NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic



Fisheries Organization

Serial No. N2696

NAFO SCR DOC. 96/23

Ы

# SCIENTIFIC COUNCIL MEETING - JUNE 1996

Use of Habitat Information in Conducting Assessments of Juvenile Cod Abundance

by .

Robert S. Gregory Memorial University of Newfoundland, Ocean Sciences Centre St. John's, Newfoundland, Canada A1C 5S7

#### and

John T. Anderson and Edgar L. Dalley Science Branch, Newfoundland Region Department of Fisheries and Oceans, P. O. Box 5667 St. John's, Newfoundland, Canada AlC 5X1

# Abstract

We investigated the availability of suitable habitat for and the use of this habitat by juvenile Atlantic cod (Gadus morhua) in Placentia Bay, Newfoundland during 1995. Availability of habitat was established both by deep sea submersible (PISCES IV & SDL-1) and by a groundtruthed OTC VIEW integrated acoustic seabed classification system. Habitat use of age 1 to 4 year old juvenile cod was conducted in April 1995 using submersibles. We analysed a total of 40 hours of "onbottom" videotape, audiotape, and written records from 13 day dives and two night dives. Habitat types were characterised by depth, substrate particle size, bathymetric relief, and the presence or absence of macroalgae. We found the agreement between visual assessments of bottom type and those derived from echo sounder signals was good. Substrate selection by juvenile cod was age specific. Age 2 - 4 juvenile cod were found to be associated with areas of coarse substrate and high bathymetric relief (i.e., submarine cliffs) - 80% of individuals. In contrast, age 1 cod were found primarily in areas with a gravel substrate and low relief - 59% of individuals. Juvenile cod of neither age group exhibited selection for substrates with macroalgae cover. By integrating information on the substrate associations of juvenile cod with acoustically sampled bottom classification data over a broad area  $(15 \text{ nm}^2)$ , we were able to determine that the amount of suitable habitat for juvenile cod was a small portion of that available and the location of suitable habitat was age specific. Such information should refine our use of juvenile survey data and help to determine survey designs.

#### Introduction

The 1995 Newfoundland Regional Groundfish Stock Assessment Review (Shelton 1996) suggested significant initiatives toward establishing a cross survey index of pre-recruit abundance for Atlantic cod. The survey measures considered for incorporation into this index were the nearshore "Fleming" survey (Schneider et al. 1996), the demersal juvenile survey (Dalley and Anderson 1996), and the pelagic 0-group survey (Anderson and Dalley 1996). This cross survey approach was considered appropriate primarily because of the large variance inherent in data from each of these surveys and in the improved inference obtainable from multiple indicators of relative abundance.

Pelagic juvenile cod distribution can be considered to be primarily a function of the time, amount and location of spawning, water temperature, prevailing currents, and wind speed and direction. Active directional "input" by eggs and larvae can be assumed to be negligible. However, demersal cod distribution may be considered a function of location of settlement by pelagic stages and subsequent habitat selection after settling.

Although the degree to which juvenile pelagic cod may "select" a location to settle is not known, we do know a great deal about the degree of substrate selection among demersal stages. From laboratory work (Gotceitas and Brown 1993) and nearshore field studies (Tupper and Boutilier 1995), we know that 0-group cod actively select specific substrate types, and that these selections determine growth rate and survival. Once settled, demersal 0-group cod appear to select bottom habitats consisting of various combinations of particle size and macroalgae cover (Keats et al. 1989) in response to the presence or absence of actively hunting predators (Gotceitas et al. 1995), such as older age-classes of cod. Current research on the northeast coast, primarily inner Newman Sound in Bonavista Bay, is directed at addressing problems of habitat selection and use by 0-group cod in the nearshore environment (Anderson et al. 1996; Gotceitas et al. 1996).

- 2 -

, , , , , řŤ

Similar knowledge of the substrate selection by 1-group and older juvenile cod has been more difficult to obtain. In the main, this difficulty has been due to the greater depth range occupied by these individuals. However, the limited information which is available is consistent. Ultrasonic tagging studies show that 3-group cod in Conception Bay exhibit strong selection of specific bottom types which differs with the time of day (Clark and Green 1991). During the day, these cod are mobile in deeper water ( $\approx$ 30 m). At night, they return to rocky areas and remain relatively stationary. Recent work conducted in April 1995 using the submersibles PISCES IV and SDL-1, has revealed that age 1 to age 4 cod in Placentia Bay also exhibit strong associations with specific combinations of bathymetric relief and substrate particle sizes (Gregory and Anderson submitted). Their study also demonstrated that 1-group and older juvenile cod utilize substrate differently. Age 2 to age 4 cod were found in areas of high bathymetric relief (cliffs) and/or coarse substrate (rock and boulder). In contrast, age 1 individuals were found most abundantly over gravel substrates. Much of the above substrate combinations represent "untrawlable" and "acoustically challenging" bottom types.

It is clear that efforts to assess the relative abundance of demersal juvenile cod are hampered by poor knowledge of where trawlable bottom "intersects" with habitat which is suitable for juvenile cod. Much of the applied nature of this problem lies in our previous inability to identify bottom and habitat type as well as its use by cod, in advance of performing surveys. Despite this shortcoming, demersal juvenile surveys have shown distinct trends of abundance and distribution (Dalley and Anderson 1996), which facilitate potential estimates of the ranked relative strengths of year-classes between years. Improved knowledge of the habitat requirements of juvenile cod can only help to improve our estimates of their juvenile cod abundance.

The efficient identification of habitat has only become feasible in the past few years. The development of seabed classification techniques (QTC VIEW and RoxAnn) using ships' echo sounders have introduced a cost effective and time efficient way to acoustically "sample" and classify juvenile cod habitat. In this paper, we describe one such method, using the QTC VIEW.

We integrate habitat data obtained acoustically with detailed information on the substrate associations of 1-group and older juvenile cod obtained by using the submersibles. In an area of Placentia Bay, we then apply integrated results to "predict" the distribution of juvenile cod. We suggest that such approaches would be valuable toward focusing research effort and improving our ability to estimate of the abundances of demersal juvenile cod in synoptic surveys.

# Methods

Our study area was located near Long Island and Haystack Bank at the head of Placentia Bay, Newfoundland Canada (47° 37' N latitude & 54° 04' W longitude - Fig. 1). Cormorant Cove, is located off the eastern shore of Long Island in the above area, and is approximately 2.0 km north to south, and 1.5 km east-west. The cove has a maximum depth of 112 m.

## Submersible Survey

PISCES IV and SDL-1 are deep sea, free-diving submersibles capable of operating at depths of 2000 m and 610 m respectively. During the course of our study, dive operations were generally limited to depths shallower than 150 m. The two submersibles were maintained aboard the Canadian Navy submarine tender vessel, HMCS Cormorant. We conducted nine daylight dives and one nighttime dive during April 4 - 5 and April 22 - 25, 1995 and four daylight dives and one noghttime dive during October 30 - November 1, 1995.

We collected videotape records continuously while the submersibles were on the bottom. These records were used as the primary means of identifying substrate type. Observations of substrate, macroalgae cover and bathymetric relief were analysed from the videotape in 1.0 minute increments. Substrate was classified into six categories by particle size (diameter): mud/silt (<0.1 cm); sand/gravel (0.1-2.0 cm), pebble/cobble (2.0-25 cm), rock (25-100 cm), boulder (>100 cm), and bedrock. Macroalgae (primarily Irish moss and kelp) density was classified into broad categories by percentage of the bottom cover: none (<1%) sparse (1-5%), moderate (6-25%), dense (>25%). Bathymetric relief was classified as high (>10° slope) or low (<10° slope).

# OTC VIEW Seabed Classification

The QTC VIEW is an integrated acoustic signal processing system which analyses return

echos from a ship's echo sounder to describe the seabed. Each bottom return echo is digitally transformed and analyzed to provide 166 parameters describing signal shape and strength. These parameters are then reduced to three feature vectors (the first three principal components of a PCA). The signal processor then matches these three principal components (Q1, Q2 & Q3) to known "bottom signatures". These signatures are based on "calibration sites" with known bottom types, which have been identified a priori by the user (Fig. 2). The resulting output is a classification of the seabed based on known bottom types.

In April 1995, we visually sampled the seabed in the Placentia Bay study area for the purpose of establishing calibration sites. This was done using the submersibles. These sites were then used to calibrate the QTC VIEW to provide acoustic bottom classification signatures from the Simrad EQ100 echo sounder on board the CSS Shamook in October 1995.

Subsequent to collecting calibration data, we systematically surveyed the study area at a transect resolution of 0.1 nautical mile (maximum distance apart) in an east-west direction over a three day period in October 1995. Approximately 15 nm<sup>2</sup> of the seabed was acoustically sampled at this resolution, at intervals of 5 seconds at a survey speed of 4 knots. At 50 meters depth, the bottom "footprint" sampled by the echo sounder would have had an approximate radius of 4.4 m  $(60m^2)$ .

# Integrated Habitat and Distribution

In order to establish the utility of detailed knowledge of the use of habitat by juvenile cod. We conducted a preliminary analysis of the bottom classification data collected by the QTC VIEW, weighted by our observations of habitat selection made from the submersible. This was accomplished as a multiplicative model of habitat choice (actual observations of presence and absence of juvenile cod and the expected observations based on habitat availability). The result was a weighted habitat index representing the likelihood of juvenile cod being present in a particular habitat type.

## Results

## Identification of Seabed Type by Submersible

Our submersible survey established that the study area was heterogeneous with respect to bathymetric relief, substrate particle size, and presence of macroalgae (Fig. 3). Relief ranged from flat areas extending for several hundred meters to cliffs rising 50 m from the sea floor. Within the immediate vicinity of the dive areas (two areas in Cormorant Cove and two areas on Haystack Bank), the bottom substrate varied in composition from mud/silt (<0.1 cm diameter) to bedrock. Areas of high relief ran in several series of cliffs and ridges oriented roughly parallel to shore. We found much of the cobble, rock and boulder at the base and tops of these ridges and cliffs, which themselves consisted of bedrock. In much of the low relief areas, the substrate was dominated by gravel/sand deposits (0.1 - 2.0 cm diameter) with a fine layer of mud/silt. Substrate deeper than 200 m in this area was generally dominated by mud/silt. Macroalgae, including Irish moss (*Chondrus crispus*) and kelp (*Laminaria digitata* and *Agarum cribrosum*), was generally found at depths <40 m and in several locations approached 100% coverage of the bottom.

#### Classification of Seabed Type by OTC VIEW

The QTC VIEW trackplot of the study area (Fig. 4) matched the expectations from the submersible observations very well in the low particle size end (mud/silt - cobble). Coarser substrate types - rock, boulder and bedrock - were distinguishable from finer substrates, but not from one another using the calibration sites in our study area. In large part, this was due to the large degree of "contamination" among these substrate types throughout the study area. "Pure" substrate types at the large end of the particle size spectrum were not of sufficient area to be used as calibration sites. However, we have since found, that these signals can be post-processed to extract such information if required. For this study, such a procedure was not necessay. We also found that we could discriminate macroalgae "signatures" from the return echo signals. This degree of discrimination was not anticipated prior to our work in October.

### Abundance of Juvenile Cod

Individual juvenile cod ranging in age from 1-4 years old. Age 1 juveniles and age 2 - 4 juveniles were found throughout the study area (Fig. 5). Most juvenile cod were seen at depths greater than 60 m (Fig. 6).

Juvenile cod were not significantly associated with the presence of macroalgae (Fig. 7). On

the contrary, the data suggested that age 1 cod neither associated with, nor avoided, macroalgae. Age 2 - 4 juveniles were significantly less frequent in areas with moderate to dense macroalgae than would be expected by chance (Chi-square = 4.63; p<0.05; d.f.=1; n=50).

The presence of juvenile codwas significantly associated with specific combinations of substrate types and bathymetric relief (Fig. 8) and these associations were age specific (Chi-square p<0.001; d.f. = 4; n=83).

## Integrated Habitat and Distribution Data

The results of our weighted habitat use index (Fig. 9) clearly indicated two main aspects of juvenile cod distribution within our study area in Placentia Bay. First, of the habitat of all types available in the study area, only a small amount of it appears to be suitable for juvenile cod. Second, although age 1 and age 2 - 4 cod tend to occupy the same general areas within the study area, the areas where they are most predominant exhibit only a modest degree of spatial overlap.

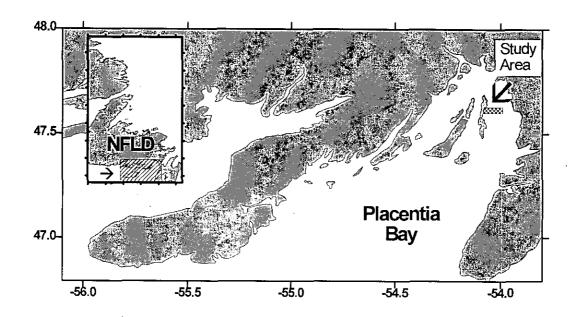
# Discussion

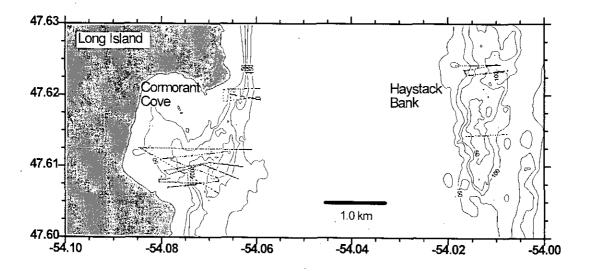
We observed juvenile cod throughout most of the range of depths traversed by the submersibles to a depth of 130 m, but occurred most abundantly at 60 - 120 m. In Placentia Bay, age 1 and age 2 - 4 cod co-occured laterally and vertically within our study area. The depth range of juvenile cod distribution was also consistent with previous observations on shallow offshore banks (Lough et al. 1989, Wigley & Serchuk 1992, Walsh et al. 1995). Observations of the distribution and substrate use of individual juvenile cod have generally been from shallow depths, less than 20 m (Keats et al. 1987, Keats 1990). However, juvenile cod (age 0 - 2) appear to occur regularly as deep as 100 m in coastal bays of Newfoundland and offshore onto the shelf (Dalley & Anderson submitted). By tracking acoustically tagged cod inshore, Svendsen (1995) observed that large age 1 juveniles (21 - 27 cm) inhabit depths ranging from 10 - 30 m inshore. In a tagging experiment, Pihl & Ulmestrand (1993) found that most age 1 cod were recaptured in less than 10 meters of water, close to shore. Nearshore studies (Methven & Bajdik 1994, Gotceitas & Gregory unpublished data) have shown that age 0+ cod are numerous in depths less than 5 m nearshore, but that abundance generally decreases from late summer to late fall. Few older individuals were found within 70 m of shore in either of these studies. These observations suggest that age 0+ cod move deeper as they grow. Age 1 individuals in spring 1995, would have been age 0+ individuals the previous fall. Therefore, our observations also support the contention that young cod move into deeper water over time.

Laboratory studies have shown that age 0 and 1 juvenile cod exhibit preferences for specific types of substrates based either on particle size or the presence of vegetation (Gotceitas & Brown 1993, Gotceitas et al. 1995, Fraser et al. in press). In these studies, it has also been shown the presence or absence of a predator (an older conspecific) can alter these preferences. Substrate preference is a potent force shaping the distributions and survival juvenile cod (Lough et al. 1989, Gotceitas & Brown 1993, Tupper & Boutilier 1995). Our results corroborated these findings. Older juveniles in our study were rarely present over gravel substrate, but were associated instead with areas of high bathymetric relief and coarser substrates (rock and boulder). In contrast, we observed age 1 cod predominantly over gravel substrates, similar to observations by Lough et al. (1989).

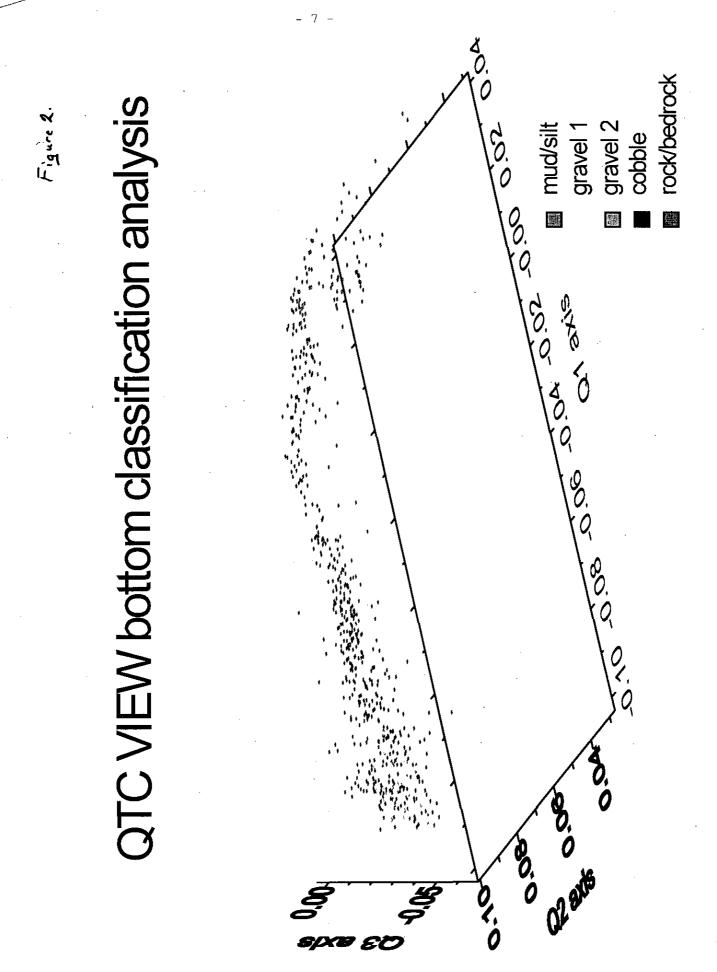
A priori, we had expected to see more juvenile cod in association with macroalgae cover than in its absence. However, our results demonstrated that macroalgae is neither avoided or preferred by age 1 - 4 juvenile cod. Keats et al. (1987) showed that fleshy macroalgae was a prefered habitat of juvenile cod (age 0 - 2) in shallow (<20 m) nearshore areas, during fall. In the laboratory, Gotceitas et al. (1995) showed that the presence of kelp, as well as cobble, increases the survival of age 0+ cod in the presence of an actively foraging predator. These authors also demonstrated that macroalgae cover is only preferred in the presence, but not in the absence of, such a predator. It is possible that there were either few predators in the study area or that those present were inactive during our studies. We observed only three adult cod during this study. All were inactive when encountered. The lack of a significant correlation between the presence of macroalgae and presence of juvenile cod suggests that juveniles associate with macroalgae only during the summer and fall. It is not clear from published accounts whether juvenile cod use macroalgae primarily for feeding or for predator avoidance. However, it does appear clear from our results that macroalgae is not used for cover from predators during April, in Placentia Bay. Our study area was heterogeneous with respect to substrate particle size and bathymetric relief. All substrate-relief combinations, with the exception of mud, were within ~200 m of each other. Therefore, there is little doubt that young and old juvenile cod actively selected the habitat where we observed them.

In this study, we demonstrated that age 1 - 4 juvenile cod exhibit age-specific associations with substrate. From their patterns of activity in relation to cover, these fish appeared likely to be

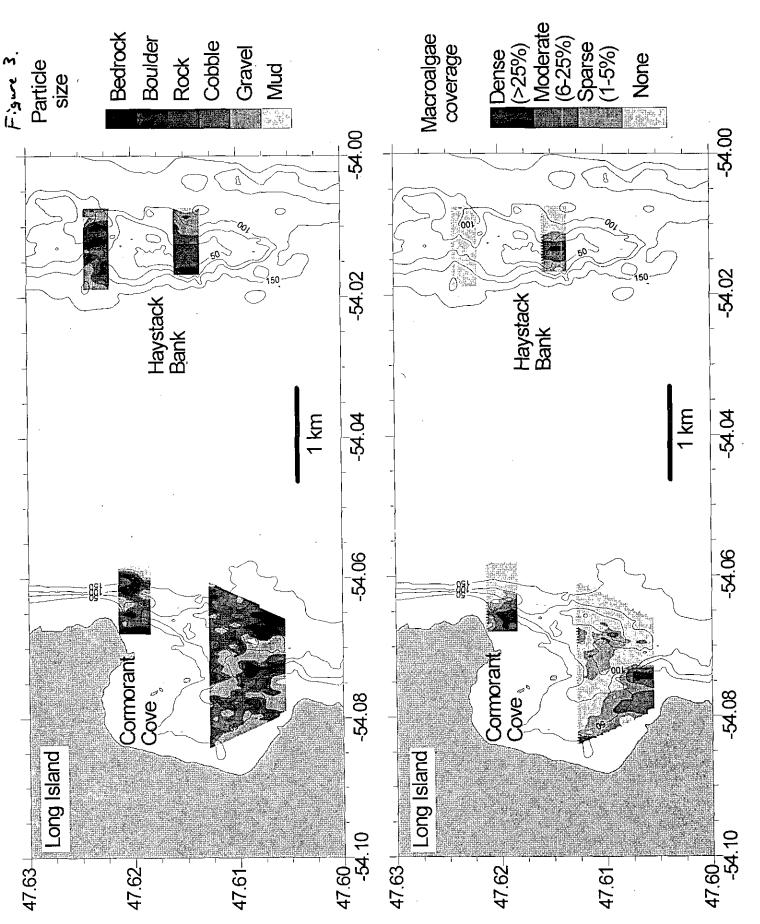

using specific substrate characteristics for protection from predators (Gregory and Anderson submitted). These activity patterns also appeared to change with age, suggesting that the behavioural mechanisms of predator avoidance for cod are also age-specific. Our observations were consistent with those of other researchers working on young Atlantic cod in nearshore and offshore waters as well as the laboratory, but represent the first accounts of changes in substrate selection and use of available cover by juvenile cod, with age. Our results suggest that substrate which is ideal for one age group of cod may be completely inappropriate for another.


These findings have significant ramifications on the design of research surveys for demersal juvenile cod and for the subsequent interpretation of collected data. Juvenile cod in Placentia Bay were associated within a specific range of habitat category combinations. Weighting these category combinations by the observations of individuals within them provide an index of relative importance of that particular combination to juvenile cod. Knowing this, we can make better informed decisions of how relative abundances of juvenile cod obtained from specific sites in trawl and acoustic sampling surveys should be interpreted. For example, high numbers of age 1 cod in a "prefered" habitat would be expected. The same numbers captured in areas "not prefered" would tell us something completely different - e.g., we would conclude that juvenile cod abundances were high in the general area, not necessarily just that site. Similar examples could be easily constructed infering conclusions in the opposite direction. The ramifications of such findings on guiding sampling effort in research surveys is even more readily apparent - we would know where to look in the first place.

#### References


- Anderson JT, Dalley EL (1995) Dynamics of spawning and survival of northern cod (NAFO 2J3KL) as measured by pelagic juvenile cod surveys during the period of stock collapse, 1991 -1994. DFO Atl Fish Res Doc 95/
- Anderson JT, Brown JA, Gregory RS, Gotceitas V (1996) Identification and use of critical inshore and nearshore habitats by juvenile cod in Newfoundland coastal waters. Memorial University of Newfoundland. Interim Report 1995/96 to Environmental Innovations Program, Environment Canada. Project No. MEM95-001.
- Clark DS, Green JM (1990) Activity and movement patterns of juvenile Atlantic cod, *Gadus morhua*, in Conception Bay, Newfoundland, as determined by sonic telemetry. Can J Zool 68:1434-1442
- Dalley EL, Anderson JT (1995) Distribution and abundance of demersal juvenile cod (*Gadus morhua*) in inshore and offshore areas of northeastern Newfoundland, the northeast Newfoundland Shelf and the northern Grand Banks. DFO Atl Fish Res Doc 95/
- Dalley EL, Anderson JT (Submitted) Age dependent distribution of demersal juvenile cod (*Gadus morhua*) in inshore/offshore northeast Newfoundland. Can. J. Fish. Aquat. Sci. Spec. Publ.
- Fraser S, Gotceitas V, Brown JA (In Press) Interactions between age-classes of Atlantic cod and their distribution among bottom substrates. Can J Fish Aquat Sci 53:000-000.
- Gotceitas V, Gregory RS, Fraser S (1996) Distribution of habitat types and fish in the nearshore environment of inner Newman Sound, Terra Nova National Park, Newfoundland, Canada. Memorial University of Newfoundland. 1995-96 Annual Progress Report to Terra Nova National Park, Project No. MEM95-001
- Gotceitas V, Brown JA (1993) Substrate selection by juvenile Atlantic cod (*Gadus morhua*): effects of predation risk. Oecologia 93:346-351
- Gotceitas V, Fraser S, Brown JA (1995) Habitat use by juvenile Atlantic cod (*Gadus morhua*) in the presence of an actively foraging and non-foraging predator. Mar Biol 123:421-430
- Gregory RS, Anderson JT (Submitted) Substrate selection and use of protective cover by juvenile Atlantic cod (*Gadus morhua*) in inshore waters of Newfoundland. Mar Ecol. Progr. Ser. 00:000-000
- Keats DW (1990) A nocturnal inshore movement of juvenile cod Gadus morhua L. in eastern Newfoundland. J Exp Mar Biol Ecol 139:167-173
- Keats DW, Steele DH, South GR (1987) The role of fleshy macroalgae in the ecology of juvenile cod (*Gadus morhua* L.) in inshore waters off eastern Newfoundland. Can J Zool 65:49-53
- Lough RG, Valentine PC, Potter DC, Auditore PJ, Bolz GR, Neilson JD, Perry RI (1989) Ecology and distribution of juvenile cod and haddock in relation to sediment type and bottom currents on eastern Georges Bank. Mar Ecol Progr Ser 56:1-12
- Methven DA, Bajdik C (1994) Temporal variation in size and abundance of juvenile Atlantic cod (Gadus morhua) at an inshore site off eastern Newfoundland. Can J Fish Aquat Sci 51:78-90
- Pihl L, Ulmestrand M (1993) Migration pattern of juvenile cod (Gadus morhua) on the Swedish west coast. ICES J mar Sci 50:63-70

- Schneider DC, Methven DA, Ings D (1995) Distribution and recruitment of demersal juvenile cod (0, 1, and 2 group) in the coastal zone, NAFO Divisions 3K and 3L. DFO Atl Fish Res Doc 95/
- Shelton PA (cd) (1996) Proceedings of the Newfoundland regional groundfish stock assessment review, April, May, September 1995.Can MS Rep Fish Aquat Sci No 2343
- Tupper M, Boutilier RG (1995b) Effects of habitat on settlement, growth, and postsettlement survival of Atlantic cod (*Gadus morhua*). Can J Fish Aquat Sci 52:1834-1841
- Walsh SJ, Brodic WB, Bishop CA, Murphy EF (1995) Fishing on juvenilc groundfish nurseries on the Grand Bank: a discussion of technical measures of conservation. In: Shackell NL, Willison JHM (eds) Marine protected areas and sustainable fisheries. Sci. Manag. Protected Areas Assoc., Wolfville, p 54-73
- Wigley SE, Serchuk FM (1992) Spatial and temporal distribution of juvenile Atlantic cod *Gadus* morhua in the Georges Bank - southern New England region. Fish Bull US 90:599-606



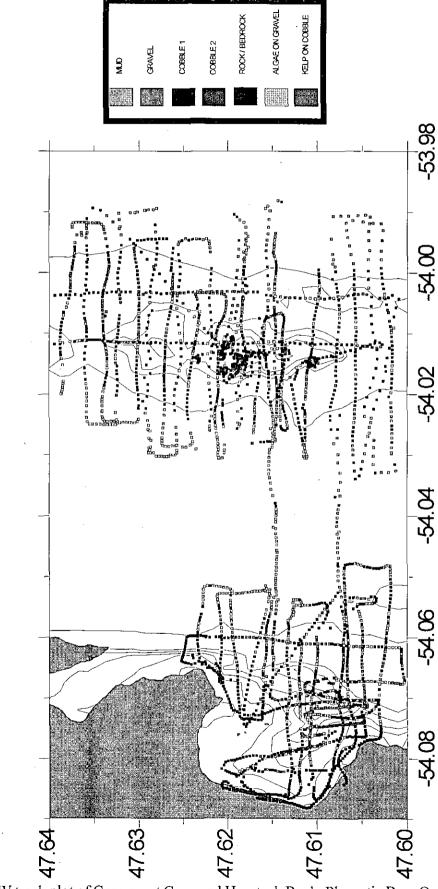



 A. Study area and B. submersible dive tracks, in Placentia Bay Newfoundland, 21 - 25 April 95 (bathymetry in meters).



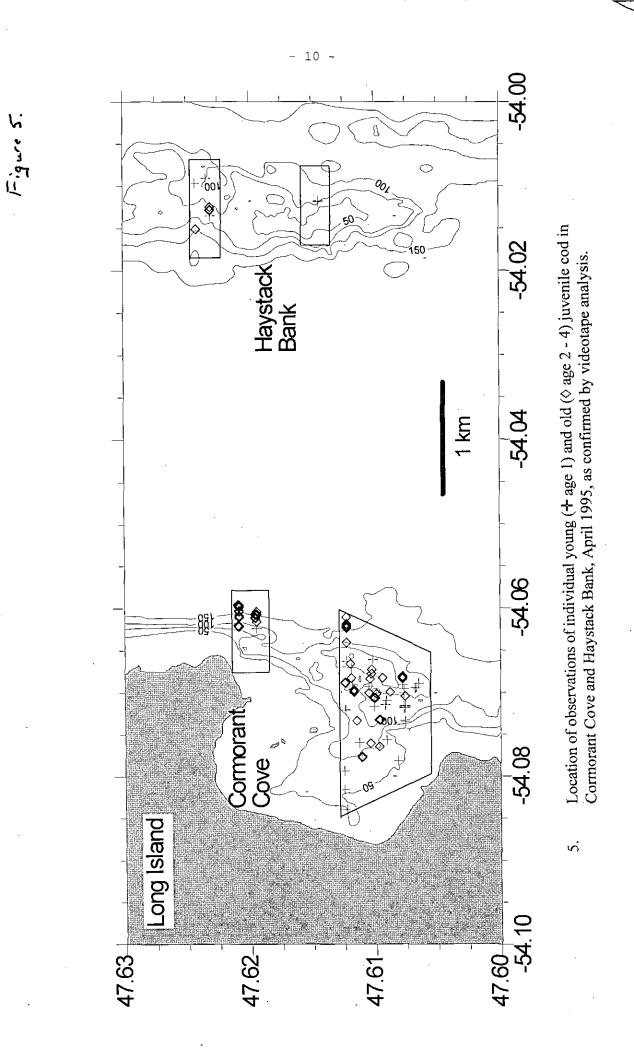
2. QTC VIEW signal cluster based on calibration sites in Placentia Bay with known bottom type validated by submersible observation taken in April and October 1995.

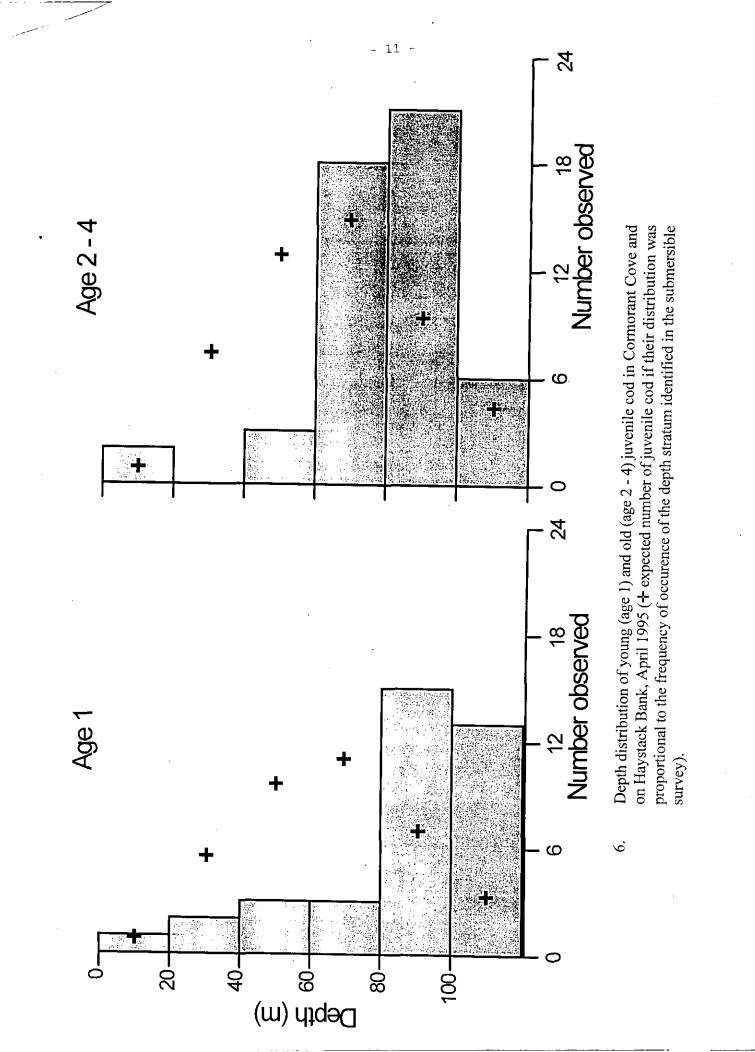



3. A. Substrate particle size and B. percentage of macroalgae coverage, within the immediate vicinity of the four dive areas, and bathymetry of the study area, April 1995.

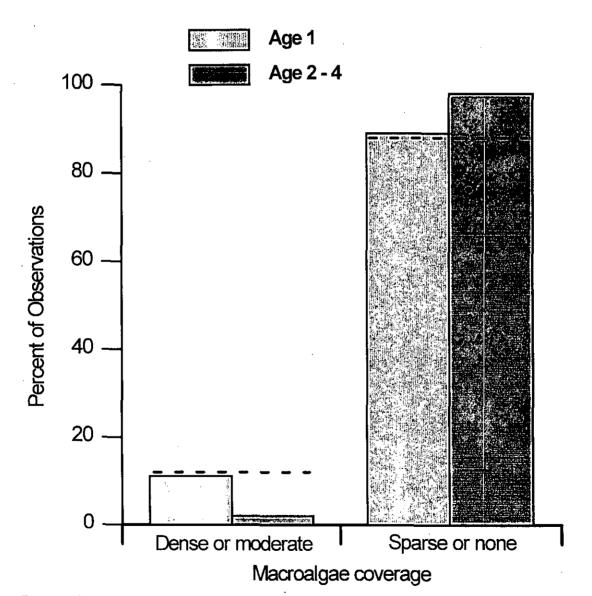
- 8 -



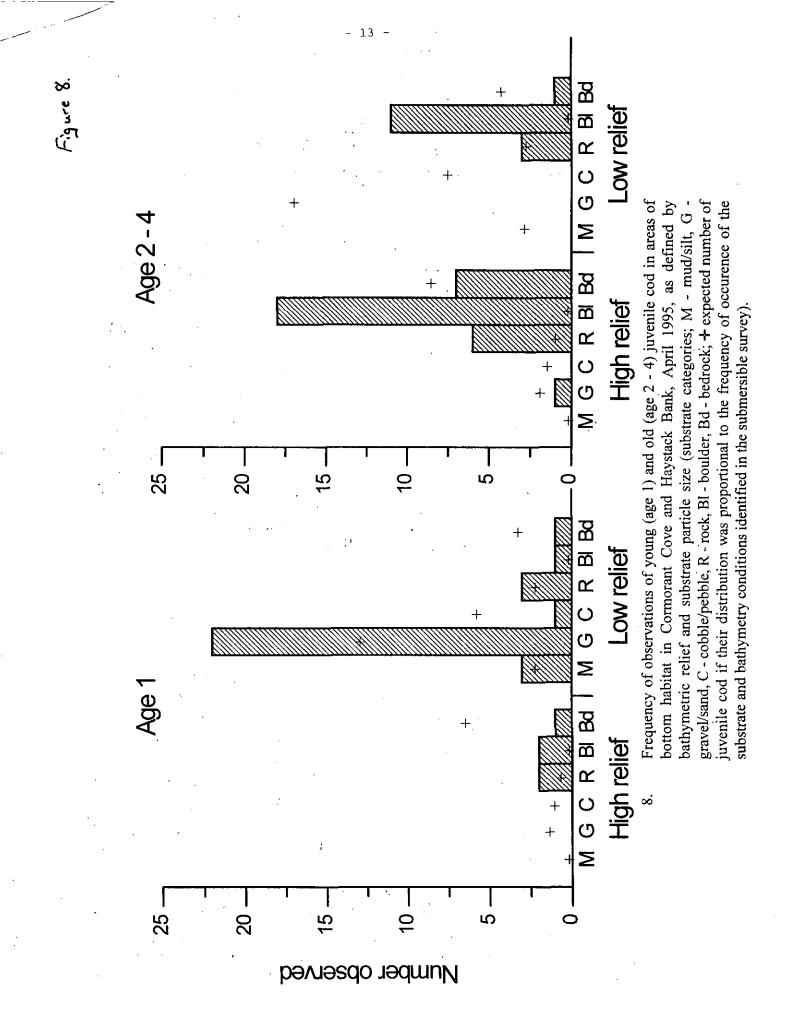

Long Island and Haystack Bank, Placentia Bay, QTC VIEW tracks, October 1995


4.



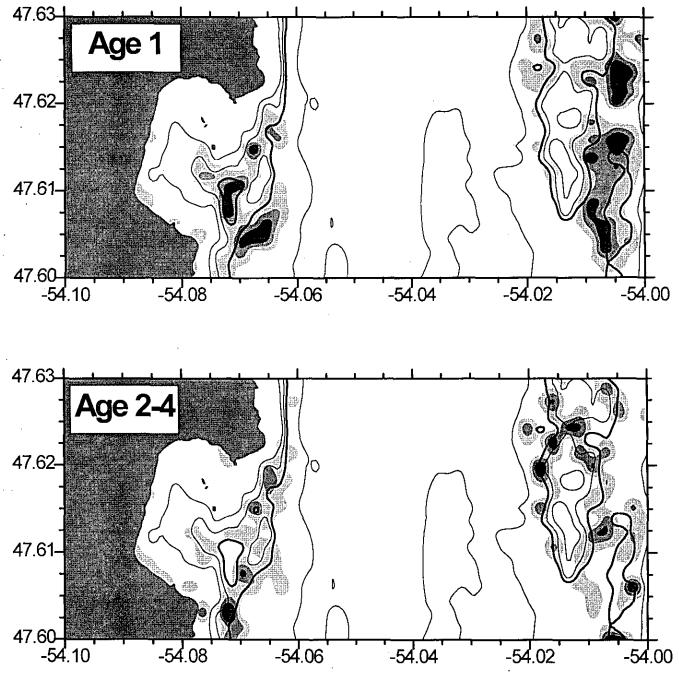

g

QTC VIEW track plot of Cormorant Cove and Haystack Bank, Placentia Bay, October 1995.








7. Percent frequency of occurrence of young (age 1) and old (age 2 - 4) juvenile cod in areas of sparse/none and moderate/dense bottom coverage of macroalgae (kelp, *Laminaria digitata* or *Agarum cribrosum*, and Irish moss, *Chondrus crispus*), Cormorant Cove and Haystack Bank, April 1995 (+ expected number of juvenile cod if their distribution was proportional to the frequency of occurrence of the algae coverage category identified in the submersible survey).



# Juvenile cod "spring" habitat, Placentia Bay

QTC habitat classification data weighted by behavioural observations



9. Distribution of suitable habitat for age 1 and age 2 - 4 juvenile cod in spring, based on QTC VIEW classification of habitat type weighted by observations of the habitat associations of juvenile cod made during submersible operations in Placentia Bay, April 1995.

- 14 -