Northwest Atlantic

Fisheries Organization

Serial No. N2605

NAFO SCR Doc. 95/83

SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1995 Symposium - The Role of Marine Mammals in the Ecosystem

MULTSPEC - A Multispecies Model for Fish and Marine Mammals in the Barents Sea

b١

Bjarte Bogstad, Kjellrun Hiis Hauge and Øyvind Ulltang Institute of Marine Research, P. O. Box 1860 Nordnes

N-5024 Bergen, Norway

Abstract

MULTSPEC is an area-structured multispecies simulation model for the species capelin, herring, cod, harp seal and minke whale in the Barents Sea. Information on food preferences and food requirements obtained from the Norwegian research programme on marine mammals is used to quantify the predation by marine mammals on fish. The importance of harp seals and minke whales as predators relative to the main fish predator in the ecosystem, cod, is discussed. The sensitivity of the model to the food preferences and stock sizes of harp seals and minke whales is investigated.

1 Introduction

In Bogstad et al. (MS 1992) results of some simulation studies with a multispecies model for the Barents Sea (MULTSPEC) were given with the aim of studying the sensitivity of the model to assumptions on food preferences and stock sizes of minke whales and harp seals. At that time, herring (Clupea harengus) was not included in MULTSPEC as a separate species, and results of the scientific whaling operations conducted in 1992-1994 were not available.

The present paper gives results of new simulation studies with herring included. When choosing food preference parameters for minke whales and harp seals, results of the diet studies reported in Haug et al. (MS 1995), Skaug et al. (MS 1995) and Nilssen (1995) have been used for setting likely ranges of parameter values. Also new data on total energy requirements of seals and whales have been utilized when setting the parameters determining total consumption. No fine tuning of the model parameters to the new data has been aimed at. The main aim of the paper is to demonstrate the model's behaviour when herring as an important prey item is included and study the

sensitivity of the model to food preference parameters and stock sizes of minke whales and harp seals. Also, the relative importance of harp seals and minke whales as predators relative to the main fish predator in the ecosystem, cod, is discussed.

A preliminary version of this paper (Bogstad et al. MS 1995) was presented at the IWC meeting in May 1995. The most important change in the model since that paper was written is that cod now may prey on all stock components of herring in the MULTSPEC area. Also, some of the parameters for cod and capelin have been changed based on parameter estimations presented at the last meeting of the ICES Multispecies Assessment Working Group (Anon., MS 1995c). MULTSPEC has so far mainly been used for estimating predation mortalities of mature capelin generated by cod (Bogstad and Tjelmeland MS 1990, 1992). Basic philosophy and modelling approach is described in Ulltang (1995). In Bogstad et al. (MS 1992) a description of model structure and basic equations determining the population dynamics of each species included were given. The present paper includes an updated description of the model.

2 Model structure

The multispecies model for the Barents Sea (MULTSPEC) is an area-structured simulation model which includes the species capelin (Mallotus villosus), herring (Clupea harengus), cod (Gadus morhua), harp seal (Phoca groenlandica) and minke whale (Balanoptera acutorostrata).

The stocks which are included in MULTSPEC are represented by tree structures where each level denotes sub-populations distributed over a given dimension, which may be area, sex, age or length. The area division used in the model is shown in Figure 1.

Fig.1

As the minke whale stock, depending upon the time of the year, to a large extent is distributed outside the Barents Sea, we have included an 'area 0' in addition to the seven areas in the Barents Sea. The model comprises discontinuous processes like reproduction, which is handled on a yearly basis, and continuous processes like predation and natural mortality, which are performed for each time step. The ordering of these processes is as follows: Migration - Fishing- Predation - Growth. The time step used in these simulations is one month.

The basic units in the model are:

- Number of fish and larvae: Millions.
- · Weight of individual fish and mammals: kg
- · Temperature: deg C

- 3 -

- Time: month
- · Length of individual fish : cm

We use the subscripts A for area, s for sex (1: female, 2: male), and a for age. W denotes individual weight, I individual length and N stock size in numbers.

The main changes in the MULTSPEC model since the paper by Bogstad et al. (MS 1992) was written are:

- 1. Herring is included, as MULTSPEC can now be linked to the single-species model HERMOD (Dommasnes and Hiis Hauge, MS 1994).
- 2. 0-group dynamics for fish is now modelled. Especially important here is the predation by young herring on 0-group capelin.
- 3. Changes have been made in the equations describing growth and food requirements for harp seals and minke whales.
- 4. A new temperature model has been implemented.

The parameter files are given in Appendix.

3 Oceanography

Sea temperature is included in the equations for growth and maximal food consumption by fish. It also enters the equation for cod stomach evacuation rate (Bogstad and Tjelmeland, 1992), and will certainly be included in energetics models for marine mammals. Temperature may also prove to be important in a future development of migration models.

We use climatological data (Ottersen and Ådlandsvik, 1993), adjusted by the yearly variations in the Kola section (Bochkov, 1982 and PINRO, Murmansk, pers. comm.). The following positions are used to represent areas 1-7:

6800N, 1200 E; 7030N, 2000E; 7100N, 3400E; 7230N, 2000E; 7200N, 4500E;

7430N, 2200E; 7600N, 4000E

A depth of 100m is used. The adjustment to the yearly variation is done in the following way:

T(year, month, position)= T(position) from climatology + T(year, month) from Kola section
T(month) from climatology at Kola section. The temperature in the years after 1994 has been set equal to the temperature from the climatology.

4 Plankton

The plankton parameters are here denoted by P (Ppl in the parameter file). The food supply for capelin and herring is given by the following function:

$$F(A,t) = P_1(A) \times e^{-4\frac{(P_2(A)-1)^2}{P_3(A)}ln2}$$
(EQ 1)

where

F: the plankton abundance in grams dry weight per square meter,

t: time (month number (1-12))

 $P_I(A)$: the maximum plankton abundance in area A

 $P_2(A)$: the time for maximum plankton abundance in area A

 $P_3(A)$: Duration of the time period when the plankton abundance exceeds half the maximum abundance in

area A.

The value of P_1 is set to 15.0 grams dry weight per square meter, which is somewhat higher than the values given by Skjoldal *et al.* (1992).

5 Capelin

The capelin parameters are here denoted by C_i (Pcp in the parameter file). The capelin stock is divided into 6 age groups (0-5), 50 length groups of 0.5 cm (0-25 cm) and 2 sexes. In addition, the stock is divided into a mature and an immature part.

The migration parameters for capelin are the same for all age groups, but they differ between immature and mature capelin. The migration parameters for mature capelin are set so that all the mature capelin will be in areas 2 and 3 at April 1, when spawning takes place. In October the capelin stock is divided into a mature and an immature part by the following function (Forberg and Tjelmeland, 1985):

$$m(l) = \frac{1}{1 + e^{4C_1(a,s) \times (C_2(a,s) - l)}}$$
 (EQ 2)

Here:

m(1): Proportion of stock maturing at length 1

 $C_1(a,s)$: Change in maturation with length when $l = C_2(a,s)$

C2(a,s): Fish length at 50% maturity, referred to as "length at maturity"

The values of C₁ and C₂ are taken from Tjelmeland and Bogstad (1993).

The following spawning stock biomass - recruitment relationship for capelin is used (Beverton and Holt, 1957):

$$R(B) = \frac{C_{13} \times B}{C_{14} + B}$$
 (EQ 3)

where

R: recruitment at age 0 in June

B: Spawning stock biomass

 C_{I3} : Maximum recruitment (number of larvae in June)

 C_{14} : The value of B giving half of maximum recruitment.

This relationship is applied for each of the areas 2 and 3, where spawning takes place.

The spawning stock- recruitment relationship given by Hamre and Tjelmeland (MS 1982) is of the same form, but applied to recruitment at age 2 in September for the whole stock (no area distribution). They give the values 440 million for C_{13} and 450 thousand tonnes for C_{14} . This relationship was calculated based on a single-species model, and can thus not be assumed to be valid in a multispecies context. The values of C_{13} and C_{14} are adjusted so that we get a reasonable development of the capelin stock. C_{14} was set to 30 thousand tonnes, as it has been observed that good capelin year classes (e.g. the 1989 year class) can be produced by relatively small spawning stocks.

The feeding level (Andersen and Ursin, 1977) is defined in the following way:

$$f(\phi) = \frac{\phi}{C_3 + \phi} \tag{EQ 4}$$

where

φ: Relative food abundance (plankton biomass divided by capelin biomass)

 C_3 : The value of ϕ when a capelin consumes half of maximum.

The individual growth is made dependent on the size of the fish, the feeding level, and the temperature:

$$\frac{dl}{dt} = C_4(s) \times l^{C_5} \times f(\phi) \times (C_6 \times T + C_7)$$
 (EQ 5)

$$\frac{dW}{dt} = C_8(s) \times W^{C_q} \times (f(\phi) - C_{10}) \times (C_{11} \times T + C_{12})$$
 (EQ 6)

The parameters C_4 and C_8 are sex-dependent, because the growth of male capelin is faster than the growth of female capelin. The parameters C_6 and C_{11} have been set to 1.0, and the parameters C_7 and C_{12} to 1.9, resulting in no growth when the temperature T in the sea is equal to -1.9 C (freezing). The growth in length is implemented so that a fish in a given length group will grow into the next length group with a probability proportional to the growth.

We assume that fishing is carried out only on mature capelin in the period October-March. The fishing mortality of mature capelin is the same in all areas and months, and for all age groups, sizes and sexes. A monthly fishing mortality of 0.10 is used (all mortalities are given as instanta-

neous mortality coefficients),, which corresponds to a relatively modest fishery.

For capelin, it is assumed that there is no other natural mortality than predation mortality generated by the species included in the model. 0-3 group herring are predators on 0-group capelin, and may significantly hamper the capelin recruitment, (Huse and Toresen, MS 1994). This is accounted for by introducing an additional predation mortality on 0-group capelin in each area:

$$M_{0cap} = C_{15} \times H_0 + C_{16} \times H_1 + C_{17} \times H_2 + C_{18} \times H_3$$

where H_i is the number of herring of age i. We assume that all capelin die after spawning.

6 Herring

The Norwegian Spring Spawning Herring Stock is included by running MULTSPEC together with HERMOD, a single species model for the herring stock (Dommasnes and Hiis Hauge, MS 1994). The HERMOD areas include the Norwegian Sea, the Norwegian Coast and the Barents Sea. While the herring is immature it stays mainly either in the Barents Sea or in coastal areas. In the Barents Sea growth and natural mortality are taken care of by MULTSPEC while HERMOD simulates all other processes.

The herring parameters are denoted by H (Phe in the parameter file).

The herring stock is divided into 6 stock components, 16 age groups (0-15+) and 42 length groups of 1.0 cm (4-45 cm). It is not divided by sex. The reason for dividing the stock into stock components is the complexity of the migration patterns within the stock.

Six different sets of migration parameters are implemented, each corresponding to a stock component. The parameters are set so that the spawning areas are placed along the Norwegian coast from Karmøy to Ofotfjord. The 0-group then drifts north to the Barents Sea where it stays for about two years before the herring heads west and south to coastal areas. Here it stays until it matures. The mature stock migrates to the Norwegian Sea after spawning. An additional parameter makes it possible to choose another migration pattern for the mature stock. This parameter

describes the pattern of the mature stock in the 1950s. The reason for this additional option is that parts of the stock tend to readopt this old migration pattern. This option is not used in the current paper.

The function that determines the number of each age group that matures is dependent on length only:

$$m(a,l) = \frac{n(a)}{1 + e^{H_2 \times (H_1 - ml[a])}},$$

where:

m(a, l): Number the

Number that matures at age a.

 H_I :

Fish length at 50% maturity, referred as "length at maturity".

H₂: n(a): Change in maturation when $l = H_1$ Number of herring at age a.

ml(a):

Mean length at age a.

Spawning takes place in March, and the resulting number of larvae is calculated from the biomass of the spawning stock at that time.

$$R(B) = H_3 \left(1 - e^{(e^{(-0.7277)} - e^{(0.0005)(B-2500)})} \right), \tag{EQ 7}$$

where

R: Recruitment in June.

B: Spawning stock biomass.

H₃: Maximum recruitment.

This is a depensatory stock-recruitment curve (Ulltang, 1980) with inflection point at B = 2.5 million tonnes. In order to model the fluctuations in the recruitment, H_3 is set higher two succeeding years every 8 years.

Inside the MULTSPEC areas the growth function for herring is the same as for capelin. Outside the MULTSPEC areas the growth is expressed as follows:

$$\frac{dl}{dt} = H_4 l + H_5.$$

 H_4 and H_5 are constant for all age groups.

We assume that fishing is carried out only during September, October, February and March. The yearly fishing mortality is set to 0.15 and is the same in all areas. The herring starts to recruit to the fishery at 25 cm length and is fully recruited at 35 cm length.

- 8 -

In order to account for predation by other predators, we assume that there is a natural mortality of 0.02/month in the MULTSPEC areas in addition to the mortality generated by predation by cod, harp seals and minke whales. Outside the MULTSPEC areas natural mortality is set to 0.23/ year, which is the natural mortality used for age 3 and older herring in the ICES stock assessments (Anon., MS 1995b).

7 Cod

The cod parameters are denoted by G.

The cod stock is divided into 11 age groups (0-10+) and 20 5 cm length groups (0-100 cm).

The migration parameters for cod are set so that the larvae drift into the Barents Sea, and the cod then moves westwards as it becomes older. There is also a migration southwards to the coast in the months October-March, and a migration to the north and east in the months April-September. In particular, the migration parameters are set so that a part of the age groups 6 and 7 and all cod of age 8+, will be in area 1 (Lofoten/ Vesterålen) by April 1, when spawning takes place. All cod found in area 1 at April 1, is assumed to be mature.

The spawning stock biomass - recruitment relationship used is of the same form as for capelin:

$$R = \frac{G_{13} \times B}{G_{14} + B}$$
 (EQ 8)

The value 6000 million for the maximum recruitment G_{13} at age 0 (in June) should be seen in relation to the maximum recruitment at age 3 for the year classes 1966 and onwards (Anon., 1995a) which is 1818 million fish (the 1970 year class). The second strongest year class is the 1969 year class (1015 million). G_{14} the value of the spawning stock biomass giving half of maximum recruitment, has been set to 150 thousand tonnes, which is close to the lowest level in the period from 1946 onwards.

The feeding level concept (Andersen and Ursin, 1977) is defined in the following way for cod:

$$f(\phi(L)) = \frac{\phi(L)}{\phi(L) + G_3(1)}$$
 (EQ 9)

where $\phi(L)$ is the total food abundance (capelin + herring + cod + other food, 1000 tonnes per square nautical mile) and $G_3(1)$ is the value of $\phi(L)$ when a cod eats half of maximum consumption. The amount of prey (capelin, herring and cod) of length l eaten per unit time by a cod of length L is given by:

$$R_{cod}(l, L, prey) = H_{cod} \times f(\phi(L)) \times \frac{\phi(l, L, prey)}{\phi(L)}$$
 (EQ 10)

where H_{cod} is the maximum food uptake and $\phi(l, L)$ is the availability of prey of length 1 as food for cod of length L.

H_{cod} is made size- and temperature dependent:

$$H_{cod} = G_{22}(1) \times e^{0.104 \times T - 0.000112 \times T^3} \times W_{cod}^{G_{22}(2)}$$
 (EQ 11)

and $\phi(l, L)$ is defined by:

$$\phi(l,L) = S(l,L) \times N(l) \times W(l)$$
 (EQ 12)

The size- and temperature dependency in this formula is taken from Jobling (1988). The values for $G_3(1)$ and $G_{22}(1)$ and for other food are the same as those estimated at the last meeting of the Multispecies Assessment Working Group (Anon., MS 1995c) for cod preying on mature capelin, using mainly the same methodology as in Bogstad and Tjelmeland (MS 1990, 1992). The suitability S(1,L) is implemented as a piecewise linear function. The suitabilities of different sizes of capelin, herring and cod as prey for different sizes of cod as predator are based on studies of the diet of North-East Arctic cod (Mehl, 1989, Bogstad *et al.* (1994)). The amount of other food has been set equal in all areas, but decreasing with cod age. Because the herring in area 1 stays in the Tysfjord/Ofotfjord area for some months in late autumn and early winter, where it is not available as food for Northeast Arctic cod , we assume that in Area 1 there is predation by cod on herring only in February, March and April.

The growth of cod is modelled in the same way as the growth of capelin.

$$\frac{dl}{dt} = G_4 \times l^{G_5} \times f(\phi) \times (G_6 \times T + G_7)$$
 (EQ 13)

$$\frac{dW}{dt} = G_8 \times W^{G_9} \times (f(\phi) - G_{10}) \times (G_{11} \times T + G_{12})$$
 (EQ 14)

The parameters describing the relationship between growth and temperature, G_6 , G_7 , G_{11} and G_{12} , have the same values as for capelin. The values for G_4 , G_5 , G_8 and G_9 are the same as those used in the studies of cod growth presented in Anon. (1995c), where it was shown that MULT-SPEC could reproduce the observed changes in growth quite well.

The fishing pattern $(G_{32}(a))$ is the same as the one estimated for 1993 by the ICES Arctic Fisheries Working Group at its 1994 meeting (Anon., MS 1995a). The fishing mortality (G_{21}) is set so that the yearly fishing mortality becomes 0.46 (mean over ages 5-10, unweighted). This corresponds to F_{med} , which is used by ICES as a biological reference point for this stock (Anon., MS 1995a). The fishing mortality is the same for all months and areas. No length selectivity of the catch within an age group is included, giving the same weight at age in the catch as in the stock, and consequently the catch in weight corresponding to a given fishing mortality becomes too low.

The ICES Arctic Fisheries Working Group uses a natural mortality of 0.2 per year (0.0167 per month) for cod. When predation from mammals is calculated by the model and is no longer included in the natural mortality, a lower value should be used. We have chosen 0.012 per month.

8 Sea Mammals

The submodels for harp seals and minke whales are basically area-structured one-species models. Interactions with the fish species are limited to the effects of mammal predation on the fish stocks. Tentative formulations of how the fluctuations of prey stocks are likely to affect the behaviour and condition of the sea mammal populations have been made, but are not included in the present paper.

The minke whale and harp seal parameters have prefixes *pmi* and *pha*, respectively. See Appendix for details on parameters.

The minke whale stock is divided into 8 areas, MULTSPEC areas 1 - 7 and an area 0 (see Introduction), 2 sexes and 21 age groups (0-20+).

The harp seal stock is divided into 7 areas and 17 age groups (0-16+).

At present, the migration procedures for sea mammals make no distinction with respect to sex or age group.

The minke whale stock spends most of the time south of the model areas 1 - 7. The model provides for a northward migration during spring and early summer, and a southward migration during late summer and autumn. The distribution is an extrapolation from the findings of the July 1989 sighting survey (Øien, 1991). The fraction of the stock present in the model areas 1-7 never exceeds 55%.

The harp seal stock spends late winter and spring in coastal areas (mainly 3 and 5), and migrates northward during summer and autumn (Haug *et al.* 1994). In this context the White Sea is regarded as belonging to area 5.

The distribution patterns resulting from the migration procedures are shown in Tables 1 and 2.

The tables specify the fraction of the population being present in a given area at a given month.

The migration parameters have been chosen so as to give this distribution. The pattern for minke whales is the same as used in Bogstad et al. (MS 1992), while the migration pattern for harp seals has been somewhat adjusted.

Recruitment takes place once a year, during January in the whale model, and during March in the seal model. Equal numbers of males and females are born. The number of 0-year olds of sex s recruited to the stock is given as:

$$\Delta N_{A, s, 0} = \frac{1}{2} \times \sum_{\alpha=1}^{\sigma_{max}} R_{\alpha} \times N_{A, 1, \alpha}$$

where R_a =(P_repro) =reproductivity for females age a; equals the fraction of age groups a recruited to the breeding stock, multiplied by a fertility parameter specifying the average number of recruits born by a mature female (0.95 for whales and 0.94 for seals).

The weight of sea mammals is an essential variable for computing their food consumption. At present the weight is treated as a function of age in whole years only. The weight at age for minke whales is calculated using a von Bertalanffy function for length at age from Christensen (1981), combined with a length-weight relationship obtained by Folkow and Blix (1992). The length at age function is

$$L_t = 833 (1 - e^{-0.169(t+4.3)})$$

for males and

$$L_i = 907 (1 - e^{-0.142(t+4.3)})$$

for females, and the length-weight relationship is

$$W = 8.148I^{3.163}.$$

This gives the following formulas for the weight at age at July 1 (used as a representative weight for the part of the year when the minke whales stays in the Barents Sea):

$$W = 6654 \left(1 - e^{-0.169 (a + 48)}\right)^{3.163}$$

for males and

$$W = 8709 \left(1 - e^{-0.142 (a+4.8)}\right)^{3.163}$$

for females.

According to Innes et al. (1981) the average weight of a normally growing harp seal is set to

$$W = 129.9 \times e^{-1.458 \times e^{-0.344 \times (a+0.5)}}$$
 (EQ 15)

For both seals and whales, the model has a tentative formulation for how the condition factor depends on the food supply, but this feature has not been included in the runs presented in this paper.

Catches of minke whales are subtracted from the population of age 1 and older whales present in MULTSPEC areas in June.

For harp seals the distinction is made between pups (0 years old) and age 1 and older seals. The catches are subtracted in March, after the breeding season.

In the reference run, the catches are set so that the populations stay approximately constant.

Different natural mortality parameters apply for age group 0 and older animals (see Appendix).

The computation of predation by sea mammals is based upon their energy requirement. The model assumes that the normal energy requirement of an individual during a time step of length Δr is either a function of the predator's weight alone (whales present only in summer) or a function of weight and month (seals). The normal energy requirement of a predator subpopulation $N_{A,s,a}^{p}$ during a time step of duration Δr is set to

$$E_{A,s,q}^{P} = N_{A,s,q}^{P} \times P_{p} \times W \times \Delta t$$
 (EQ 16)

where P_p is a parameter expressing the average rate of energy consumption of the species at the time. This consumption is distributed over the various prey populations, including exogenous "other food", in proportion to the mass density of the prey weighted by its suitability for the predator. Provided that the time step is sufficiently short, the consumption of each prey will be small compared to prey stock size, and we set the consumption from the predator subpopulation $N_{A,s,a}^{p}$ on prey species i in area A to

$$C_{A,s,a}^{p,i} = E_{A,s,a}^{p} \times \frac{s_{p,i} B_{i,A}}{\sum_{i} n_{j} s_{p,j} B_{j,A}}$$
 (EQ 17)

where

 $s_{p,i}$: suitability of prey i to predator p

 $B_{i,A}$: biomass of prey i in area A

n: energy density of prey i

As for whales, Blix and Folkow (1995) have estimated the daily energy expenditure or field metabolic rate to to 80 kJ kg⁻¹ day⁻¹. Nordøy *et al.* (1995a) estimate the gross energy intake of the entire whale population during the summer to 8.64 10¹² kJ, of which the field metabolic rate accounts for 5.51 10¹² kJ. Taking this ratio between gross energy intake and field metabolic rate into account, we get a gross energy intake of 125 kJ kg⁻¹ day⁻¹ or 1.45 W kg⁻¹.

The energy consumption rate parameter for seal, *pha_ereq*, is an array with one value for each month. The average gross energy intake is 343 kJ kg⁻¹ day⁻¹ or 3.97 W kg⁻¹, according to Nordøy *et al.* (1995b). The monthly values have been set so that the yearly average becomes equal to this value, and so that most of the feeding takes place from July to September.

9 Running the model

9.1 Initiation.

The initial data for capelin used in the runs reported on in this paper are data from the joint Norwegian-Russian acoustic survey in September-October 1993 (Anon., MS 1994). These data give the number of fish by area, sex, age and length, and also the mean weight for each length group. The cod stock numbers by age and size at age at January 1, 1994 are taken from the ICES Arctic Fisheries Working Group report (Anon., MS 1995a). The numbers of 1-and 2-year old fish have been calculated by back-calculating the prognosticated number at age 3 by a yearly natural mortality M=0.2 (this is probably too low, but has been used by Mchl (1989) and Bogstad and Mehl (1992) when calculating the cod stock's consumption of various prey species). The area distribution of immature fish is based on data from the Norwegian winter survey in the Barents Sea and the autumn Svalbard survey, and it is assumed that all the mature fish are in area 1 in January. The size distribution has been calculated from the weights in the stock at January 1 taken from the working group report, as described by Bogstad and Tjelmeland (MS 1990, 1992).

The model was started in October 1992, with capelin data from the 1992 autumn survey (Anon., MS 1993) and cod data for January 1993 from the working group report (Anon., MS 1995a),

prognosticated forward in time from January to October. The model was then run to January 1993, when it was updated with 1993 cod data. In April 1993, cod and capelin spawn, so that a 1993 year class is generated. The capelin stock in the model was updated with 1993 capelin survey data in October 1993.

The herring stock number at age is taken from the assessment made by the ICES Atlanto-Scandian Herring and Capelin Working Group (Anon., MS 1995b), and the area distribution and length at age is calculated based on data from several Norwegian surveys (all described in Anon., MS 1995b).

The harp seal population at age 0 and at age 3 and older at March 1, 1991, was calculated from a pup production estimate of 142 000 (Russian aerial survey), age composition data from samples of Norwegian catches, and reproductivity parameters given in Appendix. This resulted in a population of 3 year and older seals of 377 000, with a very low number of 3-5 year old seals and also reduced numbers of 6-9 year old seals compared to older age groups. This is in agreement with the expected high mortality suffered by young seals during the 'seal invasions' to the Norwegian coast in the 1980s, especially the years 1986-1988.

The pup production in 1989-1990 was assumed to be at the 1991 level. The number of 1 and 2 year old seals in 1991 was calculated by subtracting pup catches from the production and correcting for later natural mortality and catches of 1 year old seals. This gave a total population of 1 year and older seals of 537 000 at March 1, 1991. The harp seal stock size at October 1, 1993 was then calculated by projecting the stock at March 1, 1991, forward in time correcting for catches and natural mortality. The number of pups produced in 1992 and later has been calculated from the model reproductivity rates. The total harp seal stock number at the start of the simulations is about 50% larger than in the simulations carried out by Bogstad *et al.* (MS 1992).

As in Bogstad et al. (MS 1992), the minke whale population has been scaled to a initial population totalling 80000 whales in 1990, and then projected forward in time correcting for catches and natural mortality. The number of calves produced in 1992 and later has been calculated from the model reproductivity parameters.

10 Results

10.1 Reference run.

As reference run (run 1) was chosen the simulation using the parameter values given in the parameter files in the Appendix for fish, seals and whales. A period of 20 years was used for all

runs. A summary table of the stock sizes, catches and consumption figures in the reference run is 7a6.3 given in Table 3. In Figure 2 is plotted biomass development of immature capelin, cod, herring in Fia.2 the Barents Sea and total herring stock.

Differences between results of the present reference run and the reference run in Bogstad et al. (MS 1995) are mainly due to that predation by cod on maturing and adult herring in MULTSPEC area 1 now is taken account of and that the recruitment function for herring has been changed. Further, a fishing mortality of 0.15 has now been applied on the herring stock compared to 0.05 in Bogstad et al. (MS 1995).

The variation in the biomass of cod, herring and capelin is generally within the range observed for the period where stock estimates are available. The herring spawning biomass, which is not shown in Table 3, reaches a peak of about 9.4 mill. tonnes in 1998, and this is at the same level as estimated by VPA for the 1950s (Dragesund et al. 1980). The fluctuations in stock size indicate that the main features in the herring-capelin dynamics have been captured (strong decrease in capelin stock when the strong 1999 and 2000 year classes of herring enter the Barents Sea), and the influence of capelin on the cod stock can also be seen relatively clearly. The total consumption by cod and fraction of capelin, herring and cod in the diet of cod also seems reasonable when compared to the results of Mehl (1989) and Bogstad and Mehl (1992). The total consumption of seals and whales has been changed due to the new models for food requirement. This gave an increase in the total consumption by harp seals of about 50 % (equal to the increase in stock number) and a decrease of 25 % in the consumption by minke whales compared to the figures given in Bogstad et al. (MS 1992). The minke whale's food preferences were set at levels which gave results consistent with the general pattern in the whale diet as reported in Haug et al. (MS 1995). The biomass of capelin, herring, cod and other food consumed by minke whales during 1993 and 1994 broken down by areas and months was shown in Bogstad et al. (MS 1995) and compared with the diet reported in Haug et al. (MS 1995).

10.2 Effects of varying stock size of minke whales and harp seals, and food preferences of minke whales, harp seals and cod

The effects of varying stock size of minke whales and harp seals were studied by completely removing both stock of marine mammals from the ecosystem (run 2), removing only minke whales (run 3) or harp seals (run 4), alternatively assuming no whale catch (run 5), seal catch (run 6) or marine mammal catch (run 7), the latter three runs leading to increase in one or both of the

marine mammal populations. Effects of varying food preferences were studied by doubling the suitability of cod for whales (run 8) or other food for whales (run 9), doubling the suitability of herring for seals (run 10), and finally by reducing suitability of herring for cod by 50 % (run 11).

The results of the simulations are given in Tables 4-13. In Table 14 some results are summarized.

1abs. 4-14

Some effects were as intuitively expected, while others were not equally obvious. For example, removing the two mammal stocks (run 2) led as expected to a higher herring stock and in most years a higher cod stock. However, except for the first years (1993-1997), it led to a lower capelin stock which must be seen as a result of the effect an increasing herring stock has on capelin recruitment. The reduced capelin stock led in turn to a reduced cod stock in two years (2008 -

Fig.3

recruitment. The reduced capelin stock led in turn to a reduced cod stock in two years (2008 - 2009). The complexity of the system is illustrated in Figure 3 where results of increasing the suitability of cod for whales (run 8), keeping all other parameters as in the reference run, are shown. Initially, a higher suitability of cod led to a lower cod biomass and higher capelin and herring biomasses. Herring biomass continued to increase compared to the reference run throughout the whole simulation period. Because of the detrimental effect this had on capelin recruitment, capelin biomass got below its reference run values in some years (years 2004 and 2010 - 2012). Increases in herring and capelin biomasses led in turn to a higher cod biomass in some years (years 2000 - 2002 and 2008 - 2010).

The main effects may be summarized as follows:

The herring stock increases or decreases as predation from marine mammals decreases (runs 2-4) or increases (runs 5-7). With suitabilities as in reference run, the herring stock is much more sensitive to changes in the minke whale stock (runs 3 and 5) than to changes in the harp seal stock (runs 4 and 6). This is illustrated in Figure 4 comparing runs 3 and 4.

Fig. 4

The development in the capelin stock is mainly determined by changes in the herring and cod stock. The effect on capelin of changes in these stocks generally goes in the opposite direction of effects from changes in marine mammals predation on capelin. This results in an increase or decrease in the capelin stock when the minke whale stock increases (run 5) or decreases (run 3) i.e. a counterintuitive effect. Since herring is less sensitive to changes in the seal stock than to changes in the minke whale stock, and since predation on capelin from seals is high, an increase (run 6) or decrease (run 4) in the seal stock lead to a decrease or increase in the capelin stock, i.e. the effect intuitively expected.

The effects on the cod stock from changes in the marine mammal stocks are more difficult to summarize in few words. Generally, the cod stock will increase or decrease when marine mammal

stocks decrease or increase, as intuitively expected. For example, if the seal population is not exploited and is allowed to increase (run 6), mean annual cod catch will decrease by 32000 tonnes over the simulation period (Table 14), and the catch in the last year will be 112000 tonnes lower than in the reference run. This would be a substantial loss to the fishery taking into account the high value of cod. However, because of the strong cod-capelin interactions, resulting in a tendency of cyclic variations in the two stocks with a time lag between the two stock trajectories, the changes in the cod stock may in some years be in the opposite direction than expected when compared to the reference run.

One interesting feature which again reflects the complexity of the system is that there would be larger gains on average in the cod fishery by removing the seals than by removing the whales, despite the fact that whales eat more cod than seals do in the reference run. The explanation lies in the herring-capelin-cod dynamics: Removing whales have a large effect on the herring stock, leading to strongly reduced capelin stock and thereby reduced cod growth.

Run 11 was included for illustrating how sensitive the whole system is to changes in assumed food preferences of cod. Decreasing the suitability of herring as food for cod had much larger effects than changing some of the marine mammal preferences (runs 8-10) and even more dramatic effects than removing both marine mammal stocks from the system (Figure 5). The herring stock increased above historic levels, with resulting detrimental effects on the capelin stock. Also the cod stock decreased due to low capelin stock.

11 Discussion and conclusions

The role of marine mammals in the ecosystems can not be described by any single, or indeed any finite number of features. All we can do is to describe and possibly quantify some effects of the mammals' presence on parts of the ecosystem. This paper considers effects of predation. Predation is at least in theory quantifiable and is also considered to be of potentially high importance with respect to effects on long term fishery yield.

However, even when restricting the considerations to predation, drastic simplifications have to be made in the model compared to the processes going on in nature. For example, the concept of constant food suitabilities is such a simplification.

The selection of species in the multispecies model is based on the hypothesis that total fish production in the Barents Sea area (including Norwegian coastal waters) to a large extent is determined by the development in the stocks of North-East Arctic cod, Norwegian Spring-Spawning herring and Barents Sea capelin. Accordingly, main emphasis has been placed on modelling the

Fig.

population dynamics of these species, the interaction between them and parts of the biological and physical environment having a direct and significant impact on their development. The apex predators are an important part of this environment. There are other apex predators than minke whales and harp seals (other marine mammal stocks and birds), and there are other fish stocks which could influence the development of the three modelled species (e.g. polar cod). More species may be added to the model later (polar cod is already formally included in the model but has been turned off in the simulations presented because of poor knowledge of its population dynamics), but it is considered very unlikely that this could reverse the directions of effects on fish yield from increasing or decreasing stocks of minke whales and harp seals. However, the size of the effects could be affected (in both directions).

Concerning the modelled interactions, both errors in the marine mammals' total food composition and food preferences and inaccurate modelling of the interactions at the fish level could affect the size of the estimated effects. Also with respect to such errors, it is considered very unlikely that they could reverse the direction of main effects. Extensive investigations to estimate the minke whales and harp seals' total food consumption have been conducted (Blix and Folkow, 1995; Nordøy et al., 1995 a.b), and the available estimates are probably among the best compared with estimates for marine mammal stocks in other parts of the world. This does not preclude that errors still may be considerable due to methodological difficulties in estimation. Concerning food preferences, methodological problems exist in estimating these from available data (see for example Skaug et al., MS 1995). For the minke whale stock, the stomach sampling during 1992-1994 (Haug et al., MS 1995) has shown a high proportion of fish in the diet except for the Bear Island-Spitsbergen area where krill dominated in 1993-1994, and there is also some consistency between years with respect to areas with large contribution from the modelled species. For harp seals, larger uncertainties exist with regard to the proportion of commercially important fish species in the diet.

Of the interactions at the fish level, the cod-capelin interactions have been most extensively studied (see e.g Bogstad and Tjelmeland, 1992; Tjelmeland and Bogstad, 1993), and the model calculation of cod's consumption of capelin is in general agreement with direct calculation from stomach sampling data (Anon., MS 1995c). Cod's consumption of herring in 1993-1994 in the simulation runs is high compared to direct calculations from stomach content data. However, it has been shown by regression techniques that cod may generate a very high mortality on 0-group herring in years with low capelin stock (Barros, 1995), and it is possible that the stomach data do not properly reflect the predation by cod on herring because cod in the pelagic layers are under-rep-

resented in the stomach samples. Quantitatively, the largest uncertainty is probably connected to the herring-capelin interactions. Historical time series of herring and capelin recruitment support the hypothesis that presence of strong year classes of herring in the Barents Sea have a detrimental effect on caplein recruitment (Hamre, 1991), and sampling of herring stomachs has confirmed that young herring feed extensively on capelin larvae (Huse and Toresen, MS 1994). However, the modelled predation needs further evaluation.

The simulation results presented are of a preliminary nature since too little time has been available for experimenting with the model after herring was included. In addition to further studies of herring's predation on capelin larvae, more work has to be done on the recruitment functions and the suitability of herring as prey for cod. Also the functions used for individual growth of herring need further considerations.

Concerning herring, it should be recognized that only part of the minke whale-herring interactions are at present taken account of. The mature component of the herring stock has its main spawning and feeding area south of the MULTSPEC area and in the Norwegian Sea. The effect of this predation could not be included in the present study. The coupling of MULTSPEC to the herring model HERMOD should be regarded as a first step towards extending the MULTSPEC model itself to the Norwegian Sea and thereby making it possible to study predation processes in that area.

In the simulations, strong herring recruitment has been assumed to occur at regular intervals.

Strong herring year classes seem to be connected with warm periods in the Barents Sea, and strong cod and herring year classes have shown a tendency to appear in the same years (Sætersdal and Loeng, 1987). In further simulations this should be taken account of. The model allows for stochasticity in recruitment (although still using a spawning stock-recruitment relationship) for all fish species, and the effects of this should be investigated by carrying out a large number of simulations. A 20-year run requires about 2 hours of computer time (on a HP 9000/755), which may limit the number of simulations somewhat.

Mammal predation on cod and capelin has been assumed to be non-selective with respect to prey size. This assumption is probably not valid and should be modified based on data on prey size selection. The effects of predation on the prey stocks will depend on the size or age composition of the consumed prey. Particularly the predation on 0-group fish should be calculated by separate suitabilities.

Constant migration patterns have been assumed in the simulations, and the sensitivity to variations in migration patterns has not been tested. It is, however, obvious that the model results will depend heavily on the degree of overlap between the species, and proper modelling of migration is equally important as estimating a predator's preferences given a certain menu card in a local area. Models of migration and food preferences have to be combined. If for example part of the minke whale stock actively search for herring or krill over large areas, the model should reflect this. If some minke whales go for herring, they will probably not be in the Barents Sea in years with no herring in that area. For capelin and cod, we know that there have been large changes in the geographical distributions, and there is a connection between temperature changes and changes in migration pattern.

In the simulations, adjustments have been made to values of natural mortality for the fish stocks compared to traditional values in single stock assessments to take account of that mortalities generated by main predators are now explicitely calculated. These adjustments have been kept unchanged in all simulations. Runs 2-4 therefore do not simulate a situation where marine mammals are not taken account of in the assessments, but a situation where they are actually removed. The main purpose of including runs 2-4 was to see how the model behaved under a wide range of marine mammal abundances, taking zero abundance as one extreme. The results were as expected compared with results of those runs where marine mammals were allowed to increase above their present level, giving effects in opposite direction. The size of effects illustrates the importance of marine mammals, but compared to run 11 it also illustrates that cod is the key predator on fish in the Barents Sea system. It is important to include marine mammals in a multispecies model, but proper modelling of cod's predation should still have the highest priority.

The fishing mortalities on capelin, cod and herring have been assumed constant between runs and years and not dependent on the state of the stocks. In practice, an adaptive management policy will be aimed at. When for example cod is available in larger quantities due to decreased predation from minke whales, this could be taken out as fish catch instead of being left in the sea and creating extra predation pressure on the capelin and herring. This could possibly increase the total gain from reduced minke whale predation and also contribute to avoid a situation where substantial gains in one fishery were achieved at the expence of losses in other fisheries. For estimating the potential gains of such an adaptive strategy, simulations should be carried out where fishing mortality on each stock next year is decided upon using decision rules where expected stock development of all three fish species over the coming years is taken account of.

A tentative conclusion on likely effects of an increasing whale stock on important fish stocks is that the herring stock will be most heavily affected. All effects demonstrated on herring in the present simulations will be substantially enlarged when minke whale's predation on subadult and adult herring in Norwegian coastal waters south of the MULTSPEC area and in the Norwegian Sea is included. An increasing harp seal stock will most heavily affect the capelin and cod stock. The estimated size of the effects in the present study may be underestimated due to the assumed large proportion of other food in seals' diet.

12 References

Anon. MS 1993. Report of the Atlanto-Scandian Herring and Capelin Working Group. ICES C.M. 1993/Assess:6.

Anon. MS 1994. Report of the Atlanto-Scandian Herring and Capelin Working Group. ICES C.M. 1994/Assess:8.

Anon., MS 1995a. Report of the Arctic Fisheries Working Group. ICES C.M. 1995/Assess:3.

Anon. MS 1995b. Report of the Atlanto-Scandian Herring and Capelin Working Group. ICES C.M. 1995/Assess:9.

Anon. MS 1995c. Report of the Multispecies Assessment Working Group. ICES C.M. 1995/ Assess: ?..

Andersen, K.P. and Ursin, E. 1977. A multispecies extension to the Beverton and Holt theory of fishing with accounts of phosporus circulation and primary production. Medd. Danm. Fisk- og Havunders., 7:319-435.

Beverton, R.J.H. and Holt, S. 1957. On the dynamics of exploited fish populations. Fishery Invest., Lond., Ser.2. 19:533 pp.

Blix, A.S. and Folkow, L.P. 1995. Daily energy expenditure in free living minke whales. Acta Physiol. Scand. (in press).

Bochkov, Yu. A. 1982. Water temperature in the 0-200m layer on the Kola-Meridian in the Barents Sea, 1900-1981. Sbornik Naucenykk Trudev PINRO 4, 113-122. (In Russian).

Bogstad, B., Hiis Hauge, K. and Ulltang, Ø. MS 1995. Results of simulation studies using a multispecies model for the Barents Sea (MULTSPEC). Int. Whal. Commn. sci. Comm. Pap. 47 (NA1). Bogstad, B., Lilly, G.R., Mehl, S., Palsson, O.K. and Stefansson, G. 1994. Cannibalism and year-class strength in Atlantic cod (*Gadus morhua* L.) in Arcto-Boreal ecosystems (Barents Sea, Iceland and eastern Newfoundland). ICES mar. Sci. Symp., 198:576-599.

Bogstad, B. and Mehl, S. 1992. The North-East Arctic cod stock's consumption of various prey species 1984-1989. Pp. 59-72 in Bogstad, B. and Tjelmeland, S. [eds]. Interrelations between fish populations in the Barents Sea. Proceedings of the Fifth IMR-PINRO symposium, Murmansk 12-16 August 1991. Institute of Marine Research, Bergen, Norway.

Bogstad, B. and Tjelmeland, S. MS 1990. Estimation of predation mortalities on capelin using a cod-capelin model for the Barents Sea. ICES C.M. 1990/H:16, 33pp.

Bogstad, B. and Tjelmeland, S. 1992. A method for estimation of predation mortalities on capelin using a cod-capelin model for the Barents Sea. Pp. 111-137 in Bogstad, B. and Tjelmeland, S. [eds]. Interrelations between fish populations in the Barents Sea. Proceedings of the Fifth IMR-PINRO symposium, Murmansk 12-16 August 1991. Institute of Marine Research, Bergen, Norway.

Bogstad, B., Tjelmeland, S., Tjelta, T. and Ulltang, Ø. MS 1992. Description of a multispecies model for the Barents Sea (MULTSPEC) and a study of its sensitivity to assumptions on food preferences and stock sizes of minke whales and harp seals. Int. Whal. Commn sci. Comm. Pap. 44 (O 9), 47pp.

Christensen, I. 1981. Age determination of minke whale, *Balaenoptera acutorostrata*, from laminated structures in the tympanic bullae. Report of the International Whaling Commission, 31:245-253.

Dommasnes, A. and Hiis Hauge, K. MS 1994. HERMOD- a single species model for the Norwegian Spring Spawning herring stock. ICES C.M 1994/H:11, 12 pp.

Dragesund, O., Hamre, J. and Ulltang, Ø.. 1980. Biology and population dynamics of the Norwegian spring-spawning herring. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 177: 43-71.

Folkow, L.P. and Blix, A.S. 1992. Metabolic rates of minke whales (*Balanoptera acutorostrata*). Acta Physiol. Scand. 146:141-150.

Forberg, K. and Tjelmeland, S. 1985. Maturity studies of Barents Sea capelin. Variations in length at maturity for female capelin. Pp. 213-221 in H. Gjøsæter [ed]. The Barents Sea capelin. Proceedings of the second Soviet-Norwegian symposium, Bergen 1984. Institute of Marine Research, Bergen.

Hamre, J. 1991. Interrelations between environmental changes and fluctuating fish populations in the Barents Sea. In Kawasaki, T., Tanaka, S., Toba, Y. and Taniguchi, A. (eds). Long-term Variability of Pelagic Fish Populations and their Environment. Pergamon Press: 259-270.

Hamre, J. and Tjelmeland, S. MS 1982. Sustainable yield estimates of the Barents Sea capelin stock. ICES C.M. 1982/H:45.

Haug, T., Lindstrøm, U., Nilssen, K.T., Røttingen, I. and Skaug, H.J. MS 1995. Diet and food availability for northeast Atlantic minke whales *Balanoptera acutorostrata*. International Whaling Commision SC/47/NA2, 33 pp.

Haug, T., Nilssen, K.T., Øien, N. and Potelov, V. 1994. Seasonal distribution of harp seals (*Phoca groenlandica*) in the Barents Sea. Polar Research 13(2): 163-172.

Huse, G. and Toresen, R. MS 1994. Predation by adolescent herring (*Clupea harengus* L.) on Barents Sea capelin (*Mallotus villosus* Muller) larvae. Paper presented at the 6th PINRO-IMR symposium, Bergen 14-17 June 1994.

Innes, S., Stewart, R.E.A. and Lavigne, D.M. 1981. Growth in the northwest Atlantic harp seals.

J. Zool. London, 194:11-24.

Jobling, M. 1988. A review of the Physiological and Nutritional Energetics of cod, *Gadus morhua*L. ., with particular reference to growth under farmed conditions. Aquaculture 70:, 1-19.

Mehl, S. 1989. The North-East Arctic cod stock's consumption of commercially exploited prey species in 1984-1986. Rapp. P-v. Reun. Cons. int. Explor. Mer, 188: 185-205.

Nilssen, K.T. 1995. Seasonal distribution, condition and feeding habits of Barents Sea harp seals (Phoca groenlandica). In press in Blix, A.S., Walløe, L. and Ulltang, Ø. (eds). Seals, whales, fish and man. Proceedings of the International Symposium on the Biology of Marine Mammals in the Northeast Atlantic, Tromsø, 29 November - 1 December 1994. Developments in Marine Biology IV. Elsevier.

Nordøy, E.S., Folkow, L.P., Mårtensson, P-E. and Blix, A.S. 1995a. Food requirements of Northeast Atlantic minke whales. In press in Blix, A.S., Walløe, L. and Ulltang, Ø. (eds). Seals, whales, fish and man. Proceedings of the International Symposium on the Biology of Marine Mammals in the Northeast Atlantic, Tromsø, 29 November - 1 December 1994. Developments in Marine Biology IV. Elsevier.

Nordøy, E.S., Mårtensson, P-E., Lager, A.R., Folkow, L.P. and Blix, A.S. 1995b. Food consumption of the Northeast Atlantic stock of harp seals. In press in Blix, A.S., Walløe, L. and Ulltang, Ø. (eds). Seals, whales, fish and man. Proceedings of the International Symposium on the Biology of Marine Mammals in the Northeast Atlantic, Tromsø, 29 November - 1 December 1994. Developments in Marine Biology IV. Elsevier.

Ottersen, G. and Ådlandsvik, B. 1993. Climatological temperature and salinity fields for the Nordic Seas. Report No. 8/1993, Div. of Marine Environment, Institute of Marine Research, Bergen, Norway.

Skaug, H.J., Gjøsæter, H., Haug, T., Lindstrøm, U. and Nilssen, K.T. MS 1995. Do minke whales *Balanoptera acutorostrata* exhibit particular prey preferences? International Whaling Commission SC/47/NA7: 33pp.

Skjoldal, H.R., Gjøsæter, H. and Loeng, H. 1992. The Barents Sea Ecosystem in the 1980s: Ocean climate, plankton and capelin growth. ICES mar. Sci. Symp. 195:278-290.

Sætersdal, G. and Loeng, H. 1987. Ecological adaption of reproduction in Northeast Arctic cod. Fisheries Research 5: 253-270.

Tjelmeland, S. and Bogstad, B. 1993. The Barents Sea Capelin Stock Collapse: A Lesson to Learn. Pp. 127-139 in S.J. Smith, J.J. Hunt and D. Rivard [ed]. Risk evaluation and biological reference points for fisheries management. Can. Spec. Publ. Fish. Aquat. Sci. 120.

Ulltang, Ø. 1980. Factors affecting the reaction of pelagic fish stocks to exploitation and requiring a new approach for assessment and management. Rapp P-v. Reun. Cons. int. Explor. Mer, 177:489-504.

Table 1. Distribution of harp seals

Month	Areal	Area2	Area3	Атеа4	Area5	Area6	Area7
1	0.00	0.00	0.20	0.00	0.80	0.00	0.00
2	0.00	0.00	0.30	0.10	0.60	0.00	0.00
3	0.00	0.00	0.25	0.00	0.75	0.00	0.00
4	0.00	0.00	0.25	0.00	0.75	0,00	0.00
5	0.00	0.00	0.00	0.00	0.75	0.25	0,00
6	0.00	0.00	0.00	0.00	0.30	0.50	0.20
7	0.00	0.00	0.00	0.00	0.20	0.50	0.30
8	0.00	0.00	0.00	0.00	0.00	0.20	0.80
9	0.00	0.00	0.00	0.00	0.00	0.10	0.90
10	0.00	0.00	0.00	0.00	0.10	0.00	0.90
11	0.00	0.00	0.10	0.05	0.15	0.00	0.70
12	0.00	0.00	0.30	0.10	0.60	0.00	0.00

Table 2. Distribution of minke whales

Month	Area0	Areal	Area2	Area3	Area4	Area5	Area6	Area7
1	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.92	0.04	0.04	0.00	0.00	0.00	0.00	0.00
3	0.74	0.04	0.05	0.12	0.00	0.00	0.06	0.00
4	0.60	0.04	0.05	0.18	0.03	0.00	0.11	0.00
. 5	0.49	0.04	0.05	0.21	0.03	0.03	0.13	0.02
6	0.45	0.05	0.07	0.19	0.02	0.05	0.14	0.03
7	0.45	0.05	0.07	0.22	0.02	0.02	0.16	0.02
. 8	0.56	0.06	0.10	0.13	0.05	0.00	0.10	0.00
9	0.82	0.05	0.11	0.00	0.03	0.00	0.00	0.00
10	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

- 26

months. Fish and other food in million kg. Mammals in numbers. IM.CAP = Immature capelin, MA.CAP = Mature capelin, B.HER = Herring blomass in MULTSPEC areas, TOT.HER = Total herring biomass, OTH = other food, CC = consumed by cod, WC = consumed by whales, SC = consumed by seals, C = catch. Suitabilities for whales: capelin 1.00, cod 0.20, herring 1.00, other food 0.50, other food 0.50. Table 3. Stocks, consumption and catches, run 1 (reference run) State of stocks at Septermber 30. Mature capelin at April 1. Consumption and catches for 12 last

C. C. C. EAL
C.COD C.HER
C.CAP
C.HER SC.OT
SC.CAP SC.COD SC.HER SC.OTH
WC. OTH SC.CAL
WC. V HER O
WC. WC. CAP COD
CC. W
CC. CC. COD HER
٦
ES SEALS CC.CAP
TOT. HER WHALES
TC B.HER HI
000
≲I
IM.CAP MA.CAP

		, in the same of t	9										
IM.CAP	MA.CAP	COD	B.HER	TOT.HER	CC,CAP	CC.COD	CC.HER	СС.ОТН	C.CAP	C.COD	C.HER		
4372	1572	2807	4125	. 9868	2567	76	1633	3634	487	119	420		
663	49	3133	3862	11620	781	139	1648	5359	11	092	. 555		
 366	96	3046	1031	12580	602	170	1023	5822	263	186	751		
 009	m	2873	150	12469	484	137	522	5744	7	942	. 196		
 1225	9	2785	230	12347	151	113	448	5297	15	828	1132		
 2029	82	2684	366	11879	1309	116	484	4772	204	835	1249		-
2941	130	. 2591	902	11985	1661	113	586	4202	314	876	1367		
3187	82	2704	3085	12827	1949	113	9011	4063	221	757	1289	27	-
2850	131	3003	5127	14350	1915	124	1604	4371	391	703	1136	-	
1574	238	3236	3437	15174	1752	145	1541	5059	628	677	1056		**
746	191	3218	932	15065	1176	153	1017	5723	464	873	1116		
618	46	3006	248	14252	. 661	134	550	5756	176	923	1206		
1483	7	2734	357	13847	1061	911	475	5093	. 13	936	1279		-
2453	45	2496	401	13402	1313	109	544	4413	120	890	1413		-
2864	199	2479	1056	13665	1946	106	585	3934	428	784	1151		
2179	223	2720	3332	14793	1935	117	1176	4048	493	686	1484		
1917	94	3071	5409	16294	1461	138	1715	4715	301	674	1330		
1045	157	3319	3560	17041	1285	149	1617	5446	438	764	1245		
493	101	3269	896	16766	859	151	1060	1665	321	893	1279		
_													•

Table 4.

Ξ

Table 5. Results of run 3. Only cod, capelin, herring and harp seals. Notations as in Table 3. Suitabilities for seals; capelin 1.00, cod 0.20, herring 1.00 other food 0.50.

Į	ᅦ	40368	42000	34733	33052	32122	31937	32076	32686	33300	הורגי		33948	34014	33947	33825				33485	33454	33462	33493
	C.HER	420	554	744	948	1119	1248	1347	1251	1105		1034	1105	1201	1307	1444		7661	1484	1328	1248	1287	1346
	CCOD	609	738	913	830	889	0.029	702	. 129	607	3	<u> </u>	760	772	746	680	3 8	35	537	269	0.29	177	203
	C,CAP	489	74	175	6	10	137	8	122	315		412	121	14	90	84	5 8	86	95	246	203	62	,
	SC.OTH	527	706	1138	1113	1088	1087	864	717	73.7	761	929	1118	1153	1117	1106	CD I	926	824	. 858	1019	1154	104
	SC.HER	29	121	. 11	62	15	81	21	; %	3 :	011	122	101	62	36	; ;	7	2	80	123	128	110	ì
	sc.cop	59	109	118	116	113	103	× ×	, Y	2 3	5	102	114	115	105	8	Š	83	79	. 91	108	117	ì
	SC.CAP	553	195	4	116	183	185	55	} ;	£1‡	343	180	20	72	142		ē	274	323	244	109	22	;
	CC.OTH	3642	5209	5484	5224	4833	4445	600	0704	3949	4343	5002	5434	\$175	4505	767	4093	3890	4088	4596	5254	5539	ì
	CC.HER	1627	1578	942	465	390	401	- Q	ò	116	1477	1394	828	198	è è	ş	455	492	1037	1548	1442	010	?
	CC.COD	76	132	85	201	<u> </u>	5 5	6 3	<u> </u>	3	116	135	136	2	3 5	ò	101	103	110	124	135	2 2	3
	CC.CAP	2503	174	348	£ \$	ş ç	7/4	† 10	1.384	1462	1290	204	363		797	785	288	986	626	837	1	2 2	12.
	SEALS	626068	627857	620340	02020	1055301	969010	616010	/55909	604382	604525	605827	885703	20000	003600	610404	611018	611119	610847	610398	600037	00000	9/06/00
	TOT.HER	8888	11236	00011	19171	8/071	11983	11/54	11711	12572	14031	14787	000	20/1	57661	13903	13460	13656	14745	30691	00001	10097	C7991
	B.HER	11	700	90/6		55	977	383	922	3107	2066	3351	910	<u> </u>	520	373	<u>\$</u>	1001	3370	6307	3466	3338	166
	goo	0170	6017	0567	2/30	2510	2396	2311	2279	2450	2729	2850		56/7	2485	2230	2077	2137	2406	2720	0017	5 987	2747
	MACAD	1000	7151	3 1	26	-	4	26	32	43	110	153	3 5	ň	4	м	35	42		2 2	F :	e G	82
	TAY CAD		3783	473	333	904	640	1249	2174	2124	1405	000		238	293	478	976	1458	377	C 171	169	[6] 	124
	⊢	#:	6661	1994	1995	9661	1997	8661	1999	2000	7001		7007	2003	2004	2002	2006	2000	3 5	2008	5009	2010	2011

WHAL	IM.CAP MA.CAP COD B.HER TOTHER WHALES CC.CAP CC.COD CC.HER CC.OTH WC.CAP WC.COD WC.HER WC.OTH C.CAP C.COD C.HER C.WHAL	C.COD	C.CAP	WC.OTH	WC.HER	WC.COD	WC.CAP	сс.отн	CC.HER	cc:cop	CC.CAP	WHALES	TOT.HER	B.HER	COD	MA.CAP	IM.CAP
, other	whates. Notation as in Table 3. Suitabilities for whates: capelin 1.00, cod 0.20, herring 1.00, other:	1 0.20, he	1.00, coc	: capelin	r whales	ollities fo	3. Suital	in Table	ation as	ales. Not	inke wh	ng and m	e 6. Results run 4. Only cod, capelin, herring and minke 1 0.10	od, capel	. Only e	ilts run 4	e 6. Resu 0.10

Suitabilit	n as in Table 3. Suitabilit	whales. Notation as in Table 3. Suitabilit P CC.COD CC.HER CC.OTH WC.CAP WC	ing and minke whales. Notation as in Table 3. Suitabilit whates ccap ccod ccher ccoth wecap we	able 6. Results run 4. Only cod, capelin, herring and minke whales. Notation as in Table 3. Suitabilite od 0.10 R M.CAP MA.CAP COD B.HER TOT.HER WHALES CC.CAP CC.COD CC.HER CC.OTH WC.CAP WC	ies. Notation as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.20, herring 1.00, other	CC.COD CC.HER CC.OTH WC.CAP WC.COD WC.HER WC.OTH C.CAP C.COD C.HER C.WHAL
l, capelin, herring and minke whales. Notatio	l, capelin, herring and minke v	l, capelin, herr		6. Results ru .10	n 4. Only cod	AP COD
n 4. Only cod, capelin, herring and minke whales. Notatio	n 4. Only cod, capelin, herring and minke v	n 4. Only cod, capelin, herr	n 4. Only coo		6. Results ru	IM.CAP MA.CA

<u> </u>	1	

- 29 -

355

Ξ

193 192

דרדז

85164

97 121

711 2579

2374 2745

1997 1998 1999 2000 2001

4856

8 1 2 8 2 6

8 8

2491

 2496 2491

875 927 1018

682 629 661 803 925 937

84 8

4 1

228 219 219 161 104 85 85

> 919

712 603 550

8 <u>5</u>

107 145 174 169 104 84

100 91 93 134 202 202 203

821 429 361

133 125 109 87

2614 589 128 190 274 782

2004 2005 2006

3153 2479 2476 2473

\$

9% 1018

151 89

春 6 8 2

787 423

97

1967

128

\$6

£ £

Table 7. Results of run 5. No whale catch. Notation as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.20, herring 1.00, other food 0.10. Suitabilities for seals: capelin 1.00, cod 0.20, herring 1.00, other food 0.50.

96 6661	MA. IM.CAP CAP	r cop	B.HER	TOI.	WHALES		SEALS CC.CAP	; 6	HER	ОТН	CAP	COD	HER	OTH S	SC.CAP SC.COD SC.HER SC.OTH C.CAP	c.cop s	C.HER SC	COTH C		C.COD	C.HER	WHAL	C.SEAL
	3661 1493	33 2649	3745	8531	83520	626068	2439	25	1598	3640	148	70	227	139	540	61	. 19	544	489	\$09	418	213	40368
1994	474 59	9 2715	3178	10511	85328	627857	710	120	1422	4989	38	Ξ	264	217	161	103	118	923	75	202	545	237	42000
1995 4	450 58	8 2393	692	11056	87451	628240	450	137	781	5018	19	148	215	296	43	901	105	1155	170	833	719	0	34733
9661	656 1	2077	96	01601′	89676	623501	569	102	354	4467	69	172	117	365	175	86	47	1072	en	715	668	0	33052
1997	1085 6	1906	104	10717	92745	868919	609	80	283	3953	106	169	88	383	256	90	80	1022	17	544	1055	0	32122
1998 23	2390 91	1870	239	10838	95685	610019	1134	79	255	3510	144	148	96	367	299	78	7	972	210	497	1206	0	31937
1999 46	4616 70	2033	664	10296	98628	606357	2120	80	303	3173	233	2	133	264	530	58	0	999	183	521	1249	0	32076
2000 45	4951 80	0 2412	2387	10575	101589	604382	2697	85	649	3314	222	79	237	186	614	52	46	466	262	498	8011	0	32686
2001	4046 140	0 2786	3829	11198	104579	604525	2840	96	1073	3830	091	93	287	212	532	70	16	524	201	553	941	O	33300
2002	2292 254	4 2839	2376	11326	107604	605827	2264	110	1073	4483	105	132	288	273	425	68	102	634	694	189	841	0	33712
2003	1209 230	0 2508	486	10944	110674	607588	. 1484	901	629	4655	96	182	222	364	256	66	87	878	219	27.5	890	0	33948
2004	1876 42	2 2064	134	10395	113902	609236	11711	85	323	4075	134	202	140	429	264	92	33	954	187	735	974	0	34014
2005 37	3709 4	1821	139	10132	117257	610404	1580	69	270	3210	232	991	111	401	482	9	7	719	28	619	1093	0	33947
5006	6406 110	0 1887	237	9728	.120727	611018	2343	99	241	2740	391	117	76	286	809	48	7	563	258	522	11.72	0	33825
2007 84	8418 488	8 2383	650	8837	124306	611119	4014	73	281	2684	434	96	143	216	739	35	6	395	809	476	1109	0	33685
2008 69	6934 754	4 3071	1951	8708	127989	610847	5021	76	588	3324	370	93	252	186	728	42	36	367	1611	203	938	0	33562
2009 43	4391 306	6 3496	2766	8632	131770	610398	4920	113	974	4244	297	116	312	210	598	11	9/	451	959	54 2	763	0	33485
2010 28	2846 102	2 3215	1487	8287	135648	609937	2667	117	937	5317	146	213	314	347	448	1111	68	603	466	827	099	0	33454
2011 20	2059 190	0 2534	262	7816	139636	609578	1797	16	524	4755	160	253	216	462	339	501	89	789	57.1	616	269	0	33462
2012 30	3081 44	1881	105	7382	143742	609372	1592	. 67	284	3549	229	239	139	\$29	385	80	1.1	826	298	823	778	. 0	33493

Table 8. Results of run 6. No seal catch. Notations as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.20 herring 1.00 other food 0.10. Suitabilities for seals: capelin 1.00, cod 0.20, herring 1.00, other food 0.50.

الا	œ	2																		•
CSEAL	40368	42000	0	0	٥	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0
C. WHAL	213	237	2501	2491	2505	2508	2508	2505	2501	2496	2491	2488	2485	2483	2481	2479	2476	2473	2470	2467
C.HER	418	545	719	880	1056	1207	1251	1111	946	851	8	566	1121	1212	1162	88	828	735	784	870
C.COD	605	705	834	716	547	108	\$25	499	551	629	192	720	611	515	\$	489	119	96	824	728
C.CAP	489	75	170	3	12	203	167	239	459	649	482	111	<u>8</u> 2	233	\$92	810	456	400	329	Z
сотн	<u>\$4</u>	923	1186	1134	1121	1110	801	628	689	881	1270	1376	1113	876	758	758	196	1248	1769	1692
C.HER	29	118	101	6	6	6	=	23	911	34	119	51	13	5	<u>90</u>	92	143	162	136	4
c.cob s	19	103	109	3	66	86	92	65	8	111	134	127	76	80	\$9	, 98	150	171	175	139
SC.CAP SC.COB SC.HER SC.OTH C.CAP	240	161	43	184	275	327	909	718	632	495	260	307	\$09	763	585	296	748	555	292	502
WC. OTH S	139	217	285	341	347	324	233	157	176	220	280	319	262	223	2	139	174	232	296	317
WC. HER	227	264	210	112	82	80	117	201	239	232	178	Ξ	8	82	011	188	229	219	99	66
WC.	20	Ξ	143	162	155	132	35	<i>L</i> 9	μ	104	139	150	121	06	71	99	93	124	146	136
WC.	148	38	18	64	95	122	189	176	116	69	54	98	149	230	258	200	110	54	51	901
сс. у	3640	4989	5019	4475	3976	3555	3234	3372	3913	4542	4713	4124	3327	2948	2939	3620	4710	5114	4611	3544
CC. C	1598 36	1422 49	782 50	356 44	287 39		312 3;	673 3;	36	1110 4	678 4	334 4	283 3:	261 29	304 29	676 30	1129 4	3 9001	565 4	
						261														301
CC.	75	120	137	102	81	82	82	87	8	112	108	87	73	72	80	102	122	110	92	73
CC.CA	2439	710	451	570	607	1108	2032	2554	2562	1960	1178	974	1348	1942	3311	3843	2749	1518	937	1054
SEALS CC.CAP	626068	627857	628219	680482	698753	716661	735445	757031	781300	807276	834677	863172	892220	921940	952208	982998	1014491	1046894	1080400	1115146
WHALES	83520	85328	85024	84687	85037	85151	85164	85097	84964	84812	84639	84526	84439	84363	84289	84208	84119	84021	83921	83823
TOT. HER	8531	10511	11061	10919	10730	10861	10342	10697	11407	11603	11255	10714	10530	10201	9407	9503	9648	9467	9035	8614
B.HER	3745	3178	269	66	Ξ	250	689	2475	3966	2478	537	155	171	282	733	2230	3199	1807	362	161
COD	2649	27.15	2396	2085	1921	1886	2039	2404	2753	2790	2462	2045	1819	1867	2304	2876	3098	2843	1722	1774
1	1493	59	58		9	87	63	76	122	239	173	28	4	86	299	372	16	126	107	17
IM.CAP MA.CAP		474	51	647	1050	2275	4317	4474	3471	1721	168	1477	2741	4528	5711	4076	2520	1248	912	.1828
-	3661		451																	
YEAR	1993	1994	1995	1996	1661	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012

Table 9. Results of run 7. No marine mammal catch. Notation as in Table 3. Suitabilities for whates; capelin 1.00, cod 0.20, herring 1.00, other food 0.10. Suitabilities for seals: capelin 1.00, cod 0.20, herring 1.00, other food 0.50.

L C.SEAL	40368	42000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C. WHAL	213	237	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C.HER	418	545	719	899	1055	1206	1249	1108	941	841	890	972	1087	1159	1001	816	742	<u>\$</u>	219	756
C.COD	8	705	833	714	241	491	511	485	537	683	741	2	\$78	*	436	657	<u>\$</u> ;	159	121	80
C.CAP	489	75	170	3	11	201	165	244	479	299	518	126	21	257	21.9	1014	<u>%</u>	451	484	150
SC.OTH	544	923	1186	1136	1125	1114	161	919	119	863	1250	1341	1065	200	638	909	781	1601	1564	1516
SC.HER	19	118	107	49	œ	∞	0	22	113	132	115	45	2	=	13	26	122	145	115	56
C.COD	19	103	109	ᅙ	86	88	29	62	88	114	130	121	83	11	51	\$	126	178	172	125
SC.CAP SC.COD SC.HER SC.OTH C.CAP	540	161	43	184	273	326	609	731	646	514	281	343	650	826	1085	1108	816	685	435	658
WC. OTH	139	217	536	365	385	370	268	188	217	279	374	435	409	305	222	961	218	389	492	546
WC. HER	227	264	215	1117	88	96	133	238	290	292	226	141	113	16	144	255	316	319	221	134
wc.	70	Ξ	148	172	169	148	ᅙ	78	93	131	181	198	162	118	8	25	117	208	249	224
WC. CAP	148	38	61	69	105	142	230	220	154	86	79	132	228	376	429	365	288	137	136	234
CC. OTH	3640	4989	8108	4461	3942	3494	3151	3288	3811	4448	4593	3942	3116	2694	2644	3265	4192	5114	4513	3237
CC. HER	1598	1422	781	354	282	253	533	639	1057	1053	635	305	255	224	259	555	917	829	468	243
 COD	75	120	137	101	79	79	92	84	95	108	103		3 6	63	02	83	107	110	98	9
CC.CAP	2439	710	450	267	594	0601	2040	2588	2674	2060	1255	1060	1421	2094	3728	4707	4448	2303	1378	1391
SEALS CC.CAP	626068	627857	658519	680482	698753	716661	735445	757031	781300	807276	834677	863172	892220	921940	952208	982998	1014491	1046894	1080400	1115146
WHALES	83520	85328	87451	92963	92745	95685	98628	101589	104579	107604	110674	113902	117257	120727	124306	127989	131770	135648	139636	143742
TOT. HER	8531	10511	11054	10906	10713	10834	10292	10567	11170	11265	10852	10303	10000	9956	8657	8479	8331	7931	7418	1001
B.HER	3745	3178	692	95	103	237	662	2382	3812	2356	475	136	136	231	634	1898	2663	1416	·232	86
cop	2649	27.15	2390	5069	1889	1842	1994	2360	2713	2742	2390	1952	7171	1780	2274	2932	3281	2949	2250	1991
MA. CAP	1493	89	58		9	87	63	9/	134	246	188	31	4	114	373	288	208	124	2	31
IM.CAP	3661	474	450	142	1033	2296	4454	4680	3675	1878	1001	1690	3193	5573	7644	6186	3720	2092	1478	2853
YEAR IN	1993	1994	1995	9661	1997	8661	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	5000	2010	2011	2012

Table 10. Results of run 8. High suitability of cod for whale. Notations as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.40, herring 1.00, other food 0.50.

Г	ادر	T				<u> </u>						<u>۔۔۔۔</u>					<u></u>				
	C.SEAL	40368	42000	34733	33052	32122	31937	32076	32686	33300	33712	33948	34014	33947	33825	33685	33562	33485	33454	33462	33493
	C. WHAL	213	237	2501	2491	2505	2508	2508	2505	2501	2496	2491	2488	2485	2483	2481	2479	2476	2473	2470	2467
	C.CAP C.COD C.HER	418	546	725	911	1073	1231	1297	1169	1012	916	965	1056	1179	1295	1317	1200	104	943	970	1042
ļ	C.COD	693	989	793	099	484	435	470	480	<u>8</u>	712	814	992	288	467	420	455	617	827	933	817
		489	75	174	€	77	258	247	969	191	289	734	234	33	236	864	1122	1249	450	486	191
	SC.OTH	542	924	1160	1064	986	. 902	511	408	463	585	817	186	757	276	405	377	485	199	305	975
	SC.HER	1.9	118	106	20	01	01	12	41	83	103	8	43	=	12	15	4 4	92	105	98	37
	C.COD	89	85	<u>8</u>	68	6/	. 19	39	4	89	23	88	8	19	£	31	31	80	115	101	£
	SC.CAP SC.COD SC.HER SC.OTH	242	194	£3	185	288	356	655	289	576	455	298	236	453	298	731	712	555	386	237	254
	WC OTH S	121	181	239	287	784	564	148	1117	131	170	217	569	247	173	128	105	119	174	222	270
	WC. HER	214	249	193	103	79	11	111	181	219	213	161	66	85	82	90	176	213	509	155	86
	wc.	811	691	212	231	213	175	114	93	113	165	206	228	171	115	8	93	118	192	220	215
	κc.	137	34	15	29	66	2	240	206	141	78	8	47	143	246	267	217	147	¥	23	&
	CC.	3614	4828	4754	4123	3553	3083	2748	3023	3747	4552	4558	3966	2996	2545	2592	3282	4238	5447	4802	3636
	CC.	1593	1400	759	336	259	226	284	159	1156	1198	743	358	274	258	298	\$69	1271	1257	733	364
-	CO.	74	113	126	16	89	99	7.	7.5	75	901	26	08	62	28	89	93	901	91	68	69
		2434	710	446	572	694	1396	2904	3789	3730	2555	1699	995	1341	2095	3827	4891	4734	5003	1265	996
	WHALES SEALS CC.CAP	626068	627857	628240	623501	616898	616019	606357	604382	604525	605827	607588	609236	610404	611018	611119	610847	610398	609937	609578	609372
	ALES SI	83520 6	85328 6	85024 6	84687 6	85037 6	85151 6	85164 6	85097 6	84964 6	84812 6	84639 6	84526 6	84439 6	84363 6	84289 6	84208 6	84119 6	84021 6	83921 6	83823 6
	TOT.	6558	3 10621	11257	11163	11037	11260	10932	5 11508	2 12506	5 12885	12638	11975	12057	11594	11283	66911 9	12297	7 12253	11788	11112
	B.HER	3769	3243	742	115	143	30¢	813	2736	4352	2725	632	154	249	346	606	2616	3879	7277	517	170
	8	2596	2597	2228	1883	1718	1744	2065	2585	2992	2955	2514	1937	1649	1741	2300	3059	3508	3189	2466	1767
	MA.CAP	1494	8	8	-	1	132	105	392	318	244	289	37	٣	1117	579	663	645	123	172	33
	IM.CAP MA.CAP	3685	481	469	764	1385	3426	6374	6212	4594	2816	1360	1600	3264	6146	8065	6685	3270	1900	1102	1814
	YEAR	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	5006	2007	2008	5003	2010	2011	2012

Table 11. Results of run 9. High suitability of other food for whales. Notations as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.20, herring 1.00, other food 0.50.

L C.SEAL	40368	42000	34733	33052	32122	31937	32076	32686	33300	33712	33948	34014	33947	33825	33685	33562	33485	33454	33462	33493
C. t. WHAL	213	237	2501	2491	2505	2508	2508	2505	2501	2496	2491	2488	2485	2483	2481	2479	2476	2473	2470	2467
C.HER	£ .	545	721	903	1060	1211	1256	1117	953	861	616	1010	1136	1227	1179	1016	847	759	817	8
CCO	909	712	852	745	587	554	583	543	578	869	778	754	219	593	532	537	637	782	998	816
C.CAP	489	74	172	€1	16	201	168	500	414	630	428	101	16	225	823	£	456	431	401	120
SCOTH	240	919	1150	1073	1022	186	731	564	582	713	696	1011	796	685	579	\$24	603	721	362	954
SC.HER	19	118	901	49	01	10	12	23	88	107	35	\$	=	12	15	64	83	102	83	28
C.COD	8	105	110	<u>7</u>	16	98	69	8	92	돐	106	101	82	3	57	19	35	107	9	8
SC.CAP SC.COD SCHER SC.OTH C.CAP C.COD C.HER	543	193	43	168	249	283	472	554	479	358	179	208	412	205	583	286	458	351	18	268
WC. OTH S	202	287	361	434	1	411	340	240	250	289	329	408	383	327	71.7	217	249	295	364	398
WC HER	213	246	189	76	73	83	109	161	229	221	164	66	81	, £	104	181	219	207	146	8
WC.	SS	83	<u>\$</u>	118	113	101	78	89	63	78	103	113	95	78	89	8	74	8	108	801
WC. CAP	921	29	15	46	69	88	131	133	83	51	39	63	112	163	185	154	8	47	45	8/
CC. OTH	3642	5048	5145	4675	4224	3838	3506	3565	4065	4668	4933	4450	3694	3299	3247	3784	4702	2196	4966	4125
CC. HER	1600	1439	803	376	313	295	355	739	9811	1159	701	367	321	310	354	750	1208	1095	645	357
cc.	76	123	143	601	80	16	25	63	105	611	117	76	84	83	88	107	128	122	107	89
	2453	716	455	564	979	1102	1895	2319	2255	1787	1017	920	1372	1895	2914	3296	2512	1626	1125	1168
SEALS CC.CAP	626068	627857	628240	623501	868919	610019	606357	604382	604525	605827	607588	609236	610404	. 810119	611119	610847	610398	609937	875609	609372
WHALES S	83520 6	85328 6					85164 6	85097. 6		84812 6	84639 6	84526 6	84439 6	84363 6	84289 6	84208 6	84119 6	84021 6		83823 6
	835		85024	84687	85037	85151			84964										83921	
TOT. HER	8551	10552	11119	10983	10789	10924	10408	10781	11522	11748	11436	10893	10693	10373	9575	9749	10062	10041	3695	9211
B.HER	3763	3211	725	112	134	275	713	2514	4021	2530	576	171	204	309	756	2333	3434	1997	433	184
COD	2668	2768	2486	2212	2078	2042	2138	2444	2772	2847	2593	2245	2032	2030	2344	2832	3113	3011	2588	2140
MA. CAP	1494	89	28	-	90	%	\$	72	911	233	149	29	4	90	287	256	107	137	133	32
IM.CAP	3681	417	439	634	1042	2065	3790	3910	3081	1494	808	1383	2608	4043	4893	3791	2648	1510	066	1891
YEAR	1993	1994	1995	9661	1661	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	5005	2010	2011	2012

Table 12. Results of run 10. High suitabilities of herring for seals. Notations as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.20, herring 2.00, other food 0.50.

Г	C.SEAL	40368	42000	34733	33052	32122	31937	32076	32686	33300	33712	33948	34014	33947	33825	33685	33562	33485	33454	33462	
٠	3	213	237	2501	2491	2505	2508	2508	2505	2501	2496	2491	2488	2485	2483	2481	2479	2476	2473	2470	
:	C.HER	418	544	715	891	1046	1193	1224	1079	910	810	862	950	1065	1131	1055	886	7117	628		
	C.CAP C.COD	605	706	837	721	553	511	540	518	576	715	811	780	17.9	572	520	537	199	845	<u>\$</u>	
	C.CAP	489	75	170	6	82	219	195	269	206	989	929	202	53	246	774	1092	725	415	529	
	с.отн	523	893	1128	1042	1003	949	653	473	491	909	835	931	716	\$69	434	96	482	612	803	
	C.HER	6	145	129	69	41	13	91	73	123	128	110	SS	4	91	16	63	011	117	95	
	c.cop s	57	86	102	96	8	62	59	જ	29	87	83	94	- 69	52	42	8	83	108	501	
	SC.CAP SC.COD SC.HER SC.OTH	532	189	41	921	263	310	532	607	525	424	263	257	473	592	\$69	11/9	536	414	300	
l Ja	OTH S	140	712	286	340	345	321	226	153	168	211	17.1	309	282	202	157	131	152	223	275	
(HER	226	263	208	66	78	83	112	8	230	223	191	90	84	74	\$	691	211	198	136	
	COD:	70	Ξ	145	162	156	133	92	89	92	901	141	154	124	8	72	<i>L</i> 9	88	135	154	
•	CAP	148	39	<u>82</u>	99	66	129	661	981	131	2 4	55	8	091	253	274	223	149	73	88	
Ì	JE O	3642	2005	5037	4487	3991	3564	3235	3386	3919	4601	4797	4273	3422	2967	2922	3589	4678	5472	4899	
٤	HER	1595	1412	773	352	287	260	315	99	1087	1086	683	346	301	172	310	640	1055	958	260	
٤	; <u>6</u>	75	121	138	103	8	82	83	68	101	115	Ξ	16	9/	75	1 8	98	139	121	96	
	C.CAP	2443	716	456	296	650	1203	2215	2812	2956	2358	1577	1224	1649	2379	3855	4619	3950	2153	1673	
	SEALS CC.CAP	626068	627857	628240	623501	616898	610019	606357	604382	604525	605827	. 885109	609236	610404	611018	611119	610847	610398	609937	875609	
	WHALES	83520	85328	85024	84687	85037	85151	85164	85097	84964	84812	84639	84526	84439	84363	84289	84208	84119	84021	83921	
	WH	83.		85	8	85		85					8	84	8	84	84	8	8	8	
101	HER.	8502	10415	10918	10757	10555	10635	10038	10287	10859	10982	10628	10121	9785	9310	8412	8346	8340	8154	7790	
	B.HER	3722	3124	<i>LL</i> 9	76	103	238	99	2351	3759	2350	208	157	157	257	699	1993	2810	1560	307	
	COD	1651	2722	2406	2102	1946	1926	2099	2489	2876	2942	2632	2205	1961	2013	2458	3096	3450	3220	2648	
1 42	CAP	1497	99	58	_	9	95	75	84	136	246	237	43	4	26	54	979	163	<u>8</u>	175	
	į	3665	475	462	169	. 5511	2496	4740	5072	4154	2411	1270	1867	3595	5868	7297	5703	3664	2461	1766	
	YEAR IM.CAP	1993 3	1994	6661	9661	1 2661	1998 2	1999 4	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010	2011	
	YE	Ľ	5	=	<u> </u>	21	==	ĭ	.≍ .—	7	75	7	ಸ	ন	≈	ন	~	≈	ন	ন	

Table 13. Results of run 11. Low suitabilities of herring for cod. Notations as in Table 3. Suitabilities for whales: capelin 1.00, cod 0.20, herring 1.00, other food 0.50

YEAR	YEAR IM.CAP	MA.	COD	B.HER	TOT. HER	WHALES	SEALS CC.CAP	CC.CAP	CC.	CC. HER	CC. OTH	WC. CAP	WC. COD	WC. HER	WC OTH SO	SC.CAP SC.COD SCHER SC.OTH C.CAP	COD SC	HER SC	сотн С	1	C.COD	C.HER	C. WHAL	C.SEAL
193	3552	1465	2626	4331	9345	83520	626068	2494	80	1084	3816	144	89	233	138	536	19	69	546	488	409	423	213	40368
1994	431	57	2656	4396	12609	85328	627857	199	120	1041	5087	31	105	277	213	187	100	128	816	74	269	376	237	42000
1995	292	98	2350	1147	13831	85024	628240	379	135	655	4992	. 12	129	235	272	37	102	120	1147	991	821	790	2501	34733
1996	281	-	2018	131	13664	84687	623501	255	103	327	4527	31	161	136	353	98	86	71	1161	7	705	1005	2491	33052
1661	461	7	1834	181	13591	85037	616898	291	8	259	3996	55	157	107	365	146	92	15	1161	9	532	1172	2505	32122
1998	1301	47	1773	237	13196	85151	616019	584	82	231	3643	11	132	115	348	158	82	15	1152	107	473	1321	2508	31937
1999	2845	31	1884	951	14186	85164	606357	1335	8	240	3360	132	101	134	278	398	8	15	832	9/	480	1508	2508	32076
2000	2928	40	2215	3867	16167	85097	604382	11711	87	549	3533	127	58	246	170	488	29	69	632	121	453	1573	2505	32686
2001	2063	122	2561	1669	19012	84964	604525	1647	66	994	4080	99	71	280	192	\$	73	128	646	376	505	1438	2501	33300
2002	621	214	2661	5014	20883	84812	605827	1202	112	1101	4646	35	68	278	219	245	8	137	831	553	633	1375	2496	33712
2003	224	.9	2410	1410	21040	84639	607588	2 0	110	731	4900	16	118	241	265	80	66	123	6901	203	724	1430	2491	33948
2004	250	=	2011	. 370	19909	84526	609236	194	93	388	4440	1.1	143	178	326	5	96	81	1190	34	701	1488	2488	34014
2005	386	0	1696	288	18456	84439	610404	275	81	288	3728	39	136	146	347	126	82	37	1149	7	109	1498	2485	33947
2006	995	22	1582	317	17405	84363	611018	410	7.5	252	3330	20	117	138	335	153	72	30	1134	20	480	1516	2483	33825
2007	2223	62	1781	775	17545	84289	611119	1103	75	250	3222	124	16	143	281	328	62	21	916	131	393	1656	2481	33685
2008	2167	70	2180	3241	19348	84208	610847	1378	8	484	3696	110	%	240	189	425	2	. 59	721	74	383	1758	2479	33562
2009	1349	123	2553	6121	23187	84119	610398	1322	105	914	4319	53	72	283	661	340	62	123	737	352	468	1910	2476	33485
2010	462	120	2645	4644	24977	84021	609937	869	108	1019	4847	26	87	284	217	203	95	135	893	337	919	1707	2473	33454
2011	168	20	2379	1468	24673	83921	875609	356	103	715	4900	12	114	247	260	8	101	122	1102	154	731	2068	2470	33462
2012	146	7	1958	562	23089	83823	609372	126	8	431	4338	11	130	201	310	31	94	4	1204	22	721	2051	2467	33493
		-																						

Table 14. Extracts from Tables 3-13 (runs 1-11). Unit = million kg. Yearly average/value last year.

1	Consur	Consumption by whales	whales	Consu	Consumption by seals	seals	Const	Consumption by cod	y cod	i	Catch	
Kun	capelin	cod	herring	capelin	роэ	herring	capelin	poo	herring	capelin	poo	herring
1 Reference	122 109	114 144	160 99	392 310	82 87	55 26	1873 1309	97 80	695 · 344	349 178	664 840	933 875
2 Only cod, capelin and herring				٠			1326 582	128 132	996 592	274	824 °	1156 1338
3 Cod, capelin, herring and harp seals				200 41	99	74 66	783 124	118	893 509	138 2	698 803	1153
4 Cod, capelin, herring and minke whales	124 92	120 171	160 99				2189 1430	108 97	784 423	451 361	759 1018	973 982
5 No whale catch	186	145	195 139	423 · 385	78 80	51 17	2121 1592	92	644 284	399 298	650 823	903
6 No seal catch	117	112 136	162 99	498	107	72	1692 1054	95 73	673 301	298	632 728	931 870
7 No marine mammal catch	181 234	143 224	196 134	552 658	101 125	66 26	1950 1391	90	623 243	351 150	620 718	896 756
8 High suit. of cod for whates	125 80	163 215	151 98	422 254	74 83	58	2153 966	98 69	706 364	451 161	629 817	1015 1042
9 High suit. of other food for whales	87 78	87. 108	151 90	354 268	87 94	58 30	1605 1168	103	719 357	289 120	672 816	943
10 High suit. of herring for seals	130	114	153 86	408 358	79 85	72 35	2054 1603	98	664 320	377 252	675 873	879 775
11 Low suit. of herring for cod	59 11	107 130	207 201	224 31	83	79 84	853 126	% 08	598 431	166 22	586 721	1429 2051

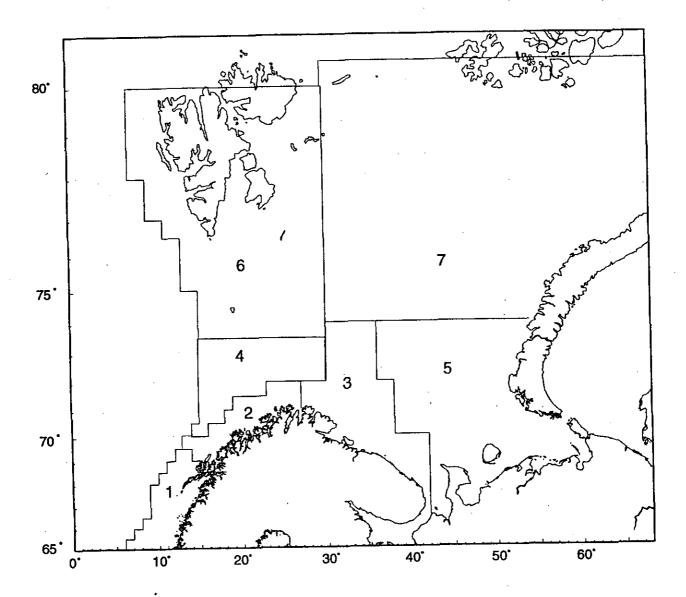


Figure 1. Area division in Multspec.

earnot 0001 ni eesmoiB

Run 1 (Reference run)

Figure 2 Development in biomass of immature capelin (Im.Cap), cod, herring in the Barents Sea

(B.her) and total herring stock (Tot.Her) in the reference run (run 1).

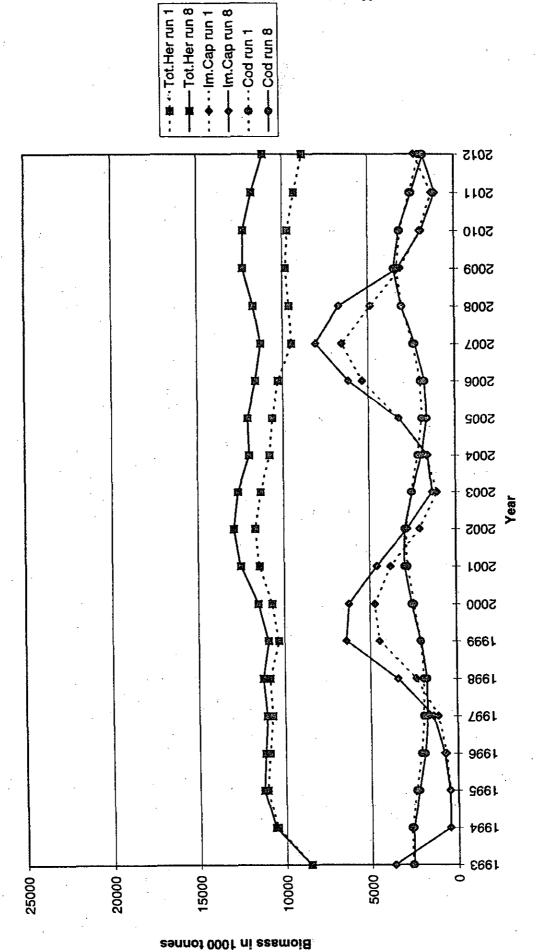
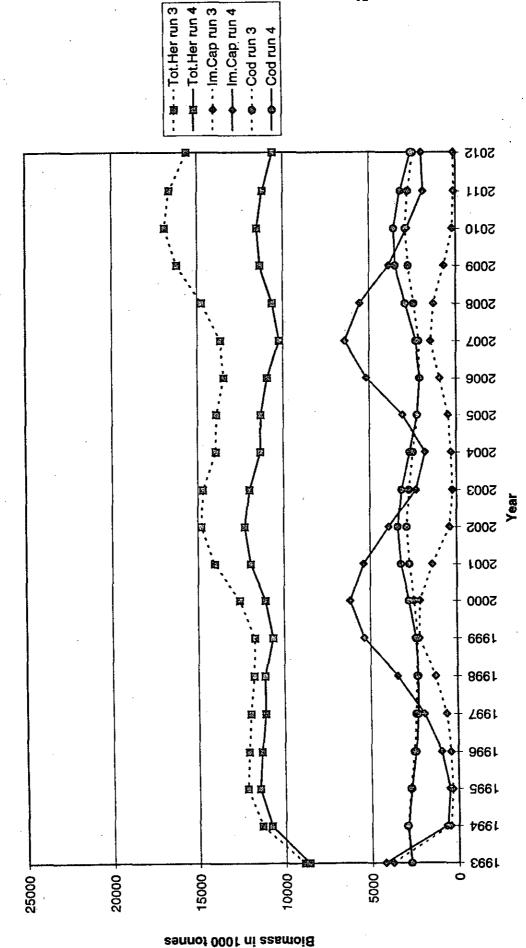
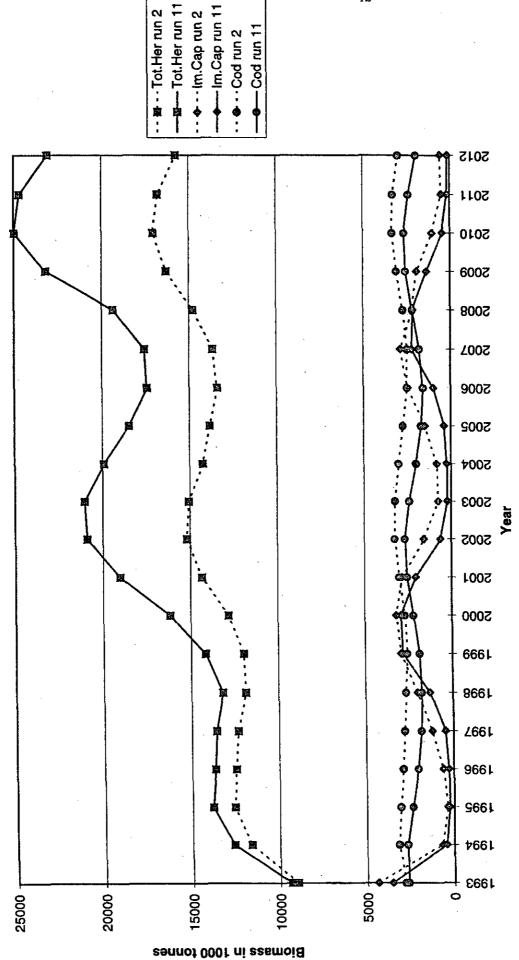



Figure 3. Development in biomass of immature capelin (Im.Cap), cod and herring (Tot.Her) for


run 1 (reference run) and run 8 (high suitability of cod for whales).

Comparison between runs 3 and 4

Figure 4. Development in biomass of immature capelin (Im.Cap), cod and herring (Tot.Her) for

run 3 (no minke whales) and run 4 (no harp seals).

Comparison between runs 2 and 11

Figure 5. Development in biomass of immature capelin (Im.Cap), cod and herring (Tot.Her) for run 2 (no marine mammals) and run 11 (low suitabilities of herring for cod).

1 Appendix

1.1 Parameter files

Parts of parameter files used by MULTSPEC and HERMOD are given below:

MULTSPEC parameters

Oceanographic parameters

Effective area size (square nautical miles)

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

14000.0 21000.0 50000.0 34000.0 90000.0 60000.0 90000.0

Food availability for plankton feeders. Upper line: grammes pr square meter

Area 1 2 3 4 5 6 7

Ppl1 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Ppl2 6.5 6.5 7.0 7.0 8.0 8.0 8.0

Ppl3 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Capelin parameters

Maturing

Age 2 3

Sex female male female male female male

Pcp1 0.60 0.60 0.60 0.60 0.60 0.60

Pcp2 13.65 14.04 13.65 14.04 13.65 14.04

Feeding level parameter

Pcp3 1.20 Feeding level half value relative food abundance (plankton biomass/plankton feeder biomass)

Growth parameters

Pcp4 0.285 0.305 Maximum length change (female/male)

Pcp5 -0.10 -0.10 Length dependence of length change

Pcp6 1.00 Temperature dependence of length change

Pcp7 1.90 Temperature offset of length change

Pcp8 0.0133 0.0142 Maximum weight change(female/male)

cp9 0.6700 0.6700 Weight dependence of weight change

Pcp10 0.00 Feeding level offset of weight change

Pcp11 1.00 Temperature dependence of weight change

Pcp12 1.90 Temperature offset of weight change

Larval production

Pcp13 12000000.0 Maximum recruitment

Pcp14 30.0 Value of spawning biomass giving half of maximum

recruitment

Larval death rates

Pcp15	0.00001	Larvae mortality induced by 0-group herring
Pcp16	0.00006	Larvae mortality induced by 1-group herring
Pcp17	0.00006	Larvae mortality induced by 2-group herring
Pcp18	0.00006	Larvae mortality induced by 3-group herring
Pcp19	0.00000	Larvae mortality induced by 0-group cod

Natural mortality

Age modf

0.00 0.00 Pcp20

Fishing mortality

Immature mature

0.00 0.10 Pcp21

Initializing parameters

Pcp30 0.0000024Initial condition factor(kg/cm) Initial weight/length exponent

Pcp31 3.30

Energy content

Pcp40 6.9 kJ/g

Herring parameters

Feeding level parameter

Phe3 0.20 Feeding level half value relative food abundance (plankton biomass/plankton feeder biomass)

Growth parameters

Phe4	0.23	Maximum length change
Phe5	-0.10	Length dependence of length change
Phe6	1.00	Temperature dependence of length change
Phe7	1.90	Temperature offset of length change
Phe8	0.011	Maximum weight change
Phe9	0.67	Weight dependence of weight change
Phe10	0.00	Feeding level offset of weight change
Phell	1.00	Temperature dependence of weight change
Phe12	1.90	Temperature offset of weight change

Natural mortality

Age modf

0.01 0.00 Phe20

Fishing mortality

Phe21 0.00

Initializing parameters

0.0000024 Initial condition factor(kg/cm) Phe30

Phe31 Initial weight/length exponent

Energy content

Phe40 7.1 kJ/g Cod parameters

Feeding level parameter

Age modf

Pcd3 0.0054 0.00 Feeding level half value(1000 tonnes/sq. nmi)

Growth parameters

0.860	Maximum length change
-0.300	Length dependence of length change
1.00	Temperature dependence of length change
1.90	Temperature offset of length change
0.018	Maximum weight change
0.480	Weight dependence of weight change
0.03	Feeding level offset of weight change
1.00	Temperature dependence of weight change
1.90	Temperature offset of weight change
	-0.300 1.00 1.90 0.018 0.480 0.03 1.00

Larvae production

Pcd13	6000.0	Maximum recruitment
Pcd14	200.0	Value of spawning biomass giving half of maximum

recruitment

Larval death rates

Pcd15	0.00	Larvae mortality induced by 0-group herring
Pcd16	0.00	Larvae mortality induced by 1-group herring
Pcd17	0.00	Larvae mortality induced by 2-group herring
Pcd18	0.00	Larvae mortality induced by 3-group herring
Pcd19	0.00	Larvae mortality induced by 0-group cod

Natural mortality

Age modf

Pcd20 0.012 0.00

Fishing mortality

Pcd21 0.089

Feeding parameters

Weight modf

Pcd22 1.21 0.802 Max feeding pr cod, kg pr month

Pcd23 -0.0005 0.007 0.007 0.007 0.007 0.007 0.007 0.007

. Other food, 1000 tonnes pr sqr nmi by area and age dependence

Initializing parameters

3

Pcd30 0.000009 Initial condition factor(kg/cm)
Pcd31 3.00 Initial weight/length exponent

Fishing pattern

Energy content

Pcd40 5.3 kJ/g

Suitability of capelin

Cod lengths 10.0 20.0 30.0 40.0 50.0

Capelin lengths Suitabilities

 5.0
 0.10
 0.50
 1.00
 1.00
 1.00

 10.0
 0.00
 0.10
 1.00
 1.00
 1.00

 15.0
 0.00
 0.00
 1.00
 1.00
 1.00

 20.0
 0.00
 0.00
 1.00
 1.00
 1.00

Suitability of herring

Cod lengths 12.0 25.0 40.0 55.0 70.0

 5.0
 0.00
 0.20
 0.20
 0.20
 0.20

 15.0
 0.00
 0.00
 0.20
 0.20
 0.20

 25.0
 0.00
 0.00
 0.00
 0.20
 0.20

 35.0
 0.00
 0.00
 0.00
 0.00
 0.00
 0.20

Suitability of cod

Cod lengths 15.0 30.0 40.0 50.0 70.0

Cod lengths (prey) Suitabilities

 5.0
 0.00
 0.05
 0.15
 0.25
 0.25

 15.0
 0.00
 0.00
 0.08
 0.25
 0.25

 25.0
 0.00
 0.00
 0.00
 0.13
 0.25

 40.0
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

Harp seal parameters

pha_mort0 0.025 instantaneous natural mortality pr month, age = 0 pha_mort 0.0083 instantaneous natural mortality pr month, age > 0 pha_mort1 0.3 high mortality in areas 1 & 2 during invations pha_catch0 21.5 % default catch, age = 0 pha_catch 1.8 % default catch, age > 0 pha_ereq 1.985 1.985 1.985 1.985 1.985 1.985 9.425 9.425 9.425 1.985 1.985 1.985 * energy requirement, W/kg pha_repro 0 0 0 0 0 0.0188 0.0846 0.1504 0.3478 0.564 0.6768 0.8742 0.94 0.94 0.94 0.94 0.94 * reproductivity pha_eoth 5.0 energy content of other food, kJ/g pha_scap 1.0 suitability of capelin as prey pha_sher 1.0 suitability of herring as prey pha_spol 0.2 suitability of polar cod as prey pha_scod 0.2 suitability of cod as prey pha_soth 0.5 suitability of other food pha_dprey 0.08 prey energy density required, TJ/sq.naut.mile pha_flev 0.95 feeding level at normal growth pha_equiv 50 energy/weight, kJ/g

Minke .whale parameters.

pmi_scap 1.0	suitability of capelin as prey
pmi_sher 1.0	suitability of herring as prey
pmi_spol 0.2	suitability of polar cod as prey
pmi_scod 0.2	suitability of cod as prey
pmi_soth 0.1	suitability of other food
pmi_dprey 0.01	prey energy density required, TJ/sq.naut.mile
pmi_flev 0.95	feeding level at normal growth
pmi_equiv 50	energy/weight, kJ/g

Hermod parameters

2.2	{ matchange	Determines steepness of maturation curve }
31.2	{ matlm50	Length where 50% are maturation }
8.0	{ maxrecruitment	Maximum recruitment }
100.0	{ maxmaxrecruit	ment Maximum of maximum recruitment }
0.5	{ recruitpar1	Recruitment parameter }
2.5	{ recruitpar2	Recruitment parameter }