NOT TO BE CITED WITHOUT PRIOR
REFERENCE TO THE AUTHOR(S)

Northwest Atlantic Fisheries Organization
Serial No. N2690 ‘ : ' NAFO SCR DOC. 96/17

SCIENTIFIC COUNCIL MEETING = JUNE 1996

Analysis of Catch-per-unit Effort pata for Scotlan Shelf
Silver Hake, 1977-95 :

by

Stephen J. Smith and Mark A. Showell :
Department of Fisheries and. Oceans, Marine Fish DlVlBlOl‘l
P. O. Box 1006, Dartmouth, Nova Scotia, Canada B2Y.4A2

Introduction

At the June 1995 meeting of the NAFO Scientific Council, 4 paper was presented (Myers._
Bowering & Power 1995) which explored potential problems in'the standardization technique
commonly applied to catch-per-unit effort (cpue) data. This technique, often referred 1o as
Standar after the APL implementation of the method (Anonymous' 1986), assumes a multi-
plicative model, applies a linear modei fit to log transformed data and then uses retransfor-
mation methods discussed in Gavaris (17980). Using data_._fro_in the Greenland Halibut fishery,
Myers et al. (1995) examined the distribution of residuals fron t.he'nu}lﬁipli('ative model to

~ test the assumption of homogeneity (constant variance) and explored to see if unaccounted
interaction effects in the model might be influencing the résults. Their results showed that
for Greenland Halibat. changes in the catch rale series were nol. artifacts related Lo the
analytical technique. |

In the assessment of the 4VAWX silver hake resource, a siimilar stan&érdized catch rate
based on a multiplicative model has heen used as a tuning index in calibration of the VPA
since 1990, Discussion at last year’s Scientific Council meeting raised the possibility that
the analysis of cateh and ;effort data presented in the 1995 4AVWX silver hake assessment
(Showell & Bourbonnais 1995} might be affected by problems similar those discussed for the
Greenland Lalibut. As a result, a rescarch recommendation was made as follows: “STACFIS .
expressed concern that fnr silver-hake in PDiv. AVWX the interaction effecis hetween month
dlltl year in the Hithl‘ hake cpue mode nm} be influencing the results and recommended
that these fffuts be investigated in future.” Tu this paper we investigate the fit of the’
multiplicative model Lo the cpue data for silver hake and evaliate each of the main factors

used in the medel. Attention is also paid to the distributional assumptions of the model.

Material and Methods

As was the case in the 1995 assessment {Showell & Bourbonnais 1995), estimates of catch
and effort were taken from Canadian observer data. Sel-by-sct observations were selecled

where silver hake was the main species canght, excluding tows where the traw! was damaged,




during the core period of the fishery (April through July). Data were aggregated by year,
country (Cuba, Russia}, month and area (4W, 4X). In the aggregated data set, ohservations
with less than 30 tons of catch were removed.

The standard application of the catch-rate (cpue) standardization metlod proceeds as
follows {Gavaris 1980, Gavaris 1988). First truncate the catch and effort data for some
lower limit of each. This catch and effort daia will have been aggregated by time period
(e.g.. monsh}, country, gear type, etc. Log transform the cpue data and fit a linear model
using the categorizations of country, month, area, year, etc. as factors and assuming th:‘it
the residuals have a norinal distribution. This form of the linear model is often referred to
as an ANOVA model {ANalysis Of VAriance, Cochran & Cox 1957, Hicks 1952). For each
factor, one level (c.g., a s_peéiﬁc month) is declared to be the sta@dard against which all
other levels are to be comparéd. ()perafic_mally, something like.this has to be done to ensure
that the design matrix is full rank and can be i:wérted to estimate the paramétcrs. Ollce
the model has been fitted, predicted values in the log scale are obtained for vach y.ear for
some preselected level of each factor. These predicted values are retrarlsforlﬁed according to
-the methods given in Gavaris (1980) to the origiral scale of measurenent (e.g.. tonnes per
hour) with associated standard errors. This so-called standardized cpue series is then used
for tuning sequential population analyses, etc.

In this paper.we will concentrate on the linear model fit aspect of the sta.ndardizatioﬁ
process. We use standard tools (see for example material in McCullagh & Nelder 1989)

associated with linear models such as residual plets and hypothesis testing to evaluate fit.

Results

The ANOVA-table for the standard application of the multiplicative model to silver ilake
data for the terms Country, Month and Year give significant F-statistics, while Area does
not seem to be significant term (Table la). However, if the order of entry of the t-err.ns
is changed by exchanging Year for Country, Area becomes significant (Table 1b). A'i.‘his
behaviour suggests that the differences accounted for by Area are really a function of the
differences between countries. Indeed the mean log(epue) for Cuba and Russia in Area 4W
and 4X are respectivety, 0.54 and 0.67, and 0.50 and 0.63. These means are very similar to
those for cach country when caleulated over both areas (Cuba — 0.33, Russia — (.66} and
implies that area differences may simply be due to how much each country fished in each
arca.

The recommendation from NAFO suggested that the Month-Year interaction term be
investigated and indeed such a term is significant. when added to the model (p < 0.0001).
However, before any interaciion terms can be blindly added to the model, two aspects need
o be investigated further. The residual p.]ot. from the muitiplicative model used in last, year's
assessment, (Table 6: Showell & Bourbonnais 1995} indicated that problems may exist in the
normality assumpti.ou or assumption of commeon variance or both. Secondly, the hehaviour
exhibited in Table 1 suggests that we have somne aiiasing between main eflects which néeds
further attention.

. The implications of 'tlle first prob]em is thal the resilts of the F tesls in Tablo 1 may
nut be reliable for judging the ﬁi‘glliﬁfallt'(? of any of the factors including interaction termns

;




added to the model. The residuals corresponding to the models in Table 1 are presented in
Fig. |. Note the larger scatter of points for the lower range of predicted values as well as the

trend in the local mean residuals above the zero line as indicated by the fitted Lowess line

{Cleveland & Devlin 1988). The pattern in the scatter of the residual points suggests that o

',the variance of the residuals is not constant over the range of predicted values.” Additionaliy,

there appears to be a trend towards underestimation by the model as the predicted values

increase, )

Constant variance is required for the norinal distribution and the log transform was ap-
plied to theoriginal data a;ssumixlg that this as:umption would be met. Assumptions concern-
ing constant variance can be investigated for the original data by looking for mean [variance
{or standard deviation) relationships over the factor groupings. Mean cpue and standard de-
viations for the original data and log transformed data for each year are presented in Fig. 2
"The pattern in Fig. 2a suggests a constant c_oeﬂlbient of variation which is characteristic of’
the gamma distribution {McCullagh & Nelder 1989). -1f the log transform to norrﬁa.lity had
worked for these data tlic expected pattern for Fig. 2b would have been a horizontal b;u_ld_
of points. Instead, the data seems to be more variable at the lower range of the means, the
same pattern noted for the residuals in Fig, 1. i ‘ '

If a constant coefficient of variation is appropriate for these data thes, we .rnay be better
served b_‘,; fitting a gamma distribution to the original dala instead of using the log trans-
form. The results of fitting such a gener_aliz‘ed linear model {McCullagh -& Nelder 1939) are
presented in-Table 2. A log link functio wos used to correspond to a'multiplica.tivc model.
The theory of generalized linear models refers to the measure of the discrepancy between
the observed and fitted values from a rilodr.l formed from the logarithm’ of the ratio of the .
respective likelihoods as deviance, The devmnro is defined with respect to he probab1llty
distribution used. Evaluation of wlhiether or not factors/covariates eApl&ln significant por-

tions of the total deviance is generally dune for nésted models using a x’-test. (pagc 119,

McCullagh & Nelder 1989). The y-test was used here to evaluate the fit of the lactors. The
results in Table 2a differ fromn those in Takle 1a by showing that ooly Morllll ond Yoar‘ wele
significant when entered in the standard way. However, when Year is ontered first Month .
becomes less significant (Table 2b).

" The difference between Table 2a and Table 2b brings us back to the second point to be
tnvestigated, That is, if the significance of a factor is dependenl upon its order of entry in
the model, indicaiing aliasing belween factors, then ow ean we determine which fac Lors fm'.
important? One very useful way of domg this is to use what has been called the all-subset .
model huilding approach {Lawless & Singhal 1978). This approach proceeds as follows. First
fit all of four of the factors to the data. Then compare the fits via change in deviance for all -
possible models with three of the factors with the full model. The three factor model with
the smallest change in deviance {and nou-significant x?) would be chosen'as a equivalent’

medel iu terms in explanatory power. Further, compare all possible models with two of thp

terms chosen for the three factor model against the full model in a similar manner. I° mally,
from the best two factor model test the fit for each of the two faclors to determine the best

one factor model.




The results of .applying the.above procedure to-the full model in. Table 2a-is presented
in Table 3. The:conclusion from this tahle is that a model with just Year in.it has asmuch
ﬂxp]au;itory power as that with all four far.torslinrludvdl. Month is a hest. a .marginal ef{ect.
Given that-we only have -a.onefacter model then interaction terms are ne:longer.an issue. |

The residuals from the:model cpue=1+Year are plotted:against the fitted values.trans-
formed to the constant-information scale‘for the gamma distribution (page 398, McCullagh
& Nelder 1989) in Fig. 3. ‘Residual plots for generalized linear models-can be interpretediin

:the similar manner to that for normal models when presented in this.way. Overall, there

do-net appear ‘to.be any;problems concerning'non-coﬁstant variance or Lendet').cy to over or
anderestimation for this model. ‘

The resultant predicted values for the original scale of meadsurement with limits indicated
for approximate 95 percent confidence intervals are presented in Fig. 4. A big advantage of
using the Gamma distribution:in a:gencralized lincar model is that no.transformation of the
observations is required to fit the.model and hence the:retransformation formulae given in

Gavaris (1980)are-unnecessary there.

Discussion

The usual application-of the multiplicative model to standardize catch rates representing
a number of different sources in a stock assessment generally concentrates on-fitting the
model and obtaining the standardized catch rate {or use in calibrating sequential population

analysis. ‘While there are exceptions (e.g., Sinclair & Smith 1987, Myerset al. 1995}, attention

is'rarely paid in assessment documents to investigating the actual fit of the model to the
data. The main purpose of the multiplicative model is to try to objectively c-ombine different
cpue series wiiich hopefully contain the same basic signal over time, As a general approach
to this problem there is no requirement to stick to using the log transform and- the normal
distribution. In fact, Firth {1988) f§u11c1 that the gamma distribution was a more robuét
choice when comparing the performance of gamma and lognormal multiplicative models,
The results of (.)uz‘ analysis showed that the lognormal was not a reasonable distribution
for our data. When the gamma distribution had been used and all-subset model fitting was
applied to remove the effect of order of entry of the covariates the only factor thal remained
in the model was Year. Interactions are no longer an issue because we only have one factor.
Owr application of Btling a nadtiplicative model was meant to mnimic, what may be
considered by default, standard procedure. That is, catch and effort data was aggregated
over the major categories of country/arca/month for each year. When data aggregated
in this way is then converted to catch rate we don’t have any associated measure of the
amount.of information {i.e., number Of’!’f;(‘.ofds) that contributed to each observation. If we
assume that the more catéh/eﬂ'ort records that‘:.a. catch rate is based on implies an increase in
precision then we are not using this infnrmati(.m when comparing catch rates across months,
countries or areas. Instead the catch rate {ur éach combination is treated equally. Therefore,
while there may be more significani factors in our data. in'cluding iluteraction terms, wé found

na evidence for them at the current level of aggregation of the data.
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Table 1. Comparison of analysis of variance resnlts when the order of entry of the model terms
are changed.  Log transformed cateh-per-unit effort data from silver hake on the Scotian Shelf,
1977-1995. ‘ i

Terms Df Sum of Squares  Mean Square F-Value p-level

a) Standard order of entry

COUNTRY i 1.288 1.2R8 9.136 0.003
AREA i 0.126 0.126 QRO 0.3-11
MONTH 3 .95 2318 16.446 <0.000
YEAR 18 An.402 3.078 21,839 <0.000
Residuals 299 ) 42.140 0.141)

1) Altered order of catry

YEAR 18 53.985 2.999 21.280 <0.000
AREA 1 0.903 0.903 6.410 0.012
MONTH 3 8.036 2,679 19.005 <(.000
COUNTRY | 0.846 0.846 6.0006 0.015

Residuals 299 42,140 0.141




Table 2. Comparison of analysis of deviance results when the order of entry of the mode] tPr'm.s are
changed. Catch-per-unit effort data from silver hake o the Scotian Shelf, 1977-1995. Generalized

linear mode! using a Gamma distribution with log link. The p-level refers to a y?2 statistic.

Terms Df Deviance p-level
a} Standard order of entry
COUNTRY 1 1.4407 0.235
AREA 1 0.109 0.741
MONTH 3 12,143 0.007
YEAR - 18 54.688 <0.000
b) Altered order of entry
YEAR ) 18 58.518 <0.000
AREA 1 0.906 0.341
MONTH 3 8.148 0.043
COUNTRY 1 0.775 0.379

Table 3. Analysis of deviance results for all-subset madel fitting for catch per unit effort data from
silver hake fishery, 1977-1995. Gamma model with log link used. The p-level refers to a x* statistic.

Terms Change in Deviance Df plevel
1+Country+Area+Month+ Year :
14+ Area+Month+Year -0.775 1 0.38.
l+Month+ Year -3.071 -2 0.22
1+Year -9.830 5 0.08
1 -58.518 24 <0.000
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Figure 1. Residuals plotted against predicted values from the standard multiplica-

tive model for Secotian Shell silver hake cpue data assuming lognormal distribution with
cpue=14Country+ Area+Mouth+Year, :
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Figure 2. a) Mean cpue by year. plotted against respective standard deviation, and.b) mean
log(cpue) by year plotted against respective standard deviation of cpue for Scotian Shelf silver

hake cpue data.
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Figure 3. Deviance residuals plotted against scaled predicted vilue for Scotian Shelf silver hake
cpue data. Model chosen was cpue=1+Year with Gamma distribution and log link.
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Figure 4. Predicted cpue from model cpue=1+Year assuming a Gamma distribution with log link.
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Upper and lower bounds represent approximate 95 percent confidence limits.
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