NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2708

NAFO SCR Doc. 96/33 REVISED

SCIENTIFIC COUNCIL MEETING - JUNE 1996

Greenland Halibut Deepwater Fishery in Divisions 3L and 3N: an Analysis of Catch Rate Trends from Portuguese Trawlers, 1988-1995

by

A. M. Ávila de Melo and R. Alpoim

Instituto Portugues De InvestigaÇao Marítima Av. Brasilia 1400 Lisboa Portugal

Abstract

From the observed catch rates of monitored Portuguese trawlers two cpue series are derived for Greenland halibut deepwater fishery in the NAFO Regulatory Area. Both series start in 1988, prior to the large scale fishery beginning in 1990, one corresponding to the effective mesh size in use till April 1995, assumed to be smaller than 130 mm due to the overall cod oriented strategy of the trawl fleet, and the other corresponding to the catch rates expected with a 130 mm mesh size in the codend. Within each division either series presents the same pattern over time, with the exception for 1994 in Division 3N, due to the starting of the 1990 year class recruitment. In Division 3L observed and estimated cpue's were still declining in 1995 together with a steady decrease of the proportion in weight of fish larger than 40 cm in the catch. On the contrary in Division 3N both cpue series don't present a obvious trend and the sudden drop in 1994 of the proportion of larger fish reflects basically the abundance and availability of small Greenland halibut at the time. In 1992 in Division 3N and in 1993 in Division 3L isolated increases in cpue's are observed, probably related with a simultaneous shift in the distribution of the 1988 and 1989 cohorts towards depths greater than 700 m in the NAFO Regulatory Area.

Introduction

During the late eighties and early nineties the Portuguese trawlers operating in Northwest Atlantic prosecuted an opportunistic fishery directed to species and/or areas providing the highest catch rates in a given season. Cod and redfish were the major target species mainly fished on the nose of the Grand Bank and on Flemish Cap. However that didn't prevent that attractive concentrations of Greenland halibut were first detected in the NAFO Regulatory Area by a Portuguese travier from June to August 1988. Those concentrations were located on the northwest slopes of the "Sackville Spur", a fishing ground on the extreme north of Flemish Pass, at depths between 700 m and 900 m . The fishery rapidly expanded in 1989 in Division 3L, representing 39% of the overall observed effort from the trawlers monitored by the Portuguese Sampling Programme (Ávila de Melo et al., 1993). By 1990, just when the Greenland halibut fishery had its boom in the deep water in the Regulatory Area, carried out by Spanish "ex - Namibian" large freezers, Portuguese trawlers were stuck again to their traditional targets and this scenario didn't change in 1991. In 1992, with small quotas in the Grand Bank rapidly fished for cod and American plaice, directed effort to Greenland halibut raised again to the 1989 level but this time concentrated southwards in Division 3N. The fishery was kept mainly in the south for the next couple years but at lower level between 15% and 20% of the overall observed trawl effort, It was only in 1995, with the collapse of the 3M cod fishery and the maintenance of the closures on the Grand Bank cod and flatfish fisheries, that Greenland halibut was the most important fishery for Portuguese trawlers (56% of the observed effort) this time again concentrated in the Flemish Pass original grounds (Godinho et al., 1996).

Despite its ups and downs the catch rates from the Portuguese trawlers are the longest series available for this deep water Greenland halibut fishery in the NAFO Regulatory Area, starting when the Canadian gillnet inshore and offshore fisheries in Divisions 3K and 3L were declining (Myers and Bowering, 1995) and before the beginning of the Spain fishery. Moreover it is obtained from depths not covered by the autumn groundfish surveys in Division 3L, the longest time series available for the division were most of this new deepwater fishery has been taken place (Bowering *et al.*, 1995). The purpose of the present work is to calculate a series of standardized cpue's from the observed monthly catch rates of Portuguese trawlers for each division 3L and 3N, and a combined one for the whole Grand Bank deep water grounds.

However Greenland halibut has been a second rank species for Portuguese trawlers and this should have implied that the same mesh size in the codend, smaller than 130 mm (see Ávila de Melo and Alpoim, 1996), would have also been in practice in this fishery till April 1995. In order to overcome the problem of changing the fishing pattern at the final year of the time interval a second cpue series has been derived from the observed one, corresponding to catches that one would expect to occurred if a 130 mm mesh size had been effective.

Material and methods

Observed catch and effort data from eleven Portuguese trawlers fishing in NAFO Regulatory Area during the 1988 - 1995 period were reviewed on a haul by haul basis. With the exception of one side trawler, all the other ten vessels were OTB2 stern trawlers from the early seventies with quite similar fishing efficiency The daily catch and effort data from each of these trawlers were used to estimate the direct effort to Greenland halibut by division and associated catch on a monthly basis. The catch rates available for each division/month/year were then averaged using the number of fishing days as a weighting factor. The observed monthly cpue's so obtained for the 1988/95 period were then standardized by an additive model already fully described in a previous paper (Ávila de Melo and Alpoim, 1995) in order to built annual series of observed 3L, 3N and 3LN Greenland halibut cpue's, corrected for the month of each observation for each division series and for the month and division of each observation for the two divisions lumped together.

Portuguese Greenland halibut trawl catches were sampled on board every year on the months corresponding to the peaks of the fishery in either divisions. The Greenland halibut length frequencies of the trawl catches from either divisions were presented annually in the Portuguese Research Reports covering the study period, and are representative of the total round weight catch taken, *i.e.* including any eventual discards. Mean weights at length were given by the length weight relationship from Bowering and Standsbury (1984).

As regards the real mesh size of the codend in use till April 1995 we decided to consider that the Greenland halibut 3LN trawl catches were taken with an effective mesh size of 65 mm, for the reasons explained in a similar work dealing with the 3M cod Portuguese trawl fishery (Ávila de Melo and Alpoim, 1996). These reasons were basically related with the fact that, regardless the division., cod was the main target of the Portuguese trawl fleet till 1995.

In order to derive an estimated cpue series for 130 mm covering the whole study interval (i.e. from January 1988 to December 1995) we calculate for each year and division an yield rate to apply to the observed monthly cpue's up to April 1995 (considered to correspond to a 65 mm mesh size). The observed monthly cpue's from May to December 1995 (corresponding finally to 130 mm mesh size) were then incorporated in to the previous estimated cpue matrix. This new cpue matrix for 130 mm mesh size has finally been standardized using the same model first applied to the observed values.

To calculate the annual yield rates we considered that the selection curves from Greenland halibut in Divisions 3L and 3N could be derived from the logistic equation applied by Halliday and White (1989) to the major fish stocks exploited in the Scotia-Fundy region, including American plaice:

$$S(L) = 1 / (1 + \exp (\alpha (1 - L / L 50)))$$
 (1

Where S(L) = selection of the Lth length group

L50 = Length at which 50% of fish is retained in the codend (= SF x mesh size)

3

A value for α , the parameter defining the shape of the ogive, of 7 was given by the equation:

$$\alpha = 2 \ln (3) L50 / r$$

(2)

where the L50 and the selection range (r) were the selectivity parameters for Greenland halibut in the deep sea bottom trawl fishery in NAFO Regulatory Area, calculated for 130 mm mesh size and four hours trawling (Cardenas *et al.*, 1995). Assuming that the correspondent selection factor (SF) of 2.91 remains unchanged for the 65 mm/130 mm mesh size range, as well as the ratio

 $\beta = r / L50$

(3)

both L50 and the selection range can also be derived for the selectivity of 65 mm mesh size codend. The selection at length for both 65 mm and 130 mm can then be calculated for length groups from 21 cm to 99 cm (minimum and maximum recorded in 1988-1995 3L and 3N Greenland halibut length sampling of trawl catches). For each length group within the length range of the catch, a retention rate is finally given by the ratio between the selections for 130 mm and 65 mm, representing at each length the proportion of Greenland halibuts retained in a 65 mm codend that will also be caught if the mesh size doubled. Selectivity parameters, selection at length for 65 mm and 130 mm and 130 mm and 130 mm for more than the properties of the catch in the properties of the catch in the properties of the catch that will also be caught if the mesh size doubled. Selectivity parameters, selection at length for 65 mm and 130 mm and 130 mm and 130 mm and 130 mm the properties of the catch in the properties of the catch in the properties of the catch that will also be caught if the mesh size doubled.

In Tables 2 are calculated the yield rates to be applied to the catch rate observations of each year and division in order to built the estimated 130 mm catch rate matrices. From the observed per mille length frequencies of the annual catches for Divisions 3L and 3N and the 130 mm/65 mm retention rate series, is calculated the corresponding catches in numbers at length if a 130 mm mesh size had been used (the firsts series will totalize a thousand fish and the seconds a somewhat smaller number). Obviously for 1995 the length frequencies considered were representative of the 3L and 3N trawl catches only till April. With mean weights at length given by length weight relationship mentioned above, both those catches in numbers at length are converted in catches in weight at length and summed up. The annual yield rates for Divisions 3L and 3N were then given by the ratios between the respective total catches in weight for 180 mm and 65 mm mesh sizes.

Results and Discussion

From the ageing of the 1994 and 1995 Greenland halibut catches of Portuguese trawlers from Divisions 3L and 3N (Alpoim *et al.*, 1994; Ávila de Melo *et al.*, 1995) a 21 cm length Greenland halibut (smallest length group recorded in the catch) is 2 years old, while 38 cm (L50 for 130 mm mesh size) is a length group falling basically in the age four size range. Yield rates for Divisions 3L and 3N would then reflect the importance (quantified in terms of proportion in weight) of larger fish of age four and older against fish from 2 years old onwards in the trawl catch (and, in a certain way, in the deep water concentrations of Greenland Halibut in those divisions).

The annual yield rates, presented for each year and division in each one of Tables 2, are as follows:

				- 4			•	
Yield rate	1988	1989	1990	1991	1992	1993	1994	1995
ЗL	0.976*	0.976	0.919	0.859	0.762	0.682	0.609*	0.552
ЗŇ			0.874	0.806	0.824	0.888	0.609	0.696

* there was no length sampling for Greenland halibut trawl catches in 1988. Taking into account that this was prior to the beginning of the deepwater fishery in the NAFO Regulatory Area in 1990 we considered that the 3L yield rate for this year was equal to the one calculated for 1989. The same happened in 3L in 1994. Considering that the value calculated for 3N catches was between the 1993 and 1995 3L yield rates we decided to consider it also valid to be applied to the 1994 3L catch rates.

Those values, regarded as conversion factors to estimate cpue's for 130 mm mesh size from the observed values, are put in graphic on Fig. 1. Although at lower levels at the final year than the ones observed at the beginning of each series, yield rates behave differently in each division indicating distinct impacts of this "new" deepwater fishery on the Greenland halibut stock components from the nose and the tail of the Grand Bank. In Division 3L yield rates begin at a level near 1 and so with fish larger than 40 cm representing almost 100% of the trawl catch. Since 1990, when the fishery started with an important concentration of a "newcomer" fleet on Flemish Pass, the yield rates started a steady decline at more or less the same rate from one year to the next, indicating that the proportion in weight of small fish didn't stop to increase till April 1995. It is important to take notice however that the yield rates for 1995 were derived from length data corresponding only to 1% and 6% of the 3L and 3N Greenland halibut estimated catches for the Portuguese trawl fleet. Due to the effective use of 130 mm mesh size in the codend and to deeper grounds swept last year since May the bulk of those catches showed in fact a different structure towards larger lengths than the ones presented in Table 2 for 1995 (Godinho *et al.*, 1996). As for Division 3N the slightly lower values than the ones for 3L observed in 1990 and 1991 may be a consequence of higher concentration of "young" juveniles on the southern slopes. Yields rates remained stable from 1990 to 1993, however they drop in 1994. This minimum value of the 3N yield rate series, should not be justified by the sudden over exploitation of "older" juveniles but with the beginning of recruitment of the 1990 year class, by far the most abundant cohort at age 3 from the combined abundance indices of Canadian research surveys in Divisions 2J3KL, from 1978-94 (Bowering *et al.*, 1995). The 3N yield rate increase in 1995, following the growth of fish from this year class.

Observed cpue's for Divisions 3L, 3N and combined are presented in Table 3 and the correspondent estimated cpue's for 130 mm mesh size in Table 4. Both series for each division and the combined series are presented in Figures 2 to 4 in ton/hour. All cpue series have also been transformed in relative values to the first year of the time interval and included in the tables, in order to make easy the comparison of the respective trends. The two cpue series within each division show very similar trends with the exception of the 1994 points in Division 3N, due to the above mentioned income in the fishery of the most abundant length groups from the 1990 year class. In Division 3L both series start declining prior to the beginning of the deep water fishery but it is from 1990 to 1991, i.e from its first to the second year, that cpue's fell by half. In 1993 a lower peak is observed but cpue's declined again and the observed and "130 mm estimated value for 1995 are the lowest on record. In Division 3N no trend is apparent on either series, but a pronounced peak occurred in both cpue series for that division in 1992. Those peaks in the cpue's, first observed in Division 3N in 1992 and then in Division 3L in 1993, have one thing in common: they don't reflect a new entry of "small" fish in the catches since in either divisions the peaks have the same order of magnitude in the observed as well in the "130 mm" estimated cpue. Looking back at the length structure of the respective catches (Ávila de Melo et. al., 1993; Alpoim et.al., 1994) they were dominated by Greenland halibuts within 36 cm-56 cm corresponding basically to 5, 4 and 6 years old fish (with predominance of age 5). This occurrence can be related with the trends in the abundance at age given by the Canadian autumn groundfish surveys and the Canadian deepwater surveys during consecutive time periods and at different depths. From the first survey, covering depths till 720 m at the most on Divisions 2J3KL, ages 3 to 5 increased steadily their abundance from the early eighties till 1989 but declined sharply afterwards until 1992 (Anon., 1994). On the contrary the abundance of the same age groups at depths between 750 and 1500 on Divisions 3KLM recorded an important increase from 1991 to 1994 (Morgan et.al., 1994). From the data now presented it can be inferred that this downward movement of Greenland halibut with ages 3 to 5 towards deeper bottoms and its availability to the trawl fishery in the NAFO Regulatory Area was first detected in 1992 on southern part of the distribution of the population and only in 1993 northwards, in Division 3L.

Conclusion

When all catch rate monthly observations are used to calculate the combined cpue series for Div. 3LN both observed and "130 mm" estimated series show the same picture for the 1988-1995 time interval (Tables 3 and 4; Fig. 4): a rapidly declining fishery at its beginning, from 1989 to 1991, has a consequence of a "sudden" concentration of high levels of fishing effort at the time and place where large deep water concentrations of Greenland halibut were found, and resulting on a sharp increase of fishing mortality on 9 years and older age groups (Bowering and Power, 1995) of those concentrations. The fishery recover to an intermediate level in 1992-1993, due to the entry in the deep grounds of the Regulatory Area of Greenland halibut at ages 3 to 5 years old, from the 1987-1989 year classes. However, the abundance indices at age 2 for those cohorts from Canadian research surveys in Divisions 2J and 3K combined were at the average (or bellow) of the survey time series (Bowering *et. al.*, 1995). Since then the overall fishing effort for the deepwater fishery has been kept at a high level till the end of 1994 with fish between ages 4 to 6 (most of them from the 1989 and 1988 cohorts) dominating the trawl catches (Avila de Melo et. al., 1995). The decline of cpue's observed during the most recent years was the expected consequence of the coincidence of these factors, despite the recruiting to the fishery since 1994 of the abundant 1990 year class.

References

ALPOIM, R., ÁVILA de MELO, A., GODINHO, M. L. and SANTOS, E. 1994. 'Portuguese research report for 1993'. NAFO SCS Doc. 94/13, Ser. No. N2397, 49p.

ANON. 1994. NAFO Scientific Council Report 1994, 234p.

ÁVILA de MELO, A., GODINHO, M.L., ALPOIM, R., 1993. Portuguese sampling programme on behalf of the NAFO Annual Scientific Programme, 1989-1992. Final Report of the FAR (EC Research Programme in Fisheries Sector) project MA 1.240, Lisbon, 122p.

ÁVILA de MELO, A., ALPOIM, R., GODINHO, M.L., and SANTOS, E. 1995. Portuguese research report for 1992. NAFO SCS Doc. 95/13, Ser. No. N2534, 52p.

ÁVILA de MELO, A. and ALPOIM; R. 1995. Portuguese cod fisheries in NAFO Divisions 3N and 3O, 1989-93. <u>NAFO</u> Sci. Coun. Studies, 23: pp. 65-84.

ÁVILA de MELO, A. and ALPOIM, R. 1996. 'Catch rate versus biomass trends for 3M cod, 1988 - 1995 : why they don't match?'. In press.

BOWERING, W. R. and STANSBURY, D. E. 1984. 'Regressions of weight on length for Greenland halibut (*Reinhardtius hippoglossoides*) from Canadian waters of Northwest Atlantic'. <u>J. Northw. Atl. Fish. Sci.</u> 1984, vol. 5, no. 1, pp. 107-108.

BOWERING, W. R., and POWER, D. 1995. 'Distribution and abundance of Greenland halibut at the continental slope of Divisions 3KLMN based upon Canadian deepwater surveys'. <u>NAFO SCR Doc.</u> 95/63, Ser. No. N2563, 11p.

BOWERING, W. R., BRODIE, W. B., POWER, D. and MORGAN, M.J. 1995. "An assessment of Greenland halibut resource in NAFO Subarea 2 and Divisions 3KLMN". NAFO SCR Doc. 95/64, Ser. No. N2579, 20p.

CÁRDENAS, E., ÁVILA de MELO, A., IGLESIAS, S. and SABORIDO F. 1995. "Selectivity of 130 mm mesh size in deep sea bottom trawl fishery in NAFO Regulatory Area". NAFO SCR Doc. 95/47, Ser. No. N2558, 7p.

GODINHO, M. L., ALPOIM, R., ÁVILA de MELO, A. and SANTOS, E. 1996. "Portuguese research report for 1995". In press.

HALLIDAY, R.G. and WHITE, G.N. 1989. 'The biological/technical implications of an increase in minimum trawl mesh size for ground fisheries in the Scotia-Fundy region. <u>Can. Tech. Rep. Fish. Aquat.</u> Sci. No. 169, 153p.

MORGAN, M. J., BOWERING, W. R., and BRODIE, W. B. 1994. "A comparison of results from Canadian deepwater surveys in 1991 and 1994, with emphases to Greenland halibut". NAFO SCR Doc. 94/53, Ser. No. N2424, 7p.

MYERS, R. A. and BOWERING W. R. 1995. 'Gillnet catch per unit of effort for Greenland halibut from the Canadian fishery'. NAFO SCR Doc. 95/78, Ser. No. N2595, 4p.

Table 1: Greenland halibut, Divisions 3L and 3N. Selection parameters and retention proportions for 130mm against 65mm mesh size.

Mesh size (cm)	
SF ->	
L75-L25 ->	
L50	
L75-L25/L50 ->	
ALFA ->	

6.5 2.91 5.923 18.9 0.313

7.0

13 2.91 (Cardenas et al.,1995) 11.800 (Cardenas et al.,1995) 37.7 (Cardenas et al.,1995) 0.313 7.0

		Selection at ler	ngth for	Retention rate
Length group		65mm	130mm	130mm/65mm
	21	0.684	0.043	0.063
	23	0.820	0.061	0.074
	25	0.905	0.086	0.095
	27	0.953	0.120	0.126
	29	0.977	0.166	0.170
	31	0.989	0.224	0.226
	33	0.995	0.295	0.297
	35	0.997	0.378	0.379
	37	0.999	0.468	0.469
	39	0.999	0.561	0.561
	41	1.000	0.650	0.650
	43	1.000	0.729	0.729
	45	1.000	0.796	0.796
	47	. 1.000	0.850	0.850
	49	1.000	0.892	0.892
	51	1.000	0.923	0.923
	53	1.000	0.945	0.945
	55	1.000	0.962	0.962
	57	1.000	0.973	0.973
	59	1.000	0.981	0.981
	61	1.000	0.987	0.987
•	63	1.000	0.991	0.991
	65	1.000	0.994	0.994
	67	1.000	0.996	0.996
	69	1.000	0.997	0.997
	71	1.000	0.998	0.998
	73	1.000	0.999	0.999
•	75	1.000	0.999	0.999
	77	1.000	0.999	0.999
•	79	1.000	1.000	1.000
	81	1.000	1.000	1.000
	83	1.000	1.000	1.000
	85	1.000	1.000	1.000
	87	1.000	1.000	1.000
	89	1.000	1.000	1.000
	91	1.000	1.000	1.000
	93	1.000	1.000	1.000
	95	1.000	1.000	1.000
	97	1.000	1.000	1.000
	99	1.000	1.000	1.000

- 6 -

 Table 2: Greenland halibut, Divisions 3L. Annual yeld rate between a catch weight estimated if 1,000 fish would pass through a 130mm mesh size and the weight of 1,000 fish caught with 65mm mesh size codend

(Length weight relationship from Bowering and Stansbury, 1984)

DIVISION 3L

Үеаг

1989

Per m	ille 65mm		catch weight (Kg)	Retention rate	catch numbers	catch weight (Kg)
Length group Length	h frequencies Mea	n weight (g)	65mm	130mm/65mm	130mm	130mm
31	0.2	213	0	0.226	0	0
33	0.4	263	0	0.297	0	0
35 🧳	0.9	320	0	0.379	0	0
37	2.4	385	· 1	0.469	· 1	0
39	4.1	459	2	0.561	2	1
41	10.5	543	6	0.650		4
43	22.7	637	14	0.729	17	11
45	36.1	741	27	0.796	29	21
47	45.5	857	. 39	0.850	39	33
49	49.6	985	49	0.892	44	44
51	63. 9	1127	72	0.923	59	66
53	69.2	1281	. 89	0.945	65	84
55	77.5	1450	112	0.962	75	108
57	77.0	1634	126	0.973	75	122
59	82.9	1834	152	0.981	81	149
61	77.9	2051	160	0.987	77	158
63	70.4	2284	161	0.991	70	159
65	57.7	2536	146	0.994	57	146
67	48.3	2807	136	0.996	48	135
69	40.4	3097	125	0.997	40	125
71	36.5	3408	124	0.998	36	124
73	31.7	3739	118	0.999	32	.118
75	24.1	, 4093	. 99	0.999	24	99
77	16.4	4470	73	0.999	16	73
79	17.1	4871	83	1.000	17	83
81	12.0	5295	64	1.000	12	64
83	9.9	5746	57	1.000	10	57
85	5.8	6222	36	1.000	6	36
87	3.5	6725	23	1.000	3	23
89	2.0	7257	14	1.000	2	14
91	1.6	7817	12	1.000	2	12
93	1.1	8407	9	1.000	1	9
95	0.5	9027	5	1.000	1	5
97	0.2	9678	2	1.000	0	9 5 2 2
99	0.2	10362	2	1.000	0	2
TOTAL	1000		2139		949	2088
		•		89	3L Yield rate	0.976

(Length weight relationship from Bowering and Stansbury, 1984)

3	
ž	
š	
Ž	
- 12	

h weight (Kg)	130mm	0	o	0	•	0	7	4	£	19	35	8	2	5	<u>5</u>	\$ 5	103	75	8 5	2	8	\$	37	44	19	13	8	28	6	15	m	4	•0	•	*	ŝ	1167	0.919
ch numbers catc	130mm	0	0	-	•	+	ŝ	₽	23	35	56	81	63	32	2	67	71	46	46	ħ	8	1	€ 1	4	9	m	æ	9	4	m	-	2	-	-	-	-	649	SL Yieid rate
Retention rate cat	130mm/65mm	0.095	0.126	0.170	0.226	0.297	0.379	0,469	0.561	0.650	0.729	0.796	0.850	0.892	0.923	0.945	0.962	0.973	0.961	0.967	0.991	186.0	0.996	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		90 80
catch weight (Kq) Retention rate_catch numbers catch weight (Kg)	65mm 1		•	-	0	•	4	•0	6	8	84	5	94	9	108	91	107	11	87	65	2	4	37	4	6	13	8	28	6	15	m	2	•0	4	•	U)	1270	
3	_	Ź	134	21	213	263	320	365	459	543	637	741	857	985	1127	1281	1450	1634	1034	2051	2204	2536	2807	3097	3408	3739	4093	4470	4871	5295	5746	6222	6725	7257	7017	8407		
Per mille 65mm	ath frequencies N	1.1	÷	3.4	1.7	4.5	13.1	21.6	40.9	54.5	76.1	101.7	109.1	92.0	36.0	71.0	13.9	47.2	47.2	31.5	30.7	17.6	13.1	14.2	5.7	3.4	8.5 1	6.3	4.0	2.8	9.0	2.3	1	90	9.0	0.6	1000	
Per	Length group Length frequencies Mean weight (g)	25	27	53	31	2	S	37	8	14	4	45	47	9	5	3	3	57	53	6	3	33	67	69	5	5	22	11	52	5	8	22	87	59	2	8	TOTAL	

Year	1990					
	Per mille 65mm		catch weight (Kg) Rotention rate catch numbers catch weight (Kg)	ention rate	catch numbers	. catch weight (Kg
ength group	Length group Length frequencies Mean weight (g)	_	65mm 130	65mm 130mm/65mm	130mm	130mm
5	1.1	213	2	0.226	2	0
	26.1	263	7	0.297	•0	~
2	35.6	320	=	0.379	£	
37	23.6	385	0 1	0,469	1	
66	64.1	459	29	0.561	*	17
4	92.6	543	8	0.650	99	2
: 1	61.6	637	98	0.729	45	
45	8	741	74	0.796		8
47	114.0	\$57	8	0.850	26	8
49	104.5	985	103	0.892		
51	104.5	1127	116	0.923	86	•
53	104.5	1261	134	0.945		•
55	59.4	1450	\$	0.962		
57	28.5	1634	47	679.0	28	\$
59	35.6	1834	6 5	0.981	ž	3
61	21.4	2051	4	0.957	21	43
53	2.4	2264	ŝ	0.991	7	
3	4.6	2536	12	0.994	50	12
67	2.4	2807	7	0.996	2	
5	00	3097	0	199.0	0	0
11	2.4	3406	*0	0.998	7	
5	2.4	3739	8	0.999		
22						
1						
6/						
81						·
8						
55						
87						
69						
Æ	2.4	1817	19	1.000	2	19
TOTAL	1000		976		795	853
				8	on Visid ada	1974

"

÷

(Length weight relationship from Bowering and Stansbury, 1984)

TE NOISINI

Year		Length gr																										þ		a.	
	weight (Kg)	130mm	•	0	ŝ	6	16	35	. 42	6 2 ·	63	<u>5</u>	2	3	75	44	9 4	8	6 4	23	On	۳.	12	4	ŝ				7	801	0.859
	catch weight (Kg) Retention rate catch numbers catch weight (Kg)	130mm	0		16	23	35	3	33	11	108	105	62	ġ	51	27	18	61	19	cn	m		4	-	-			•	~-	786	3L Yield rate
	letention rate ca	65mm 130mm/65mm	0.226	0.297	0.379	0.469	0.561	0.650	0.729	0.796	0.850	0.892	0.923	0.945	0.962	0.973	0.961	0.987	0.991	0.994	966.0	0.997	0.998	666'0	· 666 0				1.000	· · ·	<u>9</u>
	atch weight (Kg) R	65mm 1	•	-	7	6	29	3	57	103	1 0	116	76	ន	8 2	45	34	Q	44	23	6	-	1	4	S				4	932	
	8	-	213	263	320	385	459	543	637	741	057	985	1127	1281	1450	1634	1534	2051	2284	2536	2807	3097	3406	3739	4093				5746	÷	
1991	Per mille 65mm	gth frequencies M	6.0	3.8	43.0	20.0	62.1	39.5	90.1	139.0	127.1	118.1	67.7	41.0	53.5	27.6	15.8	19.4	19.1	. 6, 9	3.1	0.4	3.6	1.1	Ξ				E.	.1000	
Year	Per	Length group Length frequencies Mean weight (g)	31	£	8	37	۶ ۲	41.	4	45	47	\$	5	5	33	57	6 3	61	8	3	67	69	7	5	75	77	62	5	8	TOTAL	

DIVISION 3N

 1591
 1591

 Par milla 65mm
 catch weight (Kg) Retention rate
 catch weight (G)
 catch weight (G)
 catch weight (G)
 catch weight (G)
 catch weight (Kg)
 catch weight (G)
 catch weight (G)
 catch weight (Kg)
 catch weight (G)
 catch weight (G)

(Length weight relationship from Bowering and Stansbury, 1984)

		6	ε	m	g	59	28	4	ß	8		28	ç	2	2	<u>6</u>	g	0	2	9	4	2		ŝ	2
		h weight (K	130mm			~	CN	Ŧ	ŝ	φ	40 ,	~	'n	e	-		~							,	517
		iers catc	Ę	13	()	12	8	68	83	85 85	8	77	4	8	-0	•0	12		-	~	-	-		-	679
		atch numb	130mm																						v
		on rate o	/65mm	0.297	9.379	0.469	0.561	0.650	0.728	0.796	0.850	0.892	0.923	0,945	0.962	0.973	0.961		0.991	0.994	0.996	0.997		0.999	
		(Retenti	130mm/65mm						`																
		catch weight (Kg) Retention rate catch numbers catch weight (Kg)	65mm	12	1	3	49	- 75	6 1	6/	8	85	ŝ	4	Ē	4	. 23		2	9	4	2		• •	679
		cate	-	263	320	385	459	543	637	741	657	1200	1127	1281	1450	1634	1634		2284	2536	2807	3097	,	9139	
			Mean w																						
	1992	Per mille 65mm	Length group Length frequencies Mean weight (g	44.8	49.0	154.1	107.0	137.6	128.0	106.7	70.4	292	48.2	31,9	5.5	8.3	12.6		0 .5	2,3	1.5	0.5		8.0	1000
4		Per mill	un Lenath 1		120	10	50			- 4		- 57	. –			. ~	. 6	•		- 47		5	-	2	·
TE NOISINIO	Year		nath arei		1	1		• • • • •	4	- 1	• 4	. च	. 10	2	140	140	1 10	6	0		. 40		~	7	TOTAL
ō	۶		1												į										

NE NOISINIO

0,170 0,170 0,226 0,226 0,256 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,266 0,276 0,266	20 21 21 21 21 22 23 24 20 25 25 25 25 25 25 25 25 25 25
	びはおレックのような
	2061 2284 2387 2528 33087 3308 3740 470 470 5746 5746 5746 5746 5746 5746 5746
8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

517 0.762

92 3L Yield rate

- 10 -

0.824

52 3N Yield rate

(Length weight relationship from Bowering and Stansbury, 1984)

DIVISION 3L

	weight (Kg)	130mm	0	n	0	3	4	3	99	32	3	12	14	9	9	ч	4	383
	ch numbers catch	· 130mm	·	6	28	81	æ	124	9 5	55	11	12	13	ŝ	4	2	2	624
	catch weight (Kg) Retention rate catch numbers catch weight (Kg)	130mm/65mm	0.226	0.297	0.379	0.469	0.561	0.650	0,729	0.796	0.850	0.592	0.923	0.945	0.962	0.973	0.967	
	atch weight (Kg) F	65mm	-	0	. 23	67	11	5	8	2	R	£	16	9	. 7	4	4	561
	Ū	_	213	592 792	320	385	459	543	637	741	857	985	1127	1281	1450	1634	2051	
1983	Per mille 65mm	th frequencies M	4.6	33.5	72.9	173.5	167.7	191.3	130.2	94.6	9.05 9.05	13.4	13.9	4.8	4.6	2,4	2.1	1000
Year	Per	Length group Length frequencies Mean weight (g)		E	35	37	ጽ	4	43	đ	47	6	5	3	55		61	TOTAL

catch numbers catch weigh 130mm 1300	Year	1993			
Length frequencies Mean weight (g) Esmin 130mm/t5mm 130mm 131mm 130mm 130mm 131mm 130mm 131mm 130mm 130m		r mille 65mm	catch weight (Kg) Retention rat	te catch numbers	catch weight (Kg)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ngth frequencies Mean weight (g)	65mm 130mm/65m		130mm
06 134 0 0.126 0 1.6 213 0 0.126 0 0.126 1.6 213 0 0.126 0 0.126 0 1.7 355 213 0 0.177 0 0.176 0 1.15 355 11 0.237 5 11 0.237 5 1.15.0 533 11 0.237 5 2 1 0.237 5 1.15.0 537 45 211 0.461 2 2 5 1.15.0 537 537 54 101 0.357 5 1.11 744 965 63 74 0.965 5 1.11 744 965 63 74 101 0.997 5 1.11 1.127 111 0.966 9 5 5 5 744 955 1134 1127 101 0.997 <t< td=""><td>25</td><td>-</td><td>60'0 0</td><td>50</td><td>0</td></t<>	25	-	60'0 0	50	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 .		0 0,12	90	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29		. 0 0.17	0	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		0 0.22	9	0
	3		1 0.29	1 1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35		4 0.37	5	2
46.7 459 21 0.561 26 91.2 537 637 65 23 63 53 118.7 741 55 637 55 53 55 55 118.7 741 55 0.650 55 55 55 101.6 557 657 63 0.550 55 55 77.9 1127 101 0.923 85 55 74 77.9 1251 100 0.945 74 74 55 77.9 1251 100 0.953 85 55 77.9 1251 100 0.957 55 73.0 1534 74 0.957 55 74.1 2354 24 0.967 56 56.4 3709 234 0.967 56 6.4 3709 220 0.966 5 7.4 0.367 24 0.966 5	37		11 0.46		Ϋ́.
91.2 543 49 0.650 55 1155.0 537 55 0.753 56 55 111.7 741 55 0.753 56 55 111.7 741 55 0.753 56 55 111.7 101 0.55 63 0.65 55 111.7 101 0.83 0.382 75 111.7 101 0.933 85 74 111.7 1127 101 0.933 85 53.0 1450 77 0.945 74 53.0 1450 77 0.945 74 53.0 1450 77 0.945 74 53.0 1450 77 0.945 74 53.0 1450 77 0.945 74 53.0 1450 77 0.945 74 54 366 24 0.991 9 54 3739 223 24 0.997 54 3739 22 0.996 9 54 3739 22 0.999 9 54 3739 23 16 0.999 54 3739 2	39				12
135.0 637 65 0.729 98 118.7 547 65 0.766 85 118.7 547 67 67 68 0.766 85 101.6 657 67 67 0 0.766 85 118.7 1127 101 0.923 85 85 118.7 1181 100 0.933 74 77.9 1456 77 0.865 51 77.9 1456 77 0.865 51 55.4 1634 74 0.991 15 26.4 1634 48 0.991 15 27.1 2236 24 0.991 15 26.4 3087 220 0.996 9 6.4 3087 220 0.996 9 6.4 3087 22 0.999 6 6.4 3087 22 0.999 6 6.4 3087 22 0.999 6 6.4 3087 22 0.999 6 7.4 239 16 1.000 2 7.4 2307 22 0.999 6 7.4 3408<	41				•
118.7 741 63 0.766 86 101.6 857 61 0.260 86 84.4 965 83 0.126 86 89.4 1127 101 0.822 75 77.9 1281 100 0.945 74 53.0 1634 77 0.802 82 53.0 1634 77 0.997 74 55.4 1634 74 0.997 74 2061 2367 224 0.991 155 244 0.991 216 0.991 155 8.6 3097 224 0.991 96 8.6 3097 220 0.996 96 8.6 3097 220 0.996 96 8.6 3097 220 0.996 96 8.6 3097 220 0.996 96 5.4 3739 220 0.996 96	4				•
	3				2
64.4 965 63 0.082 75 77.3 72.1 101 0.945 74 77.3 1281 100 0.945 74 55.0 1450 77 0.962 82 55.1 1450 77 0.945 74 55.1 163.4 74 0.973 84 56.4 165.4 74 0.981 26 206.1 165.4 44 0.981 26 206.1 205.4 44 0.981 26 20.4 2065 24 0.981 26 8.4 2307 224 0.997 6 6.4 3097 22 0.996 9 5.4 3736 22 0.996 9 6.4 3736 22 0.996 6 7.10 9 0.996 5 2 7.10 10 12 10 1000 2	47				
77.9 1127 101 0.923 82 77.9 1256 1456 77 0 925 54 55.4 1534 74 0.962 57 74 55.4 1534 74 0.973 54 55.4 1534 74 0.973 54 26.4 1534 74 0.973 54 20.1 2365 41 0.973 54 21.0 2365 41 0.973 54 20.1 2365 24 0.991 15 9.4 2536 24 0.991 15 6.4 3087 20 0.995 6 6.4 3087 20 0.996 9 5.4 3739 20 0.996 9 5.4 3739 20 0.996 9 5.4 3739 20 0.996 9 5.4 3739 20 0.996 9 2.4 3739 16 1.000 2 2.4 3739 16 1.000 2 2.4 3736 1 12 1.000 2.5 4701 9 0.999	49		•		
77.9 1261 100 0.445 74 53.0 1645 77 0.965 74 53.0 1646 77 0.967 55 45.2 1634 74 0.973 44 26.1 2051 44 0.961 26 26.1 2051 41 0.967 26 26.1 2051 41 0.967 26 26.1 2364 34 0.961 15 94 2536 24 0.967 20 86 2807 24 0.966 9 6.4 3408 27 0.996 9 5.4 3739 20 0.996 9 5.4 3739 20 0.996 9 5.4 3739 20 0.996 9 5.4 3739 20 0.996 5 3.9 4470 9 9 6 6 6 10 12 1000 1.9 5765 1 1000 2 0.1 6 6 6 6 1.9 5725 3 1000 0 0.1000 1072 <	5				
53.0 1450 77 0.962 51 53.1 1450 77 0.962 51 26.1 163.4 74 0.973 44 26.1 163.4 74 0.973 24 26.1 2051 41 0.987 26 26.1 2051 216 47 0.961 26 26.1 2051 214 0.987 26 26.1 2067 24 0.987 26 8.4 2807 24 0.994 9 6.4 3087 22 0.994 9 5.4 3087 22 0.996 9 5.4 3738 22 0.996 9 5.4 3738 22 0.996 9 5.4 3738 22 0.996 6 5.4 3738 20 0.996 6 7.1 12 1000 9 1000 2 7.1 6 5 1 1000 2 7.1 6 6 6 6 6 7.1 1000 9 1000 2 2 7.1 1000 1 <td< td=""><td>ន</td><td></td><td>6</td><td>-</td><td></td></td<>	ន		6	-	
45.2 16.34 7.4 0.973 44 26.4 18.34 4.8 0.991 26 20.1 2051 4.1 0.991 26 20.1 2051 4.1 0.991 26 21.1 2051 4.1 0.991 26 9.4 2536 2.4 0.991 15 8.6 2536 2.4 0.991 15 8.6 2536 2.4 0.991 15 8.4 3097 2.2 0.997 6 6.4 3097 2.2 0.997 6 5.4 3.739 2.2 0.999 6 5.4 3.739 16 0.996 9 2.4 4.470 9 0.999 6 2.4 4.871 12 1.000 2 1.9 5795 10 1.000 2 0.1 9 5.235 3 1.000 0 1.0 5725 3 1 1.000 0 0.1	3		77		-
26.4 16.4 4.8 0.361 26 20.1 2051 41 0.391 26 14.8 2354 34 0.391 15 9.4 2536 24 0.391 15 8.6 2536 24 0.391 15 8.6 2387 24 0.391 15 8.6 3087 20 0396 9 5.4 3739 20 0396 9 5.4 3739 20 0396 6 5.4 3739 20 0396 6 5.4 3739 20 0399 6 5.4 3739 20 0399 6 5.4 3739 20 0399 6 5.4 3739 20 0399 6 7.0 4470 9 0.399 2 2.0 1.10 12 1.000 2 1.1.0 5725 1 1.000 1 0.1 6725 3 1.000 0 0.1 6725 3 1.000 0 1.000 1072 500 0 0	5 7		74		-
20:1 2051 41 0.867 20 14.8 2284 34 0.991 15 9.4 2387 24 0.994 9 6.4 3007 24 0.994 9 5.4 3007 22 0.994 9 5.4 3739 22 0.994 9 5.4 3739 22 0.994 9 5.4 3739 22 0.994 9 5.4 3739 22 0.994 9 5.4 3739 22 0.996 6 5.4 3739 20 0.996 6 5.4 3739 20 0.996 6 5.4 4871 12 1000 2 2.0 4871 12 1000 2 1.9 5745 6 1000 2 0.1 5725 3 1000 0 0.1 6725 3 1000 0 0.1 6725 3 1000 0	ß				
14.8 2284 34 0.391 15 9.4 2536 24 0.391 15 8.6 2837 24 0.397 6 6.4 3097 20 0.397 6 5.4 3739 20 0.396 9 5.4 3739 20 0.399 6 5.4 3739 20 0.399 6 5.4 3739 20 0.399 6 5.4 3739 20 0.399 6 5.4 3739 20 0.399 6 5.4 3739 20 0.399 6 5.4 3739 20 0.399 6 2.0 4470 9 0.3999 6 2.1 1000 9 0.3999 7 1.1 5748 6 1.000 7 0.1 5755 1 1.000 7 0.1 6725 3 1 1.000 0.1 6725 3 1 0.000 1000 1 1 1.000 0	61		4		-
9.4 2536 24 0.894 9 6.4 3037 24 0.896 9 6.4 3037 24 0.997 6 5.4 3739 22 0.997 6 5.4 3739 22 0.997 6 5.4 3739 20 0.997 6 5.4 3739 20 0.997 6 2.4 4371 12 0.999 5 2.4 4371 12 1.000 2 2.4 4371 12 1.000 2 1.9 5795 10 1.000 2 0.1 5725 3 1.000 1 0.1 6725 3 1.000 0 0.1 6725 3 1.000 0 1000 1.000 1 1.000 0	8		ঈ	•	
8.6 2807 24 0.996 9 6.4 3037 20 0.997 6 6 5.4 3739 20 0.997 6 7 2 3.9 4.03 15 0.993 6 7 2 0.993 6 3.9 4.03 16 0.993 16 0.993 5 2 2.0 4.470 9 9 0.993 2 2 0.993 5 2.0 1.9 5.295 10 12 1.000 2 2 1.9 5.745 6 6 1 1 1000 2 2 1 1 2 1 1 2 2 1 2	53		24	2	24
6.4 3087 20 0.997 6 5.4 3408 22 0.997 6 5.4 3408 22 0.993 6 5.4 3408 22 0.993 6 5.4 3408 22 0.993 6 2.0 4470 9 0.999 4 2.0 4470 9 0.999 5 2.0 4470 9 0.999 5 2.1 4871 12 1000 2 1.9 5746 6 1000 2 0.1 5725 1 1.000 2 0.1 5725 1 1.000 0 0.1 5725 1 1.000 0 1000 1 1.000 2	67		24	сл 59	24
6.4 3405 22 0.866 6 5.4 3739 20 0.866 6 3.6 3739 20 0.3695 5 3.6 4033 15 0.3695 5 2.0 4470 9 0.3695 5 2.4 4871 12 1.000 2 1.9 5795 10 1.000 2 1.0 5745 6 1.000 2 0.1 6725 3 1.000 0 0.1 6725 3 1.000 0 0.1 6725 3 1.000 0 1000 1 1.000 0 1	3	4	20)7 6	20
5.4 3739 20 0.899 5 3.9 4.03 15 0.899 5 2.4 4.871 12 1.000 2 2.4 4.871 12 1.000 2 1.9 5.295 10 1.000 2 1.0 5.745 6 1.000 1 0.1 6725 3 1.000 0 0.1 6725 1 1.000 0 1000 1072 819	2	6.4 3405	22	9	23
3.9 4.093 15 0.998 4 2.0 4.470 9 0.999 2 2.1 4.871 12 1000 2 1.8 5.285 10 1.000 2 1.0 5.748 6 1.000 2 0.1 6722 3 1.000 1 0.1 6725 1 1.000 0 1000 1 1 1.000 0	Ę	5.4 3739	20	S S	8
2.0 4470 9 0.399 2 2.4 4871 12 1000 2 1.8 5746 6 1000 2 0.1 5746 6 1000 2 0.1 5725 3 1000 0 0.1 6725 3 1000 0 1000 1 1000 1 1000	55	3.9 4093	16 0.99	8	16
2.4 4871 12 1000 2 1.9 5295 10 1.000 2 1.0 5745 6 1000 1 0.5 6222 3 1.000 1 0.1 6725 1 1.000 1 0.1 6725 3 1.000 0 1000 1 1.000 0 1	11	_	6610 . 6	9	5
1.8 5.285 10 1.000 2 1.0 5.748 6 1.000 1 0.1 6.725 3 1.000 0 0.1 6.725 3 1.000 0 1000 1 1.000 0 0	61	4	12 1.00	2	12
1.0 5746 6 1.000 1 0.5 6222 3 1.000 0 0.1 6725 1 1.000 0 1000 1072 819	5	1.9 5295	10 1.00	9	5
0.5 6222 3 1.000 0 0.1 6725 1 1.000 0 1000 1072 519	8	1.0 5745	6 1.00	8	9
0.1 6725 1 1.000 0 1000 1072 819	85		3 1.00	2	•
1000 1072 819	6 7	0.1 6725	- 1 .00	9	-
	TOTAL	1000	1072	619	952
			-		

0.682

93 3L Yield rate

- 11 -

ь Ч

(Length weight relationship from Bowering and Stansbury, 1984)

DIVISION 3N

Year

1994

Per m	nille 65mm		catch weight (Kg)	Retention rate	catch numbers	catch weight (Kg)
Length group Lengt	h frequencies Mear	n weight (g)	65mm	130mm/65mm	130mm	130mm
27	0.5	134	· · · 0	0.126	0	0
29	35.5	170	6	0.170	6	1
31	106.9	213	23	0.226	24	5
33	129.6	263	34	0.297	38	10
35	151.1	320	48	0.379	57	18
37	142.1	385	55	0.469	67	26
39	123.3	459	57	0.561	69	32
41	95.7	543	52	0.650	62	34
43	69.5	637	44	0.729	51	32
45	52.8	741	39	0.796	42	31
47	39.5	857	34	0.850	34	29
49	20.8	985	20	0.892	19	18
51	11.7	1127	13	0.923	11	12
53	10.7	1281	14	0.945	10	13
55	6.1	1450		0.962	6	9
[°] 57	1.7	1634	3	· 0.973	2	3
59	1.8	1834	3	0.981	2	3
61	0.4	2051	1	0.987	0	1
63	0.1	2284	· 0	0.991	0	0
65	0.3	2536	1	0.994	0	1
TOTAL	1000		456		500	278
,				94	3N Yield rate	0.609

(Length weight relationship from Bowering and Stansbury, 1984)

JE NOISINIO

	weight (Kg) 130mm	-	~	0 9	17	8	47	4	2	20	19	5			'n	228
	catch weight (Kg) Retention rate catch numbers catch weight (Kg) 55mm 130mm/55mm 130mm	•	32	32	52	2	102	11	3	27	22	0			7	477
	Retention rate	0.170	0.226	0.297	0.379	0.469	0.561	0.650	0.729	0.796	0.850	0.892			0.962	
	catch weight (Kg)		ន	29	4	3	2	2	8	25	23	Ħ			m	414
-		170	213	263	320	365	459	543	637	741	6 57	965			1450	
1995	Per mitle 65mm Length frequencies N	19.3	139.5	109.2	136.9	167.8	182.0	118.6	52.5	04.0 0	26.0	11.5			2.4	1000
Year	Per milte 65mm Landh groun Landh freguencies Maan weight (g'	29	31	33	35	37	8	£	€\$	45	47	49	5	ß	55	TOTAL

1

Ż
2
ñ
š
5
δ

ł

		Retention rate catch numbers catch weight (Kg)		÷	0.126 9		0.226 25	0.297 41 1	0.379	0.469		0.650 36 21	0.729	0.796	0.850 33	0.692 20 20	0.923 20	0,945 14 15 18			0.981 8 14	0.987 7	0.991 9 20		0.996 3 10	0.997 2 6	0.598 1 1	0.999 1 2		0.969 1 2	0		6		0 (1.000 0 ·2	476 362	
		catch weight (Kg) Retention rate	_		134 8	-						543 32	637 33	741 33	857 33	, 965 _ 23			1450 22	1634 20	1834 14		2284 20	2536 18	2807 . 10	3097 6	3408 4	3739 2	4093 2								7617 2	520	
	1995	Per mille 65mm	Length frequencies Mean weight (g)	110	63.6	5,03	105.5	136.8	117.5	93.1	1.53	. 56.2	51.3	44.3	33.6	23.0	22.1	14.9	15.0	12.4	L.T ,	6.8	: 8.7	5.7	3.5	1.8	12	0.6	0.5	0,5				•			0.2	6	
NO NO SMI	Year '	•	Length aroup		27	52	5	33	8	37	Ŕ	4	43	45	41	6 4	51	53	55	57	8	51	3	8	67	8	F	2	75	17	<u>e</u> :	5	8	3	5	8	91	TOTAL	

0.652

96 3L Yield rate

TABLE 3 : GREENLAND HALIBUT TRAWL CATCH RATES, 1988-95 : mean annual observed cpue's corrected for the month and division of each observation. Relative values (CPUEr) to 1988.

...

Division	3L			ъ.	3N				3LN			
Year	CPUE	ST.ERROR	C.V.	CPUEr ·	CPUE	ST.ERROR	C.V.	CPUEr	CPUE	ST.ERROR	C.V.	CPUEr
1988	0.449	0.074	28,4	1.0	•				0.431	0.094	37.8	1.0
1989	0.457	0.068	39.7	1.0					0.419	0.070	44.0	1.0
1990	0.409	0.032	22.3	0.9	0.233			1.0	0.360	0.031	26.1	0.8
1991	0.225	0.038	29.1	0.5	0.164	0.046	48.2	0.7	0.185	0.021	28.3	0.4
1992	0.253	0.031	27.6	0.6	0.336	0.029	22.8	1.4	0.313	0.035	38.4	0.7
1993	0.319	0.022	9.9	· 0.7	0.205	0.017	21.8	0.9	0.257	0.016	18.8	0.6
1994	0.186			0.4	0.207	0.005	3.8	0.9	0.249	0.045	35.8	0.6
1995	0.134	0.056	94.1	0.3	0.185		33.5	0.8	0.166	0.038	72.8	0.4

TABLE 4 : GREENLAND HALIBUT TRAWL CATCH RATES, 1988-95 : mean annual estimated cpue's for 130mm mesh size, corrected for the month and division of each observation. Relative values (CPUEr) to 1988.

Division	3L				3N	÷			3LN			
Year	CPUE	ST.ERROR	C.V.	CPUEr	CPUE	ST.ERROR	C.V.	CPUEr	CPUE	ST.ERROR	C.V.	CPUEr
1988	0.430	0.069	27.9	1.0					0.409	0.089	37.6	1.0
1989	0.448	0.064	37.7	1.0					0.405	0.066	43.1	1.0
1990	0.377	0.031	23.5	0.9	0,194			1.0	0.322	0.030	27.7	0.8
1991	0.195	0.039	34.6	0.5	0.135	0.036	45.7	0.7	0.158	0.023	35.3	0.4
1992	0.193	0.027	30.8	0.4	0.276	0.025	24.3	1.4	0.255	0.035	47.6	0.6
1993	0.262	0.018	9.7	0.6	0.182	0.015	21.3	0.9	0.230	0.018	23.8	0.6
1994	0.136			0.3	0.133	0.009	11.9	0.7	0.185	0.043	46.1	0.5
1995	0.123	0.054	99.1	0.3	0.170	0.019	25.4	0.9	0.153	0.037	76.1	0.4

