				. •				
	.99,15, -	26, .24,	.57							
15 , No data for this						* •				
Mean log catchability and independent of year class	i standard err s strength and	or of ages - l constant w	with catch .r.t. time	ability				•		
Age, 9, Mean Log q, 1.2614,	10, .7530, .2036	.6712,	12, .4313,	13 .5629,						
	.2036,	.2603,	.4155,	.5243,						
S.E(Log q), .2248,				,						
S.E(Log q), .2248, Regression statistics :	of year close	stronath	d constant							
S.E(Log q), .2248, Regression statistics : Ages with q independent of				w.r.t. ti					<i>j</i> .	
S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852,	ntercept, RSqu -4.08,	lare, No Pts .61, 7	, Reg s.e, , .30,	w.r.t. ti Mean Q	, Long .	-			į .	
S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969,	ntørcept, RSqu -4.08, -1.67, -1.94,	are, No Pts .61, 7 .83, 7 .86, 7	, Reg s.e, , .30, , .24, , .31,	w.r.t. ti Mean Q 1.26, .75, .67,					j .	
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969, 12, 1.60, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67,	are, No Pts .61, 7 .83, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	Long .	-			<i>j</i>	·
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969, 12, 1.80, -2.760,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	Lang -				<i>;</i>	·
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969, 12, 1.60, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	Long .	-			j .	·
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969, 12, 1.80, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	LOG .				, ·	
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,959, 12, 1.80, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	- BO -				;	
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,959, 12, 1.80, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	LING .	· ·			; ·	·
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,959, 12, 1.80, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	LER (C) -				÷	
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969, 12, 1.80, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	LING .				j .	
<pre>S.E(Log q), .2248, Regression statistics : Ages with q independent of Age, Slope , t-value , In 9, 1.31,852, 10, 1.12,579, 11, 1.18,969, 12, 1.60, -2.760, 13, 2.12, -2.585,</pre>	ntørcept, RSqu -4.08, -1.67, -1.94, -5.49,	Lare, No Pts .61, 7 .83, 7 .86, 7 .71, 7	, Reg s.e, , .30, , .24, , .31, , .51,	w.r.t. ti Mean Q 1.26, .75, .67, .43,	LINO .		· ·		; ·	

.

Fleet : CPUE SUB.0

Age	1988,	1989,	1990,	1991,	1992,	1993,	1994
5	99.99,	99.99,	99.99,	,20,	.49,	69,	99.99
	99.99,		81,	.33,	.89,	42,	99.99
	99.99,		13,	.90,	1.23,	.46,	99.99
			.42,	.41,	.83,	.00,	99.99
			.56,		. 44,	.07,	99.99
	99.99,		.50.	.02,	.21,	.06,	99.99
	99.99,		.46		.04,		99.99
	99.99,		02,	- 35,	04,	35,	99.99
	99.99,		. 22,		27,		
	99.99,				60,		
	99.99,	2.84,			-1.59,		

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	7,	8,	9,		11,	12,	13,	14,	15	
Mean Log g,	-11.9833,				-10.2189,	-9.9938,	-9.7018,	-9.4959,	-9.0009,	
S.E(Log q),	1.5045,	.9963,	.7499,	.4858,	.2757,	.4636,	.7344,	1.3790,	1.8087,	

٠.

Regression statistics :

Age,	Slope ,	t-value ,	Intercept,	RSquare;	No Pts,	Reg s.e,	Mean Log q
5,	-2.26.	984.	-4.50,	.08,	З,	1.40,	-16.05,
6,	73,	807,	6.44,	.10,		.59,	_13.41,
Ages	with q	independent	of year c	lass stre	ngth and	constant	w.r.t. time.
Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q
ż,	.26,	.425,	9.87,	.10,	5,	.45,	-11.98,
8,		2.731,	9.05,	.80,	5,	.12,	-10.64,
9,		1.008,	8.97,	.57,	5,	.36,	-10.15,
			9.10,		5,	.38,	-9.99,
			9.41,			.23,	-10.22,
			8.76,		5,	. 32.	-9.99,
13.	.52.	1.314.	7.74,	.72,	5,	.35,	-9.70,
			12.67,		5,	2.70,	-9.50,
			2.51,				-9.00,
1							•

Fleet : CPUE SUB. 1

Age ,	1988,	1989,	1990,	1991,	1992,	1993,	
5,	21,	02,	.18,	.09,	26,	.17,	.04
6,	.04,	14,	.00,	.07,	08,	.10,	.01
7,	. 19,	. 22,	21,	19,	26,	.26,	.02
8,	. 56.	. 52	.06,	31,	.09,	45,	41
9,	. 49	. 34	.00,	44,	05,	30,	. 02
	.24,						
	.26,						
12.	.43,	23.	51,	-,72,	. 43	1.14,	53
13,					.11,		
	No data						
	No data						

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	7,	8,	9,	10,	11,	12,	13
Mean Log q,	-10.6354,	-9.7562,	-9.5673,	-9.9216,	-10.0518,	-10.3246,	-10.4927,
S.E(Log q),	.2240,	.4192,	.3242,	.3791,	.4987,	.6884,	.8530,

Regression statistics :

Ages with q dependent on year class strength

Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Log	q
5,	.18,	2.768,	10.70,	.70,	7,	. 19,	-15.37,	
6,		4.160,				.09,	-12.54,	
Ages	with q	independent	of year c	lass stren	gth and	constant	w.r.t. t	ime.
Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q	
			•					
7,	1.60,	-1.144,	11.57,	.43,	7,	.35.	-10.64,	
8,	4.14,	-1.481,	13.61,	.04,	7.	1.58,	-9.76,	
9,	1.41,	702,	10.30,	. 38,	7,	. 48,	-9.57	
10,	1,44,	938.	11.22	. 49	7,		-9.92,	
11,	1.19,	- 493.	10.76,			.64,		
12,	1.17,	344,	11.09.				-10.32.	
13,	.86,						-10.49,	

	\sim
2	4
- <i>Г</i>	- 1
- 1	1

ß

tock			*							
ge	1987	1988	. 1989	1990	1991	1992	1993		м	
5	10656	13061	11344	10834	8951.9	7702	4011.6	786.78	0.7	0.1
6	5609.4	9170.5	11241	9763.2	9235.3	7688.7	6592.2	3214.2	1	0.1
7	3535.5	4805	7871.6	9648.4	7740.2	7710.3	6119.9	5110.2	1.12	0.1
8	2054.5	2908.2	3995	6594.4	5939.8	5347.1	4465	3318.3	1.05	0.1
9	1343.1	1549	2240.9	3136.3	2798.5	3087	1451.6	2059.2	0.96	0.1
10	780.8	1013 /	1151.7	1771.7-	1512.6	1332.3	755.35	464.89	0.65	0.1
11	453.53	614.99	786.71	935.75	955.2	895.21	451.85	197.49	0.41	0.1
12	189.16	360.73	470.07	642.31	495.01	654.72	481.6	207.41	0.2	0.3
13	92.001	149.48	265.29	369.03	252.07	317.16	393.14	307.84	0.08	0.1
14	58.038	71.778	85.687	195.74	137.61	135.47	160.37	279.85	0.08	0.
15	22.488	43.287	27.702	42.637	62.539	74.732	55.85	83.955	0.08	0.
16	6.5821	14.911	11.328	4.5821	11.51	24.936	30.985	13.993	0.08	0.3
17	1255.2	3.4428	1.7214	0.8607	1.7214	4.7214	5.1642	0	0.08	0.2
18	2154.8	1077.4	0	0	0	Ō	2.5821	. 0	0.08	0.
old	0.001	0,001	0.001	0.01	. 0.01	0.01	0.01	_0.01		
iomasse	57583	39542	34315	43059	37322	36402	26676	20159		

Fishing Mortality 1987 Age 1988 1989 1990 1991 1992 1993 1994 0.0002 5 7E-05 8E-05 0.0097 0.0021 0.0056 0.0716 0.7 6 0.0048 0.0027 0.0028 0.0822 0.0305 0.0782 0.1047 1 7 0.0453 0.0346 0.027 0.3351 0.2199 0.3963 0.4621 1.12 8 0.1324 0.1107 0.092 0.7071 0.5045 1.1539 0.624 1.05 9 0.132 0.1463 0.0849 0.5792 0.5922 1.2578 0.9886 0.96 0.0887 10 0.1028 0.0577 0.4678 0.3745 0.9313 1.1915 0.65 11 0.0789 0.1187 0.0528 0.4868 0.2277 0.47 0.6287 0.41 12 0.0855 0.1573 0.092 0.7854 0.2952 0.3601 0.2975 0.2 13 0.0982 0.4064 0.154 0.8365 0.471 0.5319 0.1899 0.08 14 0.1433 0.8021 0.548 0.991 0.4605 0.7361 0.4972 0.08 15 0.2609 1.1905 1.6493 1.1595 0.7695 0.7304 1.2341 0.08 2.0089 16 0.4981 2.4273 0.829 0.7411 1.4245 #DIV/0! 0.08 17 0.0027 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.4535 #DIV/0! 0.08 18 0.001 0.001 0.001 0.01 0.01 0.01 0.01 0.08 0.108 0.1196

0.5602

0.4247

0.9532

0.8582

0.7675

0.0719

Fbar

•	N-1995 C-19	C-1995	N-1996	Catch	catch	Catch	Catch	Catch (Catch	catch	Catch	Catch
0.355 9508.7 4		4483.7	9508.7	597.5	2619.0	3044.1	3441.4	3812.6	4159.5	4483.7	4786.8	5070.1
0.568 4064.2 2		2415.0	4064.2	359.6	1494.2	1715.5	1916.4	2098.8	2264.5	2415.0	2551.8	2676.1
0.821 2434.5 1		1544.0	1286.9	126.8	516.0	589:6	655.7	715.0	768.3	816.2	859.2	8.7.8
1.143 2165.3 1		1324.0	683.7	63.4	261.0	299.1	333.5	364.5	392.6	418.0	441.0	461.8
1.576 1610.5	,	933.8	652.2	55.5	232.3	267.1	298.8	327.7	354.1	378.2	400.1	420.1
2.283 1017.4		455.2	530.8	31.0	137.3	159.9	181.2	201.1	219.9	237.5	254.0	269.5
3.098 598.6		187.9	457.1	17.1	78.9	92.9	106.3	119.2	131.6	143.5	155.0	166.0
4.163 511.4	•	86.3	342.0	6.3	30.3	36.0	41.6	47.0	52.4	57.7	62:9	68.0
5.319 461.4		33.0	360.3	2.7	13.1	15.7	18.2	20.8	23.3	25.8	28.2	30.7
6.625 252.0		18.0	366.6	2.7	13.4	16.0	18.6	21.1	23.7	26.2	28.7	31.2
107.6		L. L .	200.2	1.5	7.3	8.7	10.1	11.5	12.9	14.3	15.7	17.0
9.107 59.4		4.2	85.5	0.6	3.1	3.7	4.3	4.9	5.5	6.1	6.7	7.3
10.513 19.8		1.4	47.2	0.3	1.7	2.1	2.4	2.7	3.0	3.4	3.7	4.0
3.8		0.3	18.7	0.1	0.7	0.8	6.0	1.1	1.2	1.3	1.5	1.6
			,									
ā	σ	9609 1	9 1 V-1996	885	7820 7	- L C C P P	0000	5,17 R	6007 7	6464 R	6891 7	7241_0
	ŝ		> > -	0.1	0.5	9 0	0.7	0.8	6.0	1	1.1	1 2
				1)		, , 1	+ • •)	I) , {	 , (

- 14 -

C

Concerning SCR Doc. 96/68, Assessment of the Greenland Halibut Stock Component in NAFO Subarea 0 + Div. 1B-1F

by

O. A. Jørgensen

Greenland Institute of Nature Resources, Tagensvej 135, 1 DK-2000 Copenhagen N, Denmark

A Review of the data used for making the catch rate sereies for SA OB given in fig 2., showed that the data point for 1989 was based on a very small catch. The other data differed significantly form those presented in SCR Doc 94/47. It was considered that the 1994 data were more reliable. See fig. and output of the analysis.

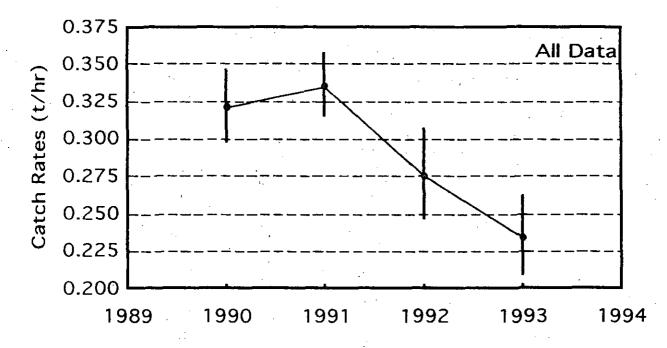


FIGURE 1: STANDARDIZED CATCH RATES FROM MULTIPLICATIVE ANALYSIS SHOWING 95% CONFIDENCE LIMITS.

÷.

MULTIPLE	R		.875
MULTIPLE	R	SQUARED	.765

ANALYSIS OF VARIANCE

SOURCE OF VARIATION	DF	SUMS OF	MEAN SQUARES	F-VALUE
INTERCEPT	1	3.009E2	3.009E2	
REGRESSION	18	9.630E1	5.350E0	99.861
COUNTRY	. 7 -	4.193El	5.990E0	111.808
TONNAGE	3	9.824E-1	3.275E-1	6.112
MONTH	5	4.288E0	8.576 E- 1	16.008
YEAR	3	2.647E0	8.823E-1	16.468
RESIDUALS	551	2.952E1	5.358E-2	
TOTAL	570	4.268E2		·

REGRESSION COEFFICIENTS

CATEGORY	CODE	VARIABLE	COEFFICIENT	STD. ERROR	NO. OBS.
COUNTRY	20	INTERCEPT	-1.161	0.045	570
TONNAGE	6				
MONTH	9				•
YEAR	· 90				
COUNTRY	2	1.	0.712	0.089	12
	3	2	0.678	0.062	36
	5	3	0.632	0.052	. 68
	14	4	0.643	0.109	28
	15	. 5	0.954	0.039	112
	32	6	~0.035	0,096	15
	.34	. 7	0.305	0.064	219
TONNAGE	4	. 8	-0.287	0,107	28
	5	. 9	-0.176	0.128	5
· ·	7	10	0.095	0.033	159
MONTH	7	11	0.041	0,040	50
	. 8	12	0.035	0.030	117
	10	13	-0.053	0,030	124
	11	. 14	0.156	0.036	103
	12	. 15	0.351	0,054	39
YEAR	91	16	0.043	0.035	147
	92	17	-0,154	0.052	187
	93	18	-0.316	0.057	102

PREDICTED CATCH RATE

	LN TR	ANSFORM	RETRANSFORMED	
YEAR	MEAN	S.E.	MEAN	S.E.
1990	-1.1612	0.0020	0.321	0.014
<u>1</u> 991	-1.1180	0.0014	0.336	0.013
1992	-1.3154	0.0044	0.275	0.018
1993	-1.4776	0.0047	0.234	0.016

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.054