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SUMMARY 

An effort is made to quantify some of the major sources of uncertainty associated with 
estimates of harp seal prey consumption. Part I focuses on the uncertainty in estimates of 
population size. A population dynamics model is use, the inputs for which are the annual catches 
at age and pregnancy rates. Two parameters, instantaneous mortality rate, in and s, representing 
hunting selection on the pups for years priof to the availability of pregnancy data, are estimated by 
nonlinear least squares yia available survey estimates of pup production. The uncertainty in 
estimates - of population size is estimated by Monte Carlo methods from the estimates of sampling 
error in the pregnancy rates and in the survey estimates of pup production, with the catches at age 
assumed to be known. It turns out that the uncertainty in the population estimates is dominated 
by the uncertainty in the survey estimates. 	- 

Introduction 

The harp seal population in the Northwest Atlantic flora groentandica is estimated to number 
4.8 million and to be increasing at about 5% per year (Shelton et al. 1995). There is considerable 
interest in what impact this might have on fish populations. Prey consumption depends not simply 
On the size of the population but also, inter Stitt, on the seasonal and spatial distribution of these 	• 
marine mammals, on their energy requirements, on the calorific content of the various prey species, 
and on the proportion of these species in the diet. There is uncertainty in our knowledge of all 
these components which, of course, carries through to uncertainty in any.estimate of prey 
consumption. Our information on these ingredients ranges from sample estimates, sometimes with 
conventional measures of precision (standard errors) to guesses based on unquantified observation. 
This paper represents an attempt at quantifing the effect of these various sources of uncertainty on 
the estimate of annual prey consumption, in particular, the amounts of Atlantic cod, Arctic cod 
and capelin in NAFO Divisions 2J3KL, and to determine which of the components' contributes 
most to this uncertainty. 

Part I will consider the accuracy of estimates of the size of the harp seal population through 
- estimates of pup production. In Part II (Shelton at al., this symposium), this will be linked to the 
uncertainty in what can be called the - diet component. 

A Population Dynamics Model 

Our starting point is the population dynamics model given in Cadigan and Shelton (1993) 
which is based on an earlier model presented by Roff and Bowen (1983). Specifically, the 
population number at age a in year t, n o , /  is given by 

n5,5 (ne-41-1 8-m/2  44-4,/-1)C m/2 , 0  < < A 

no, /  = E ni ,tfi : t 

where eai  is the number at age a caught in year t, fat  is the per capita pregnancy (fecundity) rate ' 
of age a parents in year t assuming a 1:4sex ratio and m is the instantaneous mortality rate, 
assumed to be constant, i.e. independent of t, etc. A plus age class, A, i.e. ages A and greater is 
included in the model so that 



where A - 1 is to be read as all ages A - 1 and greater. 

To accomodate numbers at age for years prior to the first year for which pregnancy:data.are 
available, some modifications to the model are required. Let t o  denote the first year for which 
pregnancy data are available. Further, assume that seals do not live longer than A„, years, thus 

obviating the need for a plus age class. Under the assumption that pup production prior to t o  is 

equal to a hunting selection parameter, s, times the pup production, where as with the mortality 

rate, m, s is taken to be constant, we have 
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To transform the above to a "statistical" model Cadigan and Shelton introduce the following: 

where 
ft  = Deo t 

	

[ 	 0 

0(A,„-1),1 

	

= 	
1 	01x(a„,-0 

[ 0(A,,,-1)x1 	0(.4,„-1)=(.4„,-1) 

A t  = (I(4+1)x(441) + FOP 

since here fo, g  = 0, all t. 

0Ax(A„,-A) B  [ I04t 1 xx A  

1 1x(4„,-4) 

ti) = [ll A t _k)BDI c;o _ t _ t  
14=0 

wit =in At-kiBri i-1 D1C%-i 
k=0 

r l =  

where 

and likewise c; but without the plus age class; thus e; is a An, x 1 vector. 

With time standardized so that to = 0, it then follows (for details see Cadigan and Shelton 

1993) that for pups 

no  = E[se 7 m()+1-0w)(1) - r'"(e h' -1 / 2)11)(1)] - Ee-m“-I+1/2>v`,(1) 
1= 1 

and for total population numbers 

n  = 	 c_ 	1-11/21v it  0 
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where w)(1) is the first., i.e. age zero, element in the vector w), etc. and (.) denotes the sum over 

all ages. Note that the , v) and w) areTunctions solely of quantities assumed to be known, 

namely catch numbers and pregnancy rates. Thus, the expression for n o ,, has the form 

sgi(m) - g 2 (m), where g i (m) and g 2 (m) involve m but not s. 

Let n o , t , be an estimate of n o , t , for those years, I t  in which a survey estimate of pup 

production is available, and let b? . 	an estimate of its variance. Cadigan and Shelton then 

assume that tio,t; 	N(no,t,,61) thus enabling s and m to be estimated by weighted non-linear 

least squares in a relatively straightforward manner. 

Survey Estimates of Pup Production 

Of the relatively few survey estimates of pup production that are available for the Northwest 

Atlantic harp seal, six have been chosen to be used for parameter estimation, namely the 
mark-recapture estimates of 1978-80 and 1983 (Bowen and Sergeant 1983, 1985; Roff and Bowen 

1986) and the aerial survey estimates of 1990 and 1994 (Stenson et al. 1993, 1995). The 
mark-recapture estimates were critically reviewed by Warren (1991), who also took into account 
Cooke et al.'s (1985) review of harp-seal population dynamics. What appear to be the more viable 

estimates are given in Table 1, along with their estimated standard errors. 

171 



The aerial surveys were accomplished by regularly spaced photographic and visual belt 
transects over the whelping patches. Because sampling was systematic, the sampling error was 
estimated from the serial differences. Additional components of variance were incorporated to take 
into account possible errors in the adjustment made for pups not on the ice at the time of the 
survey (either not yet born or already weaned) and, in the case of the photographigsurveys, 
corrections made to the counts because of reader bias. Details are given in Stenson et al. (1993, 
1995). The resulting estimates, with their estimated standard errors, are included in Table 1. 

Table 1. 
Survey Estimate of Pup Production 

Standard Errors in Brackets 
Year Method Estimate (S.E.) 
1978 Mk-Recapt 497000 (34000) 
1979 Mk-Recapt 478000 (35000) 
1980 Mk-Recapt 975000 (47000) 
1983 Mk-Recapt 534000 (33000) 
1990 Aerial Srvy 577900 (38800) 
1994 Aerial Srvy 702900 (63600) 

Pregnancy Rates 

Pregnancy-rate data (number of female seals examined, number of these pregnant) are 
available by age (3, 4, 5, 6, and 7+) for 1954, 1965-70, 1978-1982, 1985-1994 (see Sjare et al., this 
symposium). Sample sizes in the 1980's are small (usually less than 10 for combinations of year 
and age, and not much greater in the 1990's. Indeed, in the 1980's there are two years where one 
age class is not represented and some combinations of year and age when only one seal was 
examined. From 1965 to 1970 and in 1978, sample sizes are noticeably greater, although it should 
be noted than no sampling was undertaken from 1971 to 1977, nor in 1983 and 1984. 

In addition to the question of what to do for those years for which pregnancy data are missing, 
it would seem precarious to use the small-sample data as they stand. For example, with only one 
seal examined the pregnancy rate would be estimated as either 0 or 100%, neither of which is 
realistic. With sample sizes of 5 or less, which make up about half the data of the 1980's, there 
would seem to be an unacceptably high probability of having individual estimates appreciably 
different from the true rate, Our strategy has been, therefore, to determine, with certain provisos, 
the most parsimonious representation of pregnancy rates that is consistent with the data. 

For a given age class, let N1  be the number of seals examined in year i and let X, denote the 
number of these that are pregnant. Let p i  be the (unknown) pregnancy rate in year i. Then the 
likelihood of the observations is 

rr 	A11! 	y ( 
1I Xil(Ni — Xi)p 

k1 p, 
 

It is more convenient to work with the logarithm of the likelihood which, with the terms not 
involving the pi  omitted, is 

E pc; log (po + (N1 — Xi)logO — pi )] 

This is maximized by taking the pi  = 	which are the maximum likelihood estimates, m.l.e. 

The most parsimonious representation possible is for all the pi to be equal. Under this 
hypothesis, the (log) likelihood becomes 

log(p) E x; + log(1 — p) L(Y; — Xi) 

and the m.l.e. p = E i  xi / E i  Ni. Asymptotically, under the hypothesis, twice the negative of the 
difference between the log likelihoods would he distributed as x =  on, here 21 degrees of freedom, 
MI (Since there are 22 years and, under the hypothesis, one parameter is being estimated in the 
place of 22, i.e. the difference in the number of parameters being estimated is 21). It turns out 
that, for all age classes, the hypothesis of a single pregnancy rate has to be rejected: 

It would seem reasonable to suppose that pregnancy rates in successive years would be similar. 
The following strategy was therefore adopted. Begin by forming a 2 x 2 contingency table from 
the data of the first two years, namely 

X1 	— X1 
X2 /V2 — X2 
X N — X, 

wimp! X . . X i  + X 2 , eft:  The rOtIVI;IltiOnal x 2  statistic was calculated for ibis table and if the nun 
hypothesis (of common pregnancy rate) was accepted (at the 5% level) these data were pooled and 
a new 2 x 2 table formed by including the next year's data, namely 

— X 
X3 N3 — X3 

Nr 
N2 
N. 

N 
N3  



where X 	X. + X3, etc. This procedure was continued as long as the successive x 2  values 
remained non significant (5% level). When a significant )( 2  value was encountered, the sequence 
was terminated and a new sequence begun, starting with the year for which a (significant) change 
in pregnancy rate was encountered. (Since the )(2  test is asymptotic and may be unreliable for the 
smaller sample sizes, it was replaced by Fisher's (1935) exact test, which, with modern computing 
facilities, can be readily computed for relatively large sample sizes). 

The sequential )( 2  tests have been described as moving forward in time. While this seems 
logical, from a purely statistical viewpoint they might equally well be carried out moving backward 
in time from 1994. This was done and yielded essentially the same result. Sometimes in moving 
forward, a change in pregnancy rate would be indicated between 1987 and 1988, say, whereas, in 
moving backward, the change would be placed between 1987 and 1986. Such cases were resolved 
by computing the log likelihood for the two possibilities and the one with the (slightly) greater 
likelihood selected. 

One of the provisos was not to have single isolated years with rates different from the 
neighbouring years. There were only 3 such instances. Finally, on viewing the overall estimates, it 
was found that the estimates for age 5 would be more consistent with those for the other ages if 
initial groupings of 1978-82 and 1985-94 were taken as 1978-88 and 1989-94. Although this departs 
from the sequential procedure as described, the overall likelihood was again improved, albeit 
slightly. 

For ages 6 and 7+, the pregnancy rates appear to be the same prior to and after the gap in the 
data from 1971 to 1977. However, for the younger ages, there was a marked increase between 1970 
and 1978. For these years the rate was taken as the average of the rates before and after the break. 
With the amendment of the age 5 estimates, there was no indication of a change in rate between 
1982 and 1985. The resulting estimates are given in Table 2. 

Table 2 
Estimated Pregnancy Rates 

Age 
Year 3 4 5 6 7+ 

1954-1967 0.0172 0.1818 0.5435 0.7321 0.8648 • 
1968-1970 0.0172 0.1818 0.5435 0.8684 0.8648 
1971-1977 0.0570 0.3662 0.7162 0.8684 0.8648 
1978-1987 0.0968 0.5507 0.8043 0.8684 0.8648 

1988 0.0968 0.1467 0.8043 0.8684 0.8648 
1989 0.0615 0.1467 0.4048 0.8684 0.8648 

1990-1994 0.0615 0.1467 0.4048 0.6154 0.6341 

There is strong evidence for a decline in pregnancy rates in recent years, starting with the 
younger seals in the late 1980's. Whether the drop is as sharp as indicated in Table 2 is debatable, 
however various approticlit's at smoothing tlw transition resulted in inconsequential differences in 
the estimates of pup production or total population size. The lack of sensitivity to reasonable 
changes in the pregnancy rates will be demonstrated further in what follows. 

Catch Data 

Catch at age data from 1952 to 1993, compiled by Sjare and Stepson, are given in Shelton et 
al. (1995). Although there is the possibility of under-reporting, of incorrect aging and the 
misapportioning to individual years those captures reported by broader age classes, these data are, 
for the purpose of this study, taken at face value. 

Results Based on Asymptotic Properties 

Shelton et al. (1995) apply the model to these data to obtain, inter PIS, estimates of pup 
production and total population size in 1994. They consider two formulations, one in which the 
mortality rate of pupa is assumed to he the snipe at that for all other ages and one in which it is 
assumed to be three times that of the other ages. The differences in the estimates turn out to be 
inconsequential; the results presented below are based on the first-mentioned and more 
parsimonious assumption. 

The pup production is estimated as 714,525, slightly greater than the survey estimate, and the 
total population size as 4,759,984. These follow from estimates of s and in of 2.912801 and 
0.107364, respectively, i.e. a mortality rate of about 11% and an exploitation rate on pups of 

' 1/2.912801 es 34%. 

The asymptotic standard errors of the estimates of s and 771 are 0.084319 and 0.003188, 
respectively, with correlation 0.999677. High correlation between parameter estimates is common 
in growth models. 

Shelton et al. (1995) used the these estimates (and their asymptotic normality) to construct a 
Monte Carlo estimate of the 95% confidence interval for the population size. The limits were 
estimated as approximately 4.1 - 5.0 million. It will be noticed that, although symmetric in 
probability, these limits are asymmetric. The Monte Carlo generated distribution of population 
size (Fig. 6 in Shelton et al.) exhibits stong negative skewness. These results are confirmed by an 



independent simulation, based on 1000 Monte Carlo realizations, which yielded 95% limits of 
4,049,584 - 9,936,532 and the distribution presented in Fig. 1. (There is a slight difference between 
Fig. 1 and Fig. 6 of Shelton et al. (1995); the groupings in Fig. 1 are centred on the 0.05 millions, 
i.e. ... 4.55, 4.65, 4.75, ... whereas in Shelton et al. they are centred on the 0.1 millions, i.e. ... 4.5, 

Results Based on a Non-Asymptotic Alternative Approach 

With only six years of survey data from which to estimate the parameters, one may question 
the viability of the asymptotic variances (standard errors) of the estimates and their asymptotic 
normality. Monte Carlo simulation can, however, be moved back to an earlier stage in the 
estimation process. For example, we have the estimated standard errors for the survey estimates of 
pup production; indeed, it was assumed that 	 4). For the purpose of determining 
how much the estimates of s and in, and thence the estimate of pup production and population 
size, would vary if the survey estimates departed from the obtained values, survey estimates may 
be simulated as N(fio,,„ it random variables. 

A similar approach  may be applied to the pregnancy rates. The estimates are of the form X/N. 
Now arcsin V(X/N)  = 0, say, in radians, is approximately normally distributed with standard 
deviation .7821/N x 7/180 = se, say. Accordingly, simulated pregnancy rates, consistent with the 
data, may be constructed as sin 2 (0 + stir) where z is generated as a standard normal variable. 

Simulations were performed by (1) varying the survey estimates of pup production with the 
pregnancy rates unchanged, and (2) varying both survey estimates of pup production and 
Pregnancy rates. 

These simulations, particularly (2), require considerably greater computational effort than 
those using the asymptotic variances of the estimates of s and m. For this reason, in contrast to 
1000, only 100 realizations of each have been carried out. Nevertheless, the results clearly appear 
to differ from those based on the asymptotics. 

We first look at the realized distributions of the estimates of s and m. Summary statistics are 
given in Table 3. 

Parameter 
Table 3. 

Survey only 	Survey Sc Pregnancy. 
Mean s 2.917856 2.937980 
Mean m 0.107212 0.107532 
Std. Dev. s 0.159921 0.196255 
Std. Dev. m 0.006026 0.007291 
Correlation 0.996480 0.988190 

The means are in excellent agreement with the initial point estimates (2.923700 and 0.107786); the 
standard deviations, however, are approximately double the asymptotic estimates (0.084319 and • 
0.003188). That the standard deviations with both survey estimates and pregnancy rates varied 
should be greater than those with only the survey estimates varied is to be expected, as is the 
reduction in the correlation. What is, perhaps, surprising, is how small this increase is. Histograms 
of the generated s and en are given in Fig. 2. 

Summary statistics for the population estimates for 1994 are given in Table 4. 

Table 4. 
Parameter 	Survey only 	Survey and 

Pregnancy 
Mean n 	4,745,856 	4,751,650 
Std. Dev. n. 	297,794 	351,451 

• Corr. n.,s 	-0.800764 	-0.835915 
Corr. n., m ' 	-0.813937 	-0.850516 

The is, again, excellent agreement between the means and the point estimate (4,759,985) and, as 
would be expected, the standard deviation is somewhat greater when both pregnancy rates and 
survey estimates are varied. What is, perhaps, surprising, are the somewhat stronger (negative) 
correlations with s and m. Histograms of the generated is are given in Fig. 3. These give no 
suggestion of the negative skewness. The 95% confidence limits would be placed at approximately 
4.10 - 5.91 million with survey estimates varied, and 9.09 - 5.53 million with both survey estimates 
and pregnancy rates varied. 

Pup production estimates for 1994 were likewise simulated. These were done independently of 
the population numbers although they could have been done simultaneously. The summary 
statistics are given in 'Fable 5. 

The mean n o  are greater, but less than 1% greater, than the point estimate (714,525). The 
statistics for s and m should be the same as in Table 3 and again, given that these are based on 
only 100 Monte Carlo realizations, the differences are inconsquential. The histograms (Fig. 9) are 
comparable with those of Fig. 2. This, in effect, gives us 200 realizations for the distributions of s 
and m; the pooled histograms are given in Fig. 5. The one notable feature is the weaker (negative) 
correlations between no and s or m when both survey estimates and pregnancy rates are varied. 



Parameter 
Table 5. 

Survey only Survey and 
Pregnancy 

Mean n o  719,961 720,743 
Mean s 2.910435 2.896325 
Mean in 0.106853 0.106228 
Std. Dev. no  49,182 44,617 
Std. Dev. s 0.173829 0.175254 
Std. Dev. m 0.006428 0.007142 
Corr. no , s -0.827514 -0.674195 
Corr. no, m -0.848347 -0.687709 
Corr. s,m 0.994853 • 	0.985293 

no  based on 200 realizations. 

The histograms for the simulated pup production numbers are given in Fig. 6. These, as those 
for the total population (Fig. 3) appear reasonably symmetric. Approximate 95% confidence limits 
would be 633,000 - 819,000 when the survey estimates are varied, and 618,000 - 819,000 when both 
survey estimates and pregnancy rates are varied. 

Discussion 	• 

In the above above we have explored by simulation the uncertainty in the estimated pup 
production and total population. Since prey consumption will depend on the weight at age of a 
seal, numbers at age in the population will be required. These are, of course, also given by the 
population model. However, when the pregnancy rates are varied, each iteration requires a time 
consuming calculation to generate the set of non-linear equations from which s and m are 
estimated. This is followed by their actual estimation by weighted non-linear least squares, which, 
although not as time consuming as the generation of the set of equations, can take an appreciable 
amount of time. (The latter also applies when just the survey estimates of pup production are 
varied). The practicality of simulating population sizes in conjuction with simulation of all the 
other components necessary for examining consumption, [e.g. energy requirements, seasonal 
distribution, composition of diet,] is questionable. 

However, once s amd m are known, the calculation of numbers and age, given the pregnancy 
rates, for all years of the study, is very rapid. This raises the question of whether one can, instead 
of generating variable pregnancy rates and survey estimates of pup production, generate a and in 
directly in such a way as to be equivalent to their generation by varying pregnancy rates and 
survey estimates? From the simulations, we have the realized values of s and m from which their 
joint distribution can be studied. Their means, variances and covariance (correlation), based on 
100 realizations, have been presented. Recall that, although simulations were done separately for 
pup production and total population, for each of these the construction of s amd 171 is identical and 
we have, in effect, 200 realizations. 

It would be convenient if the s and in followed a bivariate normal distribution. To test this the 
Anderson-Darling statistic has been used. Since the mean and variance have to be estimated from 
the data, the modification, A', has been calculated; 10%, 5%, 2.5% and 1% critical values are 
0.631, 0.752, 0.873, 1.035 respectively (Stephens 1974, 1982). For s and m we obtain A' = 0.311 
and 0.330, respctively. Thus, with an estimated correlation of 0.9857, it would seem that the 
assumption of bivariate normality is justified. 

The above result was obtained when both pregnancy rates and survey estimates were varied. 
Since it was of interest to determine how much of the variation in pup production and total 
population estimates was due to varying the pregnancy rates and how much to varying the survey 
estimates, results of varing only the latter as well as both have been given. Varying the pregnancy 
rates in addition to the survey estimates results in only a small, possibly inconsequential, increase 
in the variance of the pup production and total population estimates, and this applies also to the 
estimates of s and rn. However, the modified Anderson-Darling statistics in the case of varying only 
the survey estimates turn out to be A' = 0.875 and 0.251 for the generated distributions of s and 
711, re sp ectively. The first value is significant at the 2.5% level whereas the second does not even 
approach significance. Given that the correlaton between the estimates of a and m is estimates as 
0.9955, this inference, along with the difference between the two values, is surprising and puzzling. 

To attempt to identify the cause of this paradoxical result, the realized values of s (as 
ordinate) were plotted against the realized values of m (as abscissa). This revealed a small but 
significant curvilinearity. The regression of a on in was calculated as 

s = 3.1892— 31.6322m + 270.6187m 2  

It turns out that, because of the curvilinearity, the disposition of the larger values of s and in is 
such that when projected onto the m-axis the distribution is reasonably symmetric (normal) but is 
positively skew when projected onto the s-axis. The same characteristic can be found with the 
results from varying both pregnancy rates and survey estimates, although the disposition of the 
larger values of s and m is then such as to make it less obvious. Nevertheless, the quadratic 
regression of s on in, 

s = 3.1219 — 30.3040m + 264.3880m 2  

is a significant improvement over the linear fit (F 1 , 1 07 = 123.4). (The relationship is, for practical 



purposes, the same as obtained when only the survey estimates were varied). Accordingly, we are 
forced to reject the assumption that the estimates of s and m follow a bivariate normal 
distribution. 

Notwithstanding, the normality assumption still seems viable for the estimates of m. Can the 
residuals of s about 3.1219 — 30.3040m+ 264.3880m2  be regarded as being normally distributed? 
We again use th Anderson-Darling statistic, here without modification since the mean of the. 
residuals is known to be zero. We obtain A 2  = .867 compared with a 10% ctitical value of 1.743 for 
this case (Stephens 1974). The normality assumption thus, appears to be viable. Accordingly, s 
and m may be simulated by first generating a value of in as normal with mean 0.106880 and 
standard deviation 0.007228, and then a value of s with mean 3.1219— 30.3040m+ 264.3880m 2  and 
standard deviation 0.004073. A plot of points so generated is, from the interpretative point of view, 
indistinguishable from a plot of values calculated via varying pregnancy rates and survey estimates. 

Nevertheless a problem still exists with regard to using values of s and en so generated in the 
calculation of numbers at age. Pregnancy rates are required and these should be consistent with 
the realization of s and m. The only way that this can be achieved is by generating pregnancy 
rates, fitting the nonlinear model (i.e. estimating s and en) and then using the same pregnancy 
rates to calculate the numbers at age, This, as noted, is computationally prohibitive. However, it 
has been demonstrated that level of uncertainty in the pregnancy rates contributes little additional 
uncertainty to the estimate of population size, given the uncertainty in the survey estimates of pup 
production. Accordingly, it would seem that it would not be in too much error if we were to 
generate s and m as above, but use fixed pregnancy rates in the calculation of numbers at age: A 
-similar problem would exist if uncertainty in the catch-at-age data were to be incorporated. 

Conclusions 

Two major findings arise from the above. 

1. The uncertainty in the model estimates of pup production and total population size stems 
-primarily from the uncertainty in the survey estimates of pup production. The variability in the 
estimated caused by varying the survey estimates is only marginally inflated by varying the 
pregnancy rates. This does not imply that pregnancy rates can be ignored; they are essential to 
the model and some reasonable level in the precision of their estimation must needs be maintained. 
Changes in pregnancy rates, such as those observed in the late 1980's, have a profound effect on 	• 
the population trajectory. Nevertheless, it would appear that the primary effort should.go in to 
reducing the sampling error associated with the survey estimates of pup production. 

2. Basing confidence intervals on the asymptotic properties of the estimates of s and m appears to 
be questionable. The Monte Carlo generated distribution of the population size, based on the 
asymptotic normality, and asymptotic variances and covariance of s and en, exhibits strong 
negative skewness. Moving the Monte Carlo simulation back the the survey estimates and 
pregnancy rates gives possibly symmetric (normal) distributions for the estimates of s and en, with 
means that correspond to their point estimates but standard deviations of the order of twice the 
asymptotic values (although their correlation remains of the order of 0.99). These in turn lead to 
reasonably symmetric distributions of the estimates of population size and, thus, roughly 
symmetric 95% confidence limits. While one should, perhaps, not be surprised that the asymptotic 
standard deviations be underestimates, it is not clear why this would translate into such a marked 
difference in the form of the distribution of population size. This, then, provides a subject for 
further research. 
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Fig. 1: Histogram of Monte Carlo generated population size 
based on the asymptotic normality and asymptotic variance-
covariance of the estimates of s and m (1000 realizations). 
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Fig. 2a: Histogram of Monte Carlo generated values of s 
obtained when generating total population size; N & P -
both survey estimates and pregnancy rates varied, N only 
- only survey estimates varied (100 realizations). 
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Fig. 2b: Histogram of Monte Carlo genera ted values of m 
obtained when generating total population size; N & P - 
both survey estimates and pregnancy rates varied, N only 
- only survey estimates varied (100 realizations). 
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Fig. 3: Histogram of Monte Carlo generated population size; 
N & P - both survey estimates and pregnancy rates varied, 
N only - only survey estimates varied (100 realizations). 
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Fig. 4a: Histogram of Monte Carlo generated values of s 
obtained when generating pup production; N & P - both 
survey estimates and pregnancy rates varied, N only -
only survey estimates varied (100 realizations). 
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Fig. 4b: Histogram of Monte Carlo generated values of m 
obtained when generating pup production; N & P - both 
survey estimates and pregnancy rates varied, N only -
only survey estimates varied (100 realizations). 
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Fig. 5a: Histogram of Monte Carlo generated values of s 
pooled from generating pup production and total population 
size; N & P - both survey estimates and pregnancy rates varied, 
N only - only survey estimates varied (200 realizations). 
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Fig. Sb: Histogram of Monte Carlo generated values of m 
pooled from generating pup production and total population 
size; N & P - both survey estimates and pregnancy rates varied, 
N only - only survey estimates varied (100 realizations). 
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Fig. 6: Histogram of Monte Carlo generated pup production; 
N & P - both survey estimates and pregnancy rates varied 
(200 realizations), N only - only survey estimates varied 
(100 realizations). 
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