Northwest Atlantic

Fisheries Organization

Serial No: N2826
NAFO SCR Doc. 97/1

SCIENTIFIC COUNCIL MEETING - JUNE 1997

On Reliability 4 VWX Silver Hake Abundance and Biomass Estimates, Obtained by Canadian Scientists in 1985 and 1996

V. A. Rikhter

Atlantic Scientific Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), 5 Dm. Donskoy St., Kaliningrad 236000, Russia

INTRO) IETGON

Signilicant differences in variability of silver hake stock estimates, obtained by meons of SPA (Ad hoc and ADAPT, respectively, (Rikhter, 1994) before and after 200mite zone implementation, make doubtul the reliability of ectrospective analysis results. carried out by different authors in various years. In this paper the attempt is made to claity partially the current situation by means of appropriate data analysis for the period prior and after 1977.

MATHRIAL AND METHODS

Retrospective estimates of abundance and biomass, presented in Waldron and lianning (1085) and showell (1996), as well as commercial catch data for the period prior to 200 -mile implementation were used as the imput information. Comparison of absolute biomass estimates, matio of the latter and total catch of hake in 1973 were the methoticat hasis of rescarches.

RISSUTS ANI DISCUSSION

Population biomasses and their mato to the maximum value of the later in 1973 (Table 1) Were estimated on the hasis of data by Wathon and Fanming.

According to Showell hake biomass in 1977, 1980, 1981, 1982 and 1983 amounted to 201. 180, 183, 243 and 2.38 thous. 1 respectively. Biomass dynamies by years hasegl on, the ahove-mentioned data is presented in Fig. 1.
,
The latter estimates, ohtamed by means of more advanced antalytical model. seen pefcrahic from statistical reliability point of view. Therefore, the following 1 assmontions could be made:
a) it is intuossible to assess relability of data by Waldron and lanning;
b) the above estimates of abondance and biomass should be interpreted as realive and raller reliahly reflec hake stock variability during the period discusised (1970-1083):
c) data by Showell are very close to actual hake biomass in 1979-1995.

Furfler considerations are as follows: if bomass values ratios (Table 1) and data by Showed are ralistic, they may be used to obtain biomass estimate close to actual one in 1073. Calculation results ate presented in Table 2.

The dila presemed show that:
a) dither biomatsses ralios are umealistic.
b) or biomats values, obtained by Showell do not comply with the actual ones.

Infortomately, no relable eriterion is available mane appopriate selecion. We consider the possibility to tase the total hake catch during 1973 amounted to 300 thous. 1 . In that period the later fishery was untegulated and the eatch was actually deteminced exthesively by the state of the stoek considered. Therefore hale biamass in 197.3 may be assessed with bigh probability at the level of no less than 500 thous. t which comply to the estimate by Wakhon and fanning and secms to provide a rather true picture of the actual stock abondance in the ycat considered. On this basis we may asstme that other estmates by the above-mentioned aththors in gencral correspond to the actual situation. Led also eonsider data of canadian survers, camied out in March and July 1972-108.1 (Wakdton and Fanning, 1985). Inspite of extrencly high variability of alsumdance indices, stipulated probably by shatp interannual variations of hake availability. the latter allows to assume significant increase of hake abundance and biomass during the fust balf of 1980 s which is compratible with VPA retrospective estimates, presented in the sane paper.

Cortandy, the above-mentioned presents no sufficiont basis to select the second assumption, though in the light of the facts discussed the probability of mancestmation of Showedrs data (especially in 1981-1083) seems mather high. Besides, the stoct undercstimation, if any, should be most pronounced during the years of high abundance whichthad been mentioned in Rikhter (1994).

In comelnsion it should be woted that the problen considered in the paper, in my opinion, requires spious attention both from practical and methodical point of view. Therefore, the researches should be continted to obtain a definite soltion.

RIIFI:RINMIS

:

3. Waldron D.E. and I.P.l'anning. 19\$5. Status of the Seotian shedf population

'rable 1

Nosolut: (thens.0) and relative values of silver hake biomass in 1970-1983

I cal	1970	1971	1972	1973	1974	1075	1976
Nbsolite value:	500	400	507	520	314	S010	305
Relalive valite	11.06	1.77	0.98	1.00	0.60	0.69	0.59
Yeat	1977	1978	1079	1980	1981	1982	1983
Alsolate valus:	237	104	238	236	261	4.45	461
Relative value	0.16	0.37	0.46	0.45	0.50	0.86	0.89

Table 2

Assmad retiable estimates of silver hake biomass in 1973 (thous.t)

Year	Biomass (Showell, 1996)	Katio to biomass in 1073	Biomass in 1973
1979	201	0.46	437
1980	180	0.45	400
1931	18.3	0.50	366
1082	298	0.86	288
1983	238	0.89	267

Fig. !. Biomass of 4 Wa sitwer hate popuation based on data by Waldron and Fanning (1985) and Showell (1996).

