NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2830

NAFO SCR Doc. 97/5

SCIENTIFIC COUNCIL MEETING - JUNE 1997

Structures and Changes of the Demersal Fish Assemblage off Greenland and Trends in Near Bottom Temperature, 1982-96

by

Hans-Joachim Rätz

Institute for Sea Fisheries, Branch Office Bremerhaven Fischkai 35, FRG 27572 Bremerhaven

Abstract

The analysed demersal fish community was mainly composed of very few boreal species and the great majority of the fish species was rare. Structures in the quantitative species composition were found to be determined by geographical as well as depth effects but no clear indications of persistent deliminations or boundaries in the demersal fish assemblage were determined. The species diversity ranged among similar magnitudes as observed for the subantarctic fish fauna. During the period 1982-96, survey results indicated fundamental shifts in species composition in coherence with dramatic changes in stock abundance, biomass and size structure for ecologically and economically important species. Compared with the mean stock sizes during the decade of the 80s, the decreases of cod, golden redfish (≥ 17 cm) and starry skates varied between 70 and almost 100 %. During the same period, American plaice displayed a less pronounced decrease and the stocks of Atlantic and spotted wolffish decreased in biomass but increased in abundance. The enormous increase of deep sea redfish (≥17 cm) and unspecified juvenile redfish (<17 cm) during the most recent years was due to recruitment. The geograhical differences between trends in fish abundance, biomass and individual size off West and East Greenland were pronounced. In comparison with the 80s, the aggregated fish biomass for all species off East Greenland almost doubled but decreased off West Greenland by 96 %. The aggregated fish abundance indices increased off East Greenland by a factor of 9 but decreased off West Greenland by 18 %. Positive effects in fish abundance, biomass and size observed recently were almost exclusively restricted to East Greenland and the negative effects were more pronounced off West Greenland where only 5 % of the fish were distributed. The increased effort of the shrimp fishery on traditional fishing grounds off West Greenland might have caused these differences because the applied gear is suspected to select efficiently small sized fish and there was no fishing effort recently directed towards groundfish. The disadvantageous development and poor status of various fish stocks off West Greenland is consistent with the effort distribution of the Greenlandic shrimp fleet.

A multiple linear model of the near bottom temperature based on year, month, depth, latitude and longitude effects explained 31 % of the variation in temperature. The average or warmer near bottom temperatures during the 90s did not indicate any unfavorable environmental conditions for fish growth or reproduction.

Introduction

The demersal fish assemblage in Greenlandic waters has been significantly affected by fishing during the past 70 years. For cod the history of exploitation is fragmentary documented since the recolonization of Greenland in 1721 (Hansen, 1949). Starting from 1917, cod catches increased to 100,000 tons annually in the 1930s taken

primarily by a hook and line fishery. After the war, the pertubations due to an intensive fishery came up to a high level of 400,000 tons. Since the early 70s, the productivity of the ecosystem decreased and became extremely irregular because of a collapse of the cod and redfish spawning stocks (Rätz, 1996 a). In 1991, the former profitable cod and redfish fishery was given up due to extremely low catch rates. Recently, a shrimp fleet is operating on traditional fishing grounds landing around 70,000 tons annually. Apart from cod, redfish and shrimp, the other finfish species were taken as by-catches.

The exploitation of fish stocks is generally based on catches comprising a variety of species. Multispecies models were developed to consider this fact but require the knowledge of the community structures in the entire ecosystem. On this account, several studies were published using catch data both from commercial fisheries or scientific surveys in order to identify persistent spatial boundaries of demersal marine fish assemblages in the Nothwest Atlantic and to underline their management implications (Muraski et al., 1983; Gabriel, 1992; Gomes et al. 1992). Since 1982, the demersal fish assemblage off Greenland has been monitored annually by German groundfish surveys representing the only fishery independent source of information about groundfish stocks inhabiting the shelf and continental slope off West Greenland in NAFO Divisions 1B-1F and off East Greenland in ICES Subarea XIVb outside the 3 mile zone down to 400 m depth. For the period 1982-96, this paper represents the spatial distribution patterns and trends in aggregated fish abundance, biomass and individual size as well as structures in quantitative species composition and diversity. The most recent status and trends in stock abundance, biomass and length composition for ecologically and economically important species as derived from survey catches were determined. The near bottom temperature regime was also evaluated and described.

Materials and Methods

Abundance, biomass estimates and length compositions were derived from annual groundfish surveys covering shelf areas and the continental slope off West and East Greenland. Surveys commenced in 1982 and were primarily designed for the assessment of cod. Because of favourable weather and ice conditions and to avoid spawning concentrations, autumn was chosen for the time of the surveys. These were carried out by the research vessel (R/V) WALTHER HERWIG (II) throughout most of the time period. In 1984 R/V ANTON DOHRN was used and she was replaced by the new R/V WALTHER HERWIG III since 1994, respectively.

The fishing gear used was a standardized 140-feet bottom trawl, its net frame rigged with heavy ground gear because of the rough nature of the fishing grounds. A small mesh liner (10mm) was used inside the cod end. The horizontal distance between wing-ends was 25 m at 300 m depth, the vertical net opening being 4 m. In 1994, smaller Polyvalent doors $(4.5 \text{ m}^2, 1,500 \text{ kg})$ were used for the first time to reduce net damages due to overspread caused by bigger doors (6 m², 1,700 kg), which have been used earlier. All calculations of abundance and biomass indices were based on the 'swept area' method using 22 m horizontal net opening as trawl parameter, i. e. the constructional width specified by the manufacturer. The towing time was normally 30 min. at a speed of 4.5 knots. Trawl parameters are listed in Table 1. Hauls which received net damage or became hangup after less than 15 minutes were rejected. Some hauls of the 1987 and 1988 surveys were also included although their towing time had been intentionally reduced to 10 minutes because of the expected large cod catches as observed from echo sounder traces.

The surveys were primarily designed for the assessment of cod. In order to reduce the error of abundance estimates, the subdivision of shelf areas and the continental slope into different geographic and depth strata was required due to a pronounced heterogeneity of cod distribution (Rätz, 1996 b, c). The survey area was thus split into seven geographic strata. Each stratum was itself subdivided into two depth strata covering the 0-200 m and 201-400 m zones. Figure 1 and Table 2 indicate the names of the 14 strata, their geographic boundaries, depth ranges and areas in nautical square miles (nm^2). All strata were limited at the 3 mile offshore line.

The applied strategy was to distribute the sampling effort according both to the stratum areas and to cod abundance. Consequently, fifty percent of the hauls were allocated proportionally to strata by stratum area while the other fifty percent were apportioned on the basis of a review of the historical mean cod abundance/nm², all hauls being randomly distributed within trawlable areas of the various strata. Non-trawlable areas were mainly located inshore. During 1982-96, 2,343 successful sets were carried out, the numbers of valid sets by year and stratum being listed in Table 3. Apart from stratum 7.2 (Dohrn Bank), East Greenland strata were not covered adequately in 1984, 1992 and 1994 due to technical problems. In 1995, the survey area off West Greenland was incompletely covered for the first time again due to technical problems. Only 50 % of the strata of West Greenland were covered, namely the southern strata 3.1, 3.2, 4.1, and 4.2. Stratum 7.1 has a very low area and therfore never been covered. In 1996, the entire survey area was covered. Figure 1 shows the positions of hauls conducted during the most recent survey.

Fish were identified to species or lowest taxonomic level and the catch in number and weight was recorded. Redfish (\geq 17 cm) were separated to *Sebastes marinus* L. or deep sea *Sebastes mentella* Travin, whereas juvenile redfish (<17 cm) were classified as *Sebastes spp.* due to time-consuming and difficult species indentification. Total fish lengths were measured to cm below. Stratified abundance estimates were calculated from catch-per-tow data using the stratum areas as weighting factor (Cochran, 1953; Saville, 1977). Strata with less than five valid sets were rejected from the calculation. The coefficient of catchability was set arbitrarily at 1.0, implying that estimates are merely indices of abundance and biomass. Respective confidence intervals (Cl) were set at the 95% level of significance of the stratified mean.

As a standard procedure, near bottom temperatures were measured directly before or after trawling in the vicinity of the swept area by a CTD-sonde with a precision of a hundredth °C. Table 23 lists the available numbers of temperature values by stratum and year. During the 14 year time series, a total of 1,207 measurements were conducted.

Species diversity and eveness indices were computed using the formula of Shannon and Weaver (1963) and Pielou (1966), respectively. Statistical analyses such as multiple linear regression and multidimensional scaling were performed using the CSS Statistica software. This software provides descriptions and references of the applied analyses.

Results

During the period 1982-96, the total survey catch amounted to 3.3 million individuals and 1100 tons. Table 4 lists the 66 various fish taxa ranked according to their relative importance in numbers. The rank species importance illustrated that the ichthyofauna off Greenland was mainly composed of very few boreal species as only one arctic species (capelin, *Mallotus villosus*) contributed more than 4 % to the overall catch in numbers (Fig. 2). The dominant fish species were the three redfish components, juvenile redfish < 17cm, deep sea and golden redfish \geq 17 cm (*Sebastes marinus* and *S. mentella*), Atlantic cod (*Gadus morhua*), and American plaice (*Hipplogossoides platessoides*). For these species, the trends in stock abundance and biomass, mean individual size and recent length compositions were presented. The same information was also compiled for Atlantic and spotted wolffish (*Anarhichas lupus* and *A. minor*) and starry skate (*Raja radiata*). These eight ecologically and economically important species contributed 92 % and 96 % to the overall catch in numbers and biomass, respectively.

The differences between strata based on log-transformed mean species composition over the past 15 years were shown in Figure 3. The strata were illustrated as points in a three dimensional space and obviously grouped into two clusters by the depth effect. All shallow strata (0-200 m) were positioned on the left hand side of the graph, whereas the deep strata were grouped in the right part. A geographical effect seemed also to contribute significantly to the position of the strata in the graph and to their illustrated distances based on the quantitative species composition. It is apperent, that all strata off West Greenland strata were clustered in the front, whereas the East Greenland strata were found in the rear.

Diversity and eveness indices of the individual strata were listed in Table 5 and illustrated in Figure 4. The eveness indices showed negligible differences and varied between 3.4 and 3.8. In contrast, the variations in species diversity among the strata were significant. Based on the mean species composition over the past 15 years, the strata off West Greenland were found to be generally more divers than the strata off East Greenland, the difference amounted to 46%.

Table 6 lists abundance, biomass indices and mean individual weights for all fish species aggregated off West, East Greenland and total. The trends of these values were illustrated in Figures 5, 6, and 7. Both abundance and biomass trends were very similar. Followed by a decrease from 1982 until 1984 the indices increased to intermediate maxima in 1987, but decreased again thereafter. Since 1993, the abundance indices exceeded the intermetiate maximum by a factor of 3 to 4. Most recently, the biomass also increased significantly by 48 % as compared with the mean of the decade of the 80s. These positive effects were restricted to the survey area off East Greenland only, where 94 % of the indivduals and 96 % of the biomass was concentrated. During the 80s, the fish were found to be more evenly distributed, the values amounted to 57 % and 55 %, respectively. The mean individual weight showed an overall dramatic decline by 78 % compared to the mean during the 80s. Especially during the 90s, the fish off West Greenland were significantly smaller and had a weight around 50 g only. Since 1994, the individual weight increased to 127 g off East Greenland while the fish of West Greenland did not show any growth indications and remained at the record low. Tables 4 and 5 list abundance and biomass estimates for Atlantic cod. The values were shown in Figures 8 and 9 appended by the trend in mean individual weight and recent length frequencies in Figures 10 and .11, respectively. During the survey period, Atlantic cod was found to be the most dominant fish species in weight (46 %). Until 1990, the trends in stock abundance and biomass controlled the aggretated values of the entire demersal fish assemblage. The increase in stock abundance and biomass during 1984-87 to 830 million individuals and 690,000 tons was due to the recruiting process of the year classes 1984 and 1985. Thereafter, the stock abundance and biomass collapsed by nearly 100% to indices amounting to 2 million and 4,000 tons in 1996. The most recent length structure was dominated by recruits ranging at 16 cm and 34-43 cm, representing both poor year classes 1995 and 1993 at age 1 and 3, respectively (Fig. 11). The losses in individuals and weight were less pronounced off East Greenland (94 %) than off West Greenland (100%) as compared with the mean abundance and biomass during the 80s. The same geographical effect was found for the size reductions. During the 90s, the mean individual weight of Atlantic cod off East Greenland exceeded the weight of the fish off West Greenland by a factor of 5. Since 1992, the individuals were extremly small and did not exceed 500 g. Until 1989, only 9 % of the fish were distributed off East Greenland while during the following seven years this portion increased to 52 %.

In comparison with the 80s, the most recent abundance and biomass estimates of golden redfish (\geq 17 cm) displayed a significant decrease by 92 % and 94 %, respectively (Tab. 9 and 10, Fig. 12 and 13). The great majority of golden redfish was always found to be distributed off East Greenland. However, the loss in abundance and biomass was again more pronouced off West Greenland than off East Greenland (95 and 92 %; 96 and 93 %, respectively). Until the end of the decade of the 80s, the abundance of golden redfish (\geq 17 cm) off West Greenland had decreased to non-recognizable values and not shown any signs of recovery since then. Figure 14 illustrates that the calculated size reductions were more significant off West Greenland (22 %) than off East Greenland (19 %) The length compositions in 1995 and 1996 were dominated by immature fish of 20-22 cm and 25-27 cm indicating an annual growth increment of about 5 cm (Fig. 15).

As observed for the golden redfish (\geq 17 cm) the stock of deep sea redfish (\geq 17 cm) was found to be distributed almost exclusively off East Greenland (Tab. 11 and 12, Fig. 16 and 17). During the 80s, abundance and biomass estimates for deep sea redfish (\geq 17 cm) varied without any distinct trend. Since 1991, both estimates indicate enormous increases by a factor of 27 and 15 for abundance and biomass due to good recruitment, respectively. Campared with the mean observed during the 80s, the size reduction off West Greenland amouted to 68 % in body weight while the fish off East Greenland showed a lesser reduction by 48 %. During 1995-96, individual sizes increased off East Greenland from 150 to 195 g whereas the fish off West Greenland dereased in body weight from 110 to 88 g (Fig. 18). In 1995, the length frequency was dominated by juvenile small fish around 20-22 cm and (Fig. 19). One year later, the majority of the fish varied in total length from 23 to 26 cm after an annual growth rate of about 3 cm.

Juvenile and unspecified redfish (<17 cm) dominated the abundance of finfish by far (35 %). Since 1993, this category was very abundant and concentrated off East Greenland (Tab. 13 and 14, Fig. 20 and 21). Driven by the recruitment, the mean individual weight varied between 7 and 64 g. In 1993 and 1994, the length distributions peaked at 6, 9, 12 and 15 cm (Fig. 4). Juvenile redfish (<17 cm) off East Greenland were generally bigger as compared with fish off West Greenland (Fig. 22). Annual growth increments of 4 cm were indicated by pronounced peaks in the length compositions (Fig. 23).

The abundance and biomass indices of American plaice off West and East Greenland showed contrary trends. In comparison with the mean indices of the decade of the 80s, the most recent estimates of abundance and biomass decreased off West Greenland by 83 and 92 % while this stock became more abundant off East Greenland by factors of 2.7 and 1.3, respectively (Tab. 15 and 16, Fig. 24 and 25). A similar reversal was observed for the geographical distribution pattern of the stock. During the 80s, only 15 % of the stock abundance and 20 % of the biomass was distributed off East Greenland. During the 90s, both estimates increased to 57 % and 71 %, respectively. The fish off West Greenland were generally smaller as compared to East Greenland (Fig. 26). Based on the mean of the 80s, the aggregated individual weight for both surey areas off West and East Greenland decreased by 19 %. The loss of individual weight was also more pronouced off West (51 %) than off East Greenland (35%). During 1995-96, the length composition remained relatively unchanged with the bulk of fish at the sizes of 15 to 30 cm.

The comparison of the proportions of the Atlantic wolffish stock distributed off West and East Greenland resulted in significant shifts. During the decade of the 80s, 43 % of the stock abundance and 33 % of the biomass were found off East Greenland (Tab. 17 and 18, Fig. 28 and 29). Since 1990, the East Greenland proportions increased to 60 % and 70 %, respectively. These geographical shifts in stock distribution were due to abundance and biomass increases off East Greenland by a factor of 2.3 and 1.1 in comparison with the

average indices observed during the 80s. For West Greenland, a decrease for both abundance and biomass off West Grennland by 44 % and 84 % was evident, the stronger decrease in biomass pointing to a pronounced reduction in fish size. The Atlantic wolffish off West Greenland lost 69 % in body weight while the fish off East Greenland lost only 38 % (Fig. 30). During the 90s, the Atlantic wolffish off West Greenland had a mean weight of 210 g only and were exceeded by the individuals off East Greenland by 140 g. The analysis of the length distributions in 1994, 1995, and 1996 revealed the dominance of small fish <30 cm (Fig. 31).

Spotted wolffish were caught rarely during the whole survey period, but abundance and biomass estimates decreased significantly off West Greenland by 80 % and 94 % when compared with the mean during the 80s (Tab. 19 and 20, Fig. 32 and 33). In contrast, the estimates of stock size increased off East Greenland by factors of 1.7 and 0.55 when comparing the most recent observation in 1996 with the means during the 80s, respectively. During the 90s, the majority of the fish were distributed off East Greenland, 67 % of stock abundance and 76 % of stock biomass. During the previous decade, the stock was found to be inversely partitioned with only 34 % of abundance and biomass off East Greenland. The mean individual weight decreased more pronounced off West Greenland (68 %). The fish off East Greenland lost only 46 % in body weight (Fig. 34). The length compositions in 1994, 1995 and 1996 were scattered due to small catches (Fig. 35).

During the decade of the 80s, the majority of starry skates were distributed off West Greenland, only 2 % of abundance and 8 % of biomass were found off East Greenland (Tab. 21 and 22, Fig. 36 and 37). During the 90s, the East Greenland proportions in abundance and biomass increased to 8 % and 36 % due to a pronounced decrease in stock size off West Greenland by 74 % and 91 % and an increase off East Greenland by factors of 1.9 and 0.4, respectively. Compared with the mean of the 80s, starry skates off West Greenland lost 67 % in body weight while the individuals off East Greenland were significantly bigger throughout the survey time and showed a 46 % reduction in individual weight (Fig. 38). The Figure 39 displays the scattered length compositions in the three most recent years with the bulk of the specimens being smaller than 30 cm (Fig. 39).

Table 24 lists mean near bottom temperatures by stratum and weighted means by stratum area, 1982-96. Respective values were illustrated in Figure 40. All years were characterized by high differences in mean temperatures ranging around 3 °C between strata. Most of the shallow strata (0-200 m) on the left hand panel in Figure 40 showed lower temperatures as compared with the mean and similar trends during the survey period, the weighted mean temperature being illustrated as bold lines. A very cold event around 2 °C was identifiable for the period 1982-84 followed by a warming of 2 °C to an overall mean of 4 °C. During 1987-89, a less pronounced cooling was observed. Subsequently, there was an increasing trend exceeding 3.5 °C in the most recent years. The estimated near bottom temperaure for 1996 indicated the warmest conditions of the entire survey period. In contrast to this trend, the temperature regime of the deep strata (201-400 m) appeared more constant and generally warmer than the mean, the only exception being stratum 7.2. A multiple linear correlation and regression model was formulated based on year, month, depth, latitude and longitude effects. All these variables were found to contribute significantly to the model and to explain 31 % of the variation in near bottom temperature. The highest regression weight was determined for the positive depth effect (deeperwarmer) followed by the negative effect of the longitude (western areas colder than eastern). The month and latitude effects were determined to be also negative (later in the year-colder; northern areas were colder than southern). In contrast, the year effect was positive pointing to a slightly increasing trend in the near bottom temperature troughout the past 15 years. The relevance of the temperature model is illustrated in Figure 41 showing the scattered plot of observed versus predicted values.

Discussion

Recent dramatic collapses of demersal fish stocks in the Northwest Atlantic and changes of harvesting strategies in terms of effort and target species require the implementation of ecological aspects into stock assessments. Such ecological aspects should cover biotic interactions, expoitation as well as environmental effects. Therefore, the present paper deals not only with one single fish stock but comprises trends in abundance, biomass and size composition of the eight most common fish species contributing more than 90 % of the overall fish ocurrence off West Greenland and East Greenland offshore down to 400 m in depth since 1982. Detailed comparisons between structures and changes in the demersal fish assemblage off West Greenland (NAFO Divisions 1B-1F) and East Greenland (ICES Sub-area XIV) were given together with temporal and geographical properties of the near bottom temperature regime.

The great majority of the fish species was rare and the fish community was mainly composed of very few boreal species. The differences between strata off Greenland based on their quantitative species compositions were found to be determined by geographical as well as depth effects. Deep strata appeared to have more similar species compositions and to be distinguished gradually from shallow strata. Furthermore, the West and East Greenland strata were also found to be identifyable. Inspite of these significant geographical and depth patterns

- 5 -

in the quantitative species composition of the individual strata, no clear indications of persistent delimitations or boundaries in the demersal fish assemblage off Greenland were determined. Geograhical and depth effects were also decisive for the species composition of the fish fauna inhabiting the shelf areas and continental slopes in the Antartic Weddell Sea (Hubold 1992). Measurements of species diversity and eveness indices in marine communities are highly dependent on the sample gear, sample size, and sample effort as well as taxonomic expertise and, therefore hardly comparable with results of different studies. However, the determined species diversity was found to range among similar magnitudes as observed for the subantarctic fish fauna around Elephant Island (Tiedtke and Kock, 1989) whereas the communities in the high Antarctic Weddell and Ross Sea and the Prydz Bay were substantially more divers (Schwarzbach, 1988; Hubold, 1992).

During the period 1982-96, survey results indicated fundamental shifts in species composition of the demersal lish assemblage inhabiting the shelf and continental slope off West and East Greenland down to 400 m in depth. These observations happened in coherence with dramatic changes in stock abundance, biomass and size structure for ecologically and economically important species. Compared with the mean stock sizes during the decade of the 80s, the decreases of cod, golden redfish (\geq 17 cm) and starry skates varied between 70 and almost 100 %. During the same period, American plaice displayed a less pronounced decrease and the stocks of Atlantic and spotted wolffish decreased in biomass but increased in abundance. The enormous increase of deep sea redfish (\geq 17 cm) and unspecified juvenile redfish (<17 cm) during the most recent years due to recruitment resulted in an compensatory increase in aggregated fish abundance and biomass by a factor of 5 and 0.5, respectively. Compared with the mean of the 80s, all stocks considered separately lost significantly in individual weight, the aggregated loss amounting to 78 %. Presently, these stocks were almost exclusively composed of small juveniles. Similar stock collapses and individual size reductions but without any clear indication for biomass compensation within the demersal fish community have been described for Divisions 2J3KL (Atkinson, 1994).

The geograhical differences between trends in fish abundance, biomass and individual size off West and East Greenland were pronounced. In comparison with the 80s, the aggregated fish biomass for all species off East Greenland almost doubled but decreased off West Greenland by 96 %. The aggregated fish abundance indices increased off East Greenland by a factor of 9 but decreased off West Greenland by 18 %. For the same period, a decrease in overall individual weight by 95 % was estimated for West Greenland while the fish off East Greenland showed a lower reduction by 77 %. Apart from Atlantic cod, golden redfish (\geq 17 cm), dcep sea redfish (\geq 17 cm) and unspecified juvenile redfish (<17 cm), the other stocks of American plaice (Llorett, 1996), Atlantic and spotted wolffish and starry skate increased in abundane and biomass off East Greenland, while their components off West Greenland, and the recent enormous stock increases of deep sea redfish (\geq 17 cm) and unspecified juvenile redfish (<17 cm) happened off East Greenland only. Furthermore, all demersal fish stocks assessed separately showed more pronounced size reductions off West than off East Greenland with juvenile redfish (<17 cm) being the only exception.

Positive effects in fish abundance, biomass and size observed recently were almost exclusively restricted to East Greenland and the negative effects were more pronounced off West Greenland where only 5 % of the fish were distributed. This fact indicated the presence of a highly selective process causing high mortality rates and affecting adversely the recruitment. The increased effort of the shrimp fishery on traditional fishing grounds off West Greenland (Hvingel 1996) might have acted as this process because the applied gear is suspected to select efficiently small sized fish and there was no fishing effort recently directed towards groundfish. The disadvantageous development and poor status of various fish stocks off West Greenland is consistent with the effort distribution of the Greenlandic shrimp fleet expending around 175,000 hours trawling per year without any selective device off West Greenland and only 15,000 hours off East Greenland (Hvingel et al. a and b, 1996). This suggestion is supported by the loss in fish abundance, biomass and decrease in individual size of fish species which are known to be stationary like flat and wolffishes (Riget and Messtorff, 1988). The finfish by-catch of a standard survey haul side by side with a shrimp trawler in 1994 amounted to 28 % in weight, although the different catch procedure of the shrimp fishery prevented direct comparisons (Rätz, 1995). Due to unknown natural mortality rates of juvenile fish during their first years of life it seemed impossible to analytically quantify the impact of the shrimp fishery off West Greenland on the recruitment of demersal fish stocks even with the knowledge of by-catch figures.

Almost all shallow strata showed the same trend in near bottom temperature close to the swept area of the fishing stations. This trend was characterized by a very cold event in 1982-84, warmer conditions in 1985-86, a decreasing trend in 1987-89 and warming since then. The 1996 measurements were the highest of the past 15 years and indicated a continued positive trend. These findings were in agreement with the description of the climatic conditions around Greenland as derived from air tempertures and oceanographic standard sections (Stein, 1996). However, near bottom temperatures were found to differ between strata, the difference ranging

around 3 °C. In general, deeper, eastern and southern strata were warmer throughout the time series. Furthermore, the significant time effects were negative for the month and positve for the year of observation. The formulated multiple linear model of the near bottom temperature based on year, month, depth, latitude and longitude effects explained 31 % of the variation in temperature. The average or warmer near bottom temperatures during the 90s did not indicate any unfavorable environmental conditions for fish growth or reproduction.

7

References

- Atkinson, D. B. 1994. Some Observations on the Biomass and Abundance of Fish Captured During Stratified Random Bottom Trawl Surveys in NAFO Divisions 2J3KL, Autumn 1981-91. NAFO Sci. Coun. Studies, 21:43-66
- Cochran, W. G. 1953. Sampling techniques. John Wiley & Sons Inc., New York: 1-330
- Gabriel, W. L. 1992. Persistence of Demersal Fish Assemblages Between Cape Hatteras and Nova Scotia. J. Northw. Atl. Fish Sci., 14:29-46
- Gomes, M. C., R. L. Haedrich and J. C. Rice 1992. Biogeography of Groundfish Assemblages on the Grand Banks. J. Northw. Atl. Fish Sci., 14:13-27
- Hansen, P. M. 1949. Studies on the Biology of Cod in Greenland Waters. Rapp. P.-V. Reun. Cons. Perm. Int. Explor. Mer, 123:1-77
- Hvingel, C. 1996. Geographical changes in the fishing pattern of Greenlandic shrimp trawlers in the Davis Strait, 1987-1996). NAFO SCR Doc. 96/110, Ser.No. N2807:1-5
- Hvingel, C., H. Siegstad and O. Folmer 1996 a. The Greenland fishery for northern shrimp (*Pandalus borealis*) in Davis Strait in 1995 and Januar-October 1996. NAFO SCR Doc. 96/102, Ser. No. N2806:1-29
- Hvingel, C., H. Siegstad and O. Folmer 1996 b. The Greenland fishery for northern shrimp (*Pandalus borealis*) in Denmark Strait in 1995 and Januar-October 1996. NAFO SCR Doc. 96/117, Ser. No. N2814:1-24
- Hubold, K. G. 1992. Ecology of Weddell sea fishes. Ber. Polarforsch. 103:1-157
- Lloret, Josep 1996. Population dynamics of American plaice (*Hippoglossoides platessoides*) off West Greenland (NAFO Divisions 1B-1F, 0-400m). NAFO SCR Doc. 96/5, Ser. No. N2670:1-10
- Muraski, S. A., A. M. Lange, M. P. Sissenwine and R. K. Mayo 1983. Definition and analysis of multispecies ottertrawl fisheries off the northeast coast of the United States. J. Cons. int. Explor. Mer, 41:13-27
- Pilou, E. C. 1966. The Measurement of Diversity in Different Types of Biological Collections. J. Theoret. Biol. 13:131-144
- Rätz, H.-J. 1995. Status of the Demersal Fish Assemblage off West Greenland, 1982-94 (Divisions 1B-1F, 0-400m). NAFO SCR Doc.95/4, Ser. No. N2505:1-6
- Rätz, H.-J. 1996 a. Hints at Overfishing of Demersal Fish Stocks off Greenland. Inf.Fischwirtsch., 43(1):9-15
- Rätz, H.-J. 1996 b. Relevance of some Environmental Parameters to Distribution Patterns of Groundfish and Implications for Reasonable Survey Design. Case Study Atlantic Cod off Greenland. NAFO Sci. Coun. Studies, 28:73-78
- Rätz, H.-J. 1996 c. Efficiency of Geographical and Depth Stratification in Error Reduction of Groundfish Survey Results: Case Study Atlantic Cod off Greenland. NAFO Sci. Coun. Studies, 28:65-71
- Riget, F. and J. Messtorff 1988. Distribution, Abundance and Migration of Atlantic Wolffish (Anarhichas lupus) and Spotted Wolffish (Anarhichas minor) in West Greenland Waters. NAFO Sci. Coun. Studies, 12:13-20
- Saville, A. 1977. Survey methods of apprising fishery resources. FAO Fish. Tech. Pap. 171: 1-76
- Schwarzbach, W. 1988. Die Fischfauna des östlichen und südlichen Weddelmeeres: geographische Verbreitung, Nahrung und trophische Stellung der Fischarten. Ber. Polarforsch., 54:1-94
- Shannon, C. E. and W. Weaver 1963. "The Mathemathical Theory of Cummunication". Urbana, University of Illinois Press: 1-117
- Stein, M. 1996. Climatic conditions around Greenland 1994. NAFO Sci Coun. Studies, 25:59-65
- Tiedke, J. E. and K. H. Kock 1989. Structure and Composition of the Demersal Fish Fauna around Elephant Island. Arch.FischWiss., 39(1):143-169

Table 1 Trawl parameters of the survey.

Gear	140-feet bottom trawl
Horizontal net opening	22 m
Standard trawling speed	4.5 kn
Towing time	30 minutes
Coefficient of catchability	1.0

Table 2 Specification of strata.

Stratu	ım geographic b	oundaries			depth	area
	south	north	east	west	(m)	(nm²)
1.1	64°15'N	67°00'N	50°00'W	57°00'W	1-200	6805
1.2	64°15'N	67°00'N	50°00'W	57°00'W	201-400	1881
2.1	62°30'N	64°15'N	50°00'W	55°00'W	1-200	2350
2.2	62°30'N	64°15'N	50°00'W	55°00'W	201-400	1018
3.1	60°45'N	62°30'N	48°00'W	53°00'W	1-200	1938
3.2	60°45'N	62°30'N	48°00'W	53°00'W	201-400	742
4.1	59°00'N	60°45'N	44°00'W	50°00'W	1-200	2568
4.2	59°00'N	60°45'N	44°00'W	50°00'W	201-400	971
5.1	59°00'N	63°00'N	40°00'W	44°00'W	1-200	2468
5.2	59°00'N	63°00'N	40°00'W	44°00'W	201-400	3126
6.1	63°00'N	66°00'N	35°00'W	41°00'W	1-200	1120
6.2	63°00'N	66°00'N	35°00'W	41°00'W	201-400	7795
7.1	64°45'N	67°00'N	29°00'W	35°00'W	1-200	92
7.2	64°45'N	67°00'N	29°00'W	35°00'W	201-400	4589
Σ	1 .			•		37463

Table 3 Numbers of valid hauls by stratum, West, East Greenland and total, 1982-96.

Year	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	∑ West	∑ East	Σ
1982	20	11	16	7	9	6	13	2	1	10	3	12	1	25	84	52	136
1983	26	11	25	11	17	5	18	4	3	19	10	36	° 0.	18	117	86	203
1984	- 25	13	26	8	18	6	21	4	5	4 ·	2	8	0	5	121	24	145
1985	10.	8.	26	· 10	17	5	21	4	5	21	.14	50	0	28	101	118	219
1986	27	9 -	21	9	16	• 7	18	3	3	15	14	37	1	34	110	104	214
1987	. 25	11	21	.4	18	3	21	́З	19	16	13	40	0	18	106	106	212
1988	34	<u>`</u> 21	28 [*]	5	18	5	18	2	21	8 -	13	39	0	26	131	107	238
1989	26	14	30	9	8	3	- 25	3	·17	18	12	29	0	11	118	87	205
1990	19	7	23	8	16	3	21	6	18	19	6	15	0	13	103	71	174
1991 -	· 19.	11	23 -	· 7	12	6	14	. 5	8	11	10	28	0	16	97	73	170
1992	6 '	6	6	5	6	6	7	5	0	0	0	0	0	6	47	6	53
1993	9	6	9	6	10	8	7	0	9	6	6	18	0	14	55	53	108
1994	· .16	13	13	8	10	6	7	5	0	0	0	0	0	6	78	6	84
1995	0.	0	3	· 0	10	7.	10	5	8	6	6	17	0	12	35	49	84
1996	. 5	, 5	8	5	12	5	10	5	7	9	5	13	0	9	55	43	98
Σ	267	146	278	102	197	81	231	56	124	162	114	342	2	241	1358	985	2343

· · ·

.

Table 4 List of taxa, ranked by species importance based on catch in numbers as illustrated in Figure 2 and catch in weight, 1982-96.

Per Ce	Catch in Weight (kg)	Per Cent	Catch in Numbers	Taxa	Rank
2	26947	35.4	1171291	Sebastes spp. <17cm	1
14	160495.6	. 21	696299	Sebastes mentella ≥17 cm	2
2	296618.3	15.1	499428	Sebastes marinus ≥17 cm	3
45	503240.2	14.5	480902	Gadus morhua	4
2	26469.1	4.7	154710	Hippoglossoides platessoides	5
0	2366.7	4.3	142482	Mallotus villosus	6
· 1	21357.4	1.3	42063	Anarhichas lupus	7
0	748.4	1	34086	Ammodytes spp.	8
0	4702.7	0.5	15351	Raja radiata	9
0	2103	0.3	10901	Micromesistius poutassou	10
	139	0.2	8277	Artediellus spp.	11
0	3449.7	0.2	8148	Rheinhardtius hippoglossoides	12
	136	0.2	7154	Trisopterus spp.	13
	102.6	0.2	5039	Trisopterus murrayi	14
	157.4	0.1	3683	Eumicrotremus spinosus	15
<u></u> 0	820.7	0.1	3300	Melanogrammus aeglefinus	16
	216.9	0.1	3243	Lycodes spp.	17
1	11630.5	0.1	2927	Hippoglossus hippoglossus	18
	11250.8	0.1	2572	Anarhichas minor	19
	102.4	0,1	2307	Cottunculus spp.	20
	414.9	0.1	2048	Myoxoscephalus spp.	21
0	1766.5	0.1	2046	Macrourus berglax	22
	14.8	0.1	1990	Leptoclinus maculatus	23
Ý 0	1175.8	0.1	1827	Argentina silus	24
-	46.9	0.1	1705	Boreogadus saida	25
	11459.8	Ó	1079	Anarhichas denticulatus	26
	13.4	ō	874	Aspidophoroides monopterygus	27
0	1806.3	ŏ	731	Molva dipterygia	28
-	13.8	õ	673	Triglops pingeli	29
· 0	710.3	ŏ	662	Brosme brosme	30
	14.1	ŏ	. 644	Leptagonus decagonus	31
0	786.6	Ö	531	Gadus ogac	32
•	255.6	· ŭ	531	Coryphaenoides rupestris	33
	2.8	ŏ	466	Icelus bicornis	34
	17.1	0	400		35
	3.6	0		Myxine glutinosa	36
			· 442	Gymnelus viridis	
	22.3	0	387	Liparis spp.	37
	18.8	0	357	Careproctus spp.	38
0	961.6	0.	311	Cyclopterus lumpus	39
	. 13.3	0	226	Onogadus argentatus	40
	46.9	0	155	Raja fyllae	41
	. 18.5	0	117	Sebastes viviparus	42
	124.5	0	111	" Raja spp.	43
	4	0	90	Trisopterus esmarkii	44
•	2.3	0	86	Lumpenus lampretaeformis	45
	23.8	0	61	Glyptocephalus cynoglossus	46
	1	· 0	58	Myctophidae spp.	47
	1.9	0	39	Serrivomer beani	48
0	7343.5	0	- 21	Somniosus microcephalus	49
	129.5	0	20	Pollachius virens	50
	1.6	ō	20	Paraliparis spp.	51
	16.2	ō	20	Raja lintea	52
	0.2	Ō	12	Onogadus ensis	53
	21.3	ŏ	11	Squalus acanthias	54
	25.2	ŏ	11	Molva molva	55
	0.7	ŏ	10	Eumesogrammus praeciosus	56
	55	0	10	Bathyraja spinicauda	57
	0.2	U 0,	6	Sauryraja spinicauda Stomias boa	57 58
	10.6	0, 0	4	Notacanthus chemnitzii	59
	0.1	0	3	Rhinonemus címbrius	60
	0.2	0	3	Chauliodus sloani	61
	20.2	0	. 3	Raja bathyphila	62
	1.3	0	2	Microstomus kitt	63
	,0.1	0	2	Pholis gunellus	64
	0.2	0	1	Centroscyllium farbicii	65
	0.1	0	1	Nemichthys scolopaceus	66
. 99	1100421.5		3313030		Σ

Table 5 Diversity and eveness indices by stratum based on mean species composition, 1982-86

Stratum	Diversity	Eveness
1.1	2.113	3,553
1.2	1.378	3.784
2.1	1.435	3.611
2.2	1.897	3.807
3.1	1.362	3.466
3.2	2.006	3.829
4.1	1.546	3.401
4.2	0.928	3,367
5.1	0.382	3.401
5.2	0.659	3.638
6.1	0.826	3,466
6.2	0.897	3.497
7.1	-	· -
7.2	1.441	3.761

Table 6 Abundance (1,000), biomass (tons) indices and mean individual weight (kg) aggregated for all fish species off West, East Greenland and total, 1982-96. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

	Abundanc	e		Biomass		٨	Aean Ind.)	Weight	
Year	West	East	Total	West	East	Total	West	East	Total
1982	352616	658706	1011322	266146	449802	715948	0.755	0.683	0,708
1983	244248	551135	795383	160329	522124	682453	0.656	0.947	0.858
1984	180404	207169	387573	71985	126314	198299	0.399	0.610	0.512
1985	239333	1506988	1746321	86761	277447	364208	0.363	0.184	0.209
1986	600868	707448	1308316	147124	430107	577231	0.245	0.608	0.441
1987	1301487	914311	2215798	686212	387093	1073305	0.527	0.423	0.484
1988	884305	525890	1410195	652776	316509	969285	0.738	0.602	0.687
1989	491261	654100 :	1145361	359753	437324	797077	0.732	0.669	0.696
1990	223097	913629	1136726	52888	278120	331008	0.237	0.304	0.291
1991	275449	1180593	1456042	18769	448608	467377	0.068	0.380	0.321
1992	194756	108910	303666	11155	39013	50168	0.057	0.358	0,165
1993	150061	8146016	8296077	6555	452251	458806	0.044	0.056	0.055
1994	126677	164907	291584	8196	21150	29346	0.065	0.128	0.101
1995	127282	5778887	5906169	3870	475162	479032	0.030	0.082	0.081
1996	442702	7362729	7805431	13206	979951	993157	0.030	0.133	0.127

Table 7 Abundance indices (1,000) by year, stratum, West and East Greenland and total for Atlantic cod (Gadus morhua), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

ច	28	25	32	g	32	6 2	8	59	đ	8	ន	8	g	8	R
ผ	100366	58195	23287	71747	160916	828027	650081	450457	59779	15212	2701	4738	1375	7465	2258
Σ East	8090	7991	6603	12404	15234	41635	23588	91732	25254	10407	658	3301	801	7187	1447
Σ West	92276	50204	16684	59343	145682	786392	626493	358725	34525	4805 205	2043	1437	574	278	811
7.2	1449	2213	790	1141	828	878	1083	1436	4200	35 <u>4</u> 1	829	527	801	257	515
7.1															
6.2	6173	2276	1750	3348	6676	6081	4375	9383	9041 1	1958		502		3654	382
6.1		1274		3978	6950	6527	2060	11600	4533	6/1		922		2933	260
5.2	4 68	2228		373	780	9832	8085	38407	2524	1786	`	8		78	0
5.1			4063	3564		18317	7985	30906	4956	2343		1252		2 65	80
4.2									12213	523	569		ន	ų	0
4.1	17790	10916	5353	7499	22104	51114	60946	65203	10303	1839	151	0	83	ß	298
3.2	3706	2326	689	1638	1321		80			611	74	<u>ب</u>	2	67	0
3.1	15114	14881	5201	10531	37446	154681	47336	261502	6014	1027	121	8	72	138	121
2.2	1888	5170	171	4395	229		84935	673	362	152	137	127	g		ጽ
2.1	47957	16013	4714	13222	50908	248002	338740	27930	4155	180	117	176	g		76
12	729	467	179	2428	1236	1651	2423	920	513	<u>8</u> 2	622	457	103		1 28
1.1	5092	431	377	19630	32438	330944	92024	2497	965 2	268 268	552	566	<u>2</u> 00		152
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992 ·	1993	1994	1995	1996
	ł								٠						

Table 8 Biomass indices (t) by year, stratum, West and East Greenland and total for Atlantic cod (Gadus morhua), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

ច	35	ĸ	8	ස	8	ន	4	4	¥	æ	69	4	88	1 55	ц Ц
Ω ·	152108	116531	45310	69237	127904	690180	660934	573396	100395	37901	1823	5953	2932	15582	2070
Σ East	23617	34157	19744	33565	41185	51592	52946	239546	65964	32751	1216	5600	2792	15525	3000
Σ West	128491	82374	25566	35672	86719	638588	607988	333850	34431	5150	607	359	6	57	570
7.2	7127	13154	5237	5744	3366	5316	3572	4786	12560	14006	1216	1860	2792	382	1273
7.1				•											
6.2	14563	11344	4110	9437	16543	17616	16258	31324	24408	7467	•	1076		13750	
6.1		3512		9955	18631	9291	6162	34957	12954	1263		1742		1115	700
5.2	1927	6147		1356	2645	9054	18204	127865	6813	5779		80	-	185	c
5.1			10397	7073		10315	8750	40614	9229	4236		862		93 93	167
4.2			•						11388	£	102		13	7	c
4.1	30426	21374	8493	5952	19483	37210	55945	75386	13185	2621	81	0	4	t	ţ
3.2	8745	9594	1055	86	1423		ŝ			283 283	14	5	ŧ	13	c
3.1	20319	22806	7218	10731	28510	116610	44593	231239	5778	1208	21	, 4	ß	26	ŭ
2.2	2632	7827	234	2351	සි		77967	4	190	₽¥	36	ŝ	23		ç
2.1	63684	20215	7508	12869	26098	200632	333848	25829	3552	73	ន	49	9		8
1.2	307	205	234	251	484	545	1367	228	114	22	195	88	ខ្ល		Ň
1.1	2378	353	824	2528	10641	283591	94175	727	224	9	135	135	27		\$
rear	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1006

- 11 ·

Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Table 9 Abundance indices (1,000) by year, stratum, West and East Greenland and total for golden redfish >17 cm (Sebastes marinus), 1982-96. Greenland in 1984, 1992 and 1994!

.

히	55	ន	ß	22	ន	ଚ୍ଚ	2	ଞ	75	51	151	66	4	97	4
Σ	679187	449111	88844	325216	489337	609092	189275	234704	.783169	111412	34814	66077	4616	43274	29538
Σ East	546829	420397	64752	279746	446023	595935	174985	225545	778173	107687	32622	64889	3348	42972	27762
∑ West	132358	28714	24092	45470	43314	13157	14290	9159	4996	3725	2192	1188	1268	302	1776
7.2	38899	14365	0686	25944	22234	27920	34352	76934	37483	28201	32622	4170	3348	2060	2366
7.1											,				
6.2	312132	264813	47974	141500	298706	507387	132458	110663	653009	64692		54424		38892	21110
9		453		1787	470	245	1 84	625	391	172		77		153	494
5.2	195798	140766		32397	124613	. 9422	5015	33320	72316	13237		6043		1521	3145
ດ 1			6888	78118		50961	3012	4003	14974	1385		175		346	647
4.2									2271	1671	835		247	146	298
4.1	4087	1697	4214	4973	2717	659	731	361	146	3	192	0	151	8	g
3.2	14876	5885	2776	14441	2883		1954			527	477	132	4	67	383
3.1	5736	4043	10671	3220	21503	- 9612	5938	6489	1038	236	193	8	8	51	381
2.2	5512	6523	1209	1569	3483		2255	069	602	69	6	267	167		244.
5.1	88792	3355	460	6158	2077	1327	342	776	279	96	23	50	156		8
12	6340	3186	3438	10451	4324	653	2239	422	6 8	256	90	84	325		267
:-	7015	4025	1324	4658	6327	906	831	421	120	227	126	169	111		150
ear	982	983	984	1985	986	987	988	686	066	66	663	663	- 766	395	500

Table 10 Biomass indices (t) by year, stratum, West and East Greenland and total for golden redfish >17 cm (Sebastes marinus), 1982-96. Confidence intervals (C1) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

		*		-		-									
ō	2	61	33	К	8	8	8	4	\$	8	38	88	8	g	
N	436147	421281	48159	141077	299204	271716	158387	108949	181852	110500	13021	24945	2013	11015	
∑ East	380465	407104	36934	121444	281137	265162	152483	105281	179413	108720	12076	24560	1540	10914	
Σ West	55682	14177	11225	19633	18067	6554	5904	3668	2439	1780	945	385	473	101	
7.2	30115	15607	12052	23762	24368	19327	48262	34360	14723	62979	12076	2899	1 95	1141	
7.1															
6.2	194379	229541	21281	65299	213268	230844	98131	54589	130530	34265		20179		8896	
0.1		260		1317	382	1 90	88	4	<u>5</u>	120		റ്റ		ດີ	
5.2	155971	161687		22453	43119	5346	4930	14920	27245	10631		1377		712	
5.1			3601	8613		9539	1092	970	6761	725		75		114	
4									1343	1007	47		80	43	
ন্দ	2532	1084	2089	2718	1762	498 894	382	209	62	ო	20	0	4	2	
3.2	9794	4815	2284	9209	1705		1342			273	241	55	35	19	
ы. Т	3206	1873	4935	1427	10122	4954	2570	2619	479	120	ß	3 8	56	9	
	2558														
2.1	34440	1572	196	2968	752	660	118	272	75	24	8	6	8		
12	1354	945	894	1819	1215	247	404	137	149	8	8	112	46		
1.1	1798	846	308	1020	1282	255	146	182	98	4	8	94	8	1	
Year	982	983	1984	1985	986	1987	988	989	066	991	665	993	994	202	

12 -

Table 11 Abundance indices (1,000) by year, stratum, West and East Greenland and total for deep sea redfish >17 cm (Sebastes mentella), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

	21	2.2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	.∑ West	Σ East	N	ច
	17	3 4 8	0	2360	0			9275		19370		58822	·3115	87467	90582	65
	2	2528	0	5236	0			15820	0	42393		28378	8885	86591	95476	4
	~	1276	0	1115	0		18			34633		76541	5406	111192	116598	ទ
	<u>છ</u>	27	55	328	0		34904	16909	105 1	38689		81487	810	172094	172904	47
	38	292	ഗ	44	0			6932	27	76655		67172	3334	150786	154120	ဗ္ဂ
_	4		56		0		0	18340	2	7182		62458	14764	88044	102808	\$
	<u>ب</u>	777	00	4619	0		22025	28158	74	176639		25344	8818	252240	261058	58
6	თ	102	0		œ		847	3067	0	72046		222281	305	298241	298546	8
0	4	705	റ്റ		0	3881	329	12453	2354	13513		16046	4650	44695	49345	4
0	b	0	Ö	652	0	1773	0	10707	4	724504		234748	2425	970005	972430	81
in	0	15	0	10 8	0							60064	156	60064	60220	1 65
54	0	159	2	0	0	0	62	3528	4	1258376		121927	190	1384033	1384223	88
_	20	35	94	162	0	g						77891	678	77891	78569	168
			8	234	96	1468	265	24463	1173	2394064		83314	1827	2503279	2505106	ß
619	0	236	0	1921	29	7135	396	176448	1215	4246101		75011	11467	4499171	4510638	2

Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Table 12 Biomass indices (t) by year, stratum, West and East Greenland and total for deep sea redfish >17 cm (Sebastes mentella), 1982-96 Greenland in 1984, 1992 and 1994!

Year	1.1	1.2	- 1	2.2	3.1	3.2	4.1	42	5.1	5.2	. .	6.2	7.1	7.2	K.A	Σ East	Σ.	ច
1982	0	96 0	9	114	0	893	0			5178		4843		22795	1109	32816	33925	88
1983	16	213		1158	0	2857	0	•		8701	0	21047	••	12747		42495	46765	47
1984	<u>0</u>	798		4 90	0	472	0	•	2			12786		35202		47990	49760	97
1985	0	96		11	27	110	0		2960	7169	4	17011		38533		65713	65972	35
1986	233	39		110	ო	179	0			3943	15	29277		31333		64568	65142	88
1987	84	1184			31		0	< 1.	0	4891	17	2328		23264		30500	31808	4
1988	8	425		159	4	1878	0		3542	10166	თ	55838		11607		81162	83710	56
1989	0	ន		15	0				8	655	0	21151		45452		67348	67394	8
1990	0	ഹ		87	7		0	542	62	2741	329	1961		3275		8368	9011	4
1991	0	0		0	0	153	0	45	0	2959	8	211468		69454		283911	284509	8
1992	0	ო		2	o ·	28	0							19856		19856	19889	160
1993	0	ŝ		53	2	0	0	0	8	493	19	194675		34102		229323	229353	61
1994	0	31		0	12	25	0	e						7122		7122	7206	128
1995					ហ	55	5	159	50	2859	207	355946		16505		375546	375745	22
1996	ഹ	ß	0	6	0	235	4	689	13	24445	124	837222		14503		876307	877314	ос С

- 13 -

Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Table 13 Abundance indices (1,000) by year, stratum, West and East Greenland and total for juvenile redfish <17 cm (Sebastes spp.), 1982-96. Greenland in 1984, 1992 and 1994!

											÷								
٦	4	56	67	Ş	8	168	87	41	8	8	23	38		\$	111	ß	001	ŝ	88
7	3947	7328	10185		990128	271399	264218	99405	00.01	40486	95261	238099		21355	6681401	110766	1.00010	3188211	2184961
2 East	2312	2668	1028	0701	972689	20789	137731	36979		11081	23998	51043		13/3	6621769	57889		3142093	2007303
∑ West	1635	4660	0157	2010	17439	250610	126487	62426		29405	71263	187056		119962	59632	52877		46184	177658
7.7	1553	859	and	8	8	5757	123715	18457		2155	4358	33		13/3	600 9	57880	200	3061	3071
1.7																			2000
6.2	607	1709	000	080	5068	12312	8961	13064		4274	13708	1708	3		810639			188899	2423
6.1		0C)	1		210	<u>6</u> 9	132	BOR	3	150	482	000	203		244			4072	1373189
52	152	6	;		149899	2651	2580	2000	2300	3171	3183		5		2403634			2671933	223348
5.1		•	2.	2	817414		2343	1570	20	1331	2267	15,450	10101		2401243	2422		274128	405272
4.2											848		1961	13718		1900	1005	34694	107237
4	22	31	4	4	አ የ	8	8	2	5	6 9	8100 8100	2	252	4	71		2001	855	2488
3.2	C P	1	:	58	67	218	4		20-	c			8067	13973	5770		131	10236	11571
с С	8) c	י מ י	141	47	54	5 8	2 6	2	18	2 6	0000	13692	17463	200	3	1189	300	26961
2.2	27	100		219	2712	1811		-0,	10/	5370	1538	2	22668	17277	10011	1001	<u>4013</u>		9377
2.1	101	1	t	20	54	- (- 	2 ~	t (0	3071	15417	5	12848	12601			9827		5210
. 1.2	359		30	3714	0615	0100	14,2000	05601	42481	13160		10000	59845	10084		00000	12002		14357
1.1	1057		00260	5021	ARRO				196/9	7717	11260	3	51939	3674G			3465		457
Year	1000	1905	1903	1984	1085	1000	1000	202	1988	1080		222	1991	001	7661	1980	1996	1005	1996

Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Table 14 Biomass indices (t) by year, stratum, West and East Greenland and total for juvenile redfish <17 cm (Sebastes spp.), 1982-96. Greenland in 1984, 1992 and 1994!

2.2	2	3.1	1 3.2	2 4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	∑ West		Σ	5
1	-	1		•			. 11		98		72	8		179	4
Ś	. cc	· `	. ~	-			S	ó	13		17	133		228	<u>5</u>
5 4	с и		 			V		1	19		σ	208		240	7
n (0 0	~ •	- °			10001	1120	u			. u	, , 15		23190	42
8	α			~		222	6717	D	Ş		2				
1	~	• •	ب م	-			123		218.		73	7188		50	8
•			1	0		147	137	4	288	-	6502	5287		12365	8 8
~	~		ي 			67	144	42	618		1414	1719		4004	ŝ
τę	t c) -		6	167	i 1-	317		135	453		1160	42
28					ſ	5 6		. ç	833		268	5		1868	58
2	þ	~	_	ת ה	Ÿ	6	0	3	3		2				; ;
242	0		_	4	15	223	4 6	4	8	•	t B	1380		2138	{
1 + + + + + + + + + + + + + + + + + + +	1		-	· -	Υ.						18	1057		1075	2
- 190	- u			• •	}	51857	75676	17	48523		260	950		177278	8
0 12 012 11 200 0 1 76 716 55 57 30	יי קר			111	776	3		1	2		2704	999	2704	3570	132
õ	_	ñľ		-	547	2834	40702	46	9749		190	693		55304	97
		-		2		5		2			ļ			10001	g
117	1	Ċ			`				¥						Ĵ

1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Table 15 Abundance indices (1,000) by year, stratum, West and East Greenland and total for American plaice (Hippoglossoides platessoides), Greenland in 1984, 1992 and 1994!

ច	ຮ	49	4	23	99	26	19	28	55	18	28	17	21	18	17
Ы	82973	126804	97537	80523	128988	74050	47233	49092	44561	46125	30802	43030	13984	36801	58498
Σ East	4945	11360	7932	18124	17473	17802	13671	9920	15459	22339	9696	29752	2490	32915	46307
Σ West	78028	115444	89605	62399	111515	56248	33562	39172	29102	23786	24106	13278	11494	3886	12191
7.2	2939	7268	3812	5966	5105	2700	2807	3652	5613	. 6964	9699	4991	2490	4249	6773
7.1															
6.2	1094	2787	2809	7029	10365	6758	8629	4605	6417	9688		17920		21976	25777
6.1		210		422	186	293	<u>8</u>	36	4	1240		1111		1557	5842
5.2	912	1095		2823	1817	5636	1638	637	1994	3913		3996		3840	4366
5.1			1311	1884		2415.	417	722	966 966	1327		1734		1293	3549
4									<u>605</u>	952	174		189	785	472
4.1	1042	811	1793	3162	4462	1030	1036	1445	1492	1249	1743	398	1661	1019	1566
3.2	2133	461	2244	239	2388		299	0	0	639	1707	694	282	1190	772
31	2844	2725	2929	2632	2937	2356	3565	8764	1083	1517	1233	<u>8</u> 31	624	892	1946
2.2	5735	2870	4366	6186	9556		5698	3775	2614	1899	2704	1213	1514		1424
2.1	29597	55494	53765	22820	58741	26226	8026	11363	8227	5168	3019	1202	1488		956
1.2	5093	6481	6258	5973	11393	3314	3475	4454	6464	4536	4997	3284	3524		1337
	31584	46602	18250	21387	22038	23322	10963	9371	8617	7826	8529	5856	2212		3718
ear	1982	983	384	385	386	387	388	389	96	<u> 9</u>	392	<u> 9</u> 33	394	<u>8</u>	1996

Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994! Table 16 Biomass indices (t) by year, stratum, West and East Greenland and total for American plaice (Hippoglossoides platessoides), 1982-96.

										-				1704 25
		••	-			-								8 31
Σ West	17394	22245	13294	8355	14725	9810	4906	5072	3045	2245	1991	895	1	1073
7.2	682	2191	941	1596	1867	299	752	737	918	1571	1063	850		831
7.1														
6.2	211	747	571	1034	2621	1245	1586	847	1073	1748		2386		
6.1		ន		88	£	8	28	2	75	23		159	;	1
5.2	265	8		854 258	844	1103	436	115	423	1423		418		
5.1			240	329		992	79	110	180	213		174		
4.2									221	172	25			28
4	156	166	365	321	460	228	236	288	287	188	152	26		8
3.2	376	88	387	49	452		137	0	0	125	250	71		ş
3.1	919 0	1008	607	520	703	645	814	2120	213	265	151	67		<u>8</u>
2.2	1151	607	807	1062	1385		808 808	371	314	260	183	102		1 1
21	1797	11772	8663	3862	8429	5470	1699	1477	1220	487	229	83		134
1.2	947	1154	761	<u>601</u>	1147	338	293	296	397	<u> 3</u> 96	419	222		416
+.+	6048	7450	1704	1940	2149	3129	919	520	393	349	582	324		145
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993		1994

- 15 -

Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Table 17 Abundance indices (1,000) by year, stratum, West and East Greenland and total for Atlantic wolffish (Amarhichas lupus), 1982-96. Greenland in 1984, 1992 and 1994!

ы		18796			. 23370	19957 29524 15	24553	19617	21711	20005	18601	25402	17495	20717	39597
		•				9567 19									
7.2	604	1831	2747	4249	6843	6925	4207	3684	5336	2275	5437	4452	5523	5051	8814
7.1															
6.2	486	915	2807	3476	2444	4265	2797	1639	2042	1625		5379		5901	13100
6.1		172		386	347	638	271	471	622	448		112		<u>6</u> 01	1299
5.2	830	449		2645	1645	3648	4956	2014	1182	2562		5380		3976	4210
5.1			1237	1995		4481	1825	1249	2114	3232		1231		2043	4815
42									9 <u>0</u> 9	4 94	2107		1046	705	1076
4.1	946	785	750	906	811	686	705	1130	1048	563	947	384	4516	528	797
3.2	458	211	111	666	512		555			639	916	326	153	563	622
3.1	1821	1472	1382	955	1500	1023	1136	2900	1899	2592	3360	573	1225	1349	2574
2.2	2318	485	186	369	635		449	516	295	756	. 937	425	567		381
2.1	3457	1720	1542	1420	1968	888	892	1668	1980	967	1509	703	1725		253
1.2	2956	3186	1278	2718	1705	1 <u>64</u>	1833	674	1076	1011	375	1713	1197		949
1.1	11113	7570	5774	5372	4960	5326	4927	3672	3511	2841	3013	4724	1553		713
Year	1982	1983	1984	1985	1986	1987 5326	1988	1989	1990	1991	1992	1993	1994	1995	1996

Table 18 Biomass indices (t) by year, stratum, West and East Greenland and total for Atlantic wolffish (*Anarhichas lupus*), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

			;			÷					•	15			
ō	ਲ	3	24	17	16	16	16	19	16	ິຊ	27	55	4	25	19
ы	27265	14661	- 6263	11314	12378	14560	10544	8523	7161	5853	5190	5680	4534	6466	11123
Σ East	1263	1873	2565	5355	5609	9610	6041	3959	4030	3623	2221	4232	2291	5905	9678
Σ West	26002	12788	6998	5959	6769	4950	4503	4564	3131	2230	2969	1448	2243	561	145
7.2	207	921	754	2155	3730	4509	2559	1689	1897	326	2221	1446	2291	1809	2452
7.1															
6.2	202	519	1211	1108	886	1688	791	8000	550	621		1125		2610	4611
6.1		<u>8</u>	•	ŝ	97	83	8	134	135	159		23		101	412
5.2	854	<u>88</u>		1329	794	1705	1804	86	649	679		1236		793	972
5.1			009	8 69		1625	848	436	799	1208		4 03		592	1231
4.2									321	214	631		171	113	238
4,	1241	1087	870	g	768	615	697	1037	000	249	231	108 108	865	131	169
3.2	475	271	.22	557	458 458	•	340			149	201	67	26	69	114
3.1	2274	1770	820	581	973	1049	881	1749	655	675	832	130	285	248	487
	3926					·									88
2.1	5202	2085	1284	1019	1440	574	798	620	497	160	321	101	376		4
1.2	2974	3441	673	1134	912	220	88 19	222	171	165	62	315	209		262 262
<u>.</u>	9910	3663	3069	1836	1784	2192	1104	689	710	457	437	647	214		64
Year	1982 9910 2974 5202	1983	1984	1985	. 1986	. 1987	1988	1989	1990	1991	1992	1993	1994	1995	1996

.

), 1982-96.	ff East	
nor), 19	level of significance in per cent of the stratified mean. Incomplete survey coverage off East	
as mi	y cov	
arhich	surve	
h (Am	nplete	
volffisl	Incon	
otted v	mean.	
or spc	tified	
total f	e stra	
and	of th	
enland	r cent	
st Gre	in pe	
nd Ea	icance	
Vest a	signif	
hum, V	vel of	
r, strat	5% le	
y year	the 9	
9 (000	en at	
es (1,(ure giv	766 I P
c indic	(CI) a	92 an
ndance	ervals	84, 19
Table 19 Abundance indices (1,000) by year, stratum, West and East Greenland and total for spotted wolffish (Anarhichas minor),	Confidence intervals (CI) are given at the 95%	reenland in 1984, 1992 and 1994!
ole 19	ufiden	enlan
Tat	Co	Ğ

	•							-							
ច	29	32	8	33	23	28	25	\$	27	27	ខ	35	79	72	\$
ы	1786	194	1307	1143	1578	1567	1509	1315	1324	1195	513	1132	1618	1046	1488
Σ East	. 278	321	519	515	· 546	620	574	471	702	473	200	602	1259	1009	1303
Σ West	1508	873	788	628	1032	947	935	844	622	722	313	530	359	37	185
7.2	124	153	172	313	<u>40</u> 9	248	172	297	211	129	20 20	6 8	1259	787	916
7.1															
6.2	₽	8	292	76	ß	131	112	10	175	115		146		120	179
6.1		ጽ		57	12	32	26	7	ŝ	13		0		4	ĸ
5.2	105	4		20	02	102	4	<u>8</u>	142	4		0		6	117
5.1			ស្អ	19		107	220	92	118	173		5		6 0	80
4.2									9	51	ଷ		~	0	7
4.1	325	368	243	110	117	238	315	112	151	26	4	69	27	6	0
3.2	14	30	33	61	16		33			ഗ	ន	17	ი	4	11
3.1	129	8	<u>8</u>	8	68	129	1 5	281	<u>6</u>	2	99	ଞ୍ଚ	ង	44	18
2.2	152	4	4	4	38		15	25	19	33	107	5	62		38
2.1	352	1 84	176	105	109	ន	4	ß	38	27.	15	49	61		55
<u>1</u>	154	8	00	114	203	211	151	131	201	141	47	223	108		9 <u>6</u>
F.	382	186	183	204	481	306	232	245	107	335	4	85	ខ		0
	1982													1995	1996
	\$														

Table 20 Biomass indices (t) by year, stratum, West and East Greenland and total for spotted wolffish (*Anarhichas minor*), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

	Year 1.1 1.2	1.2	2.1	2.2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	M	Σ East	Σ	ច
	2195	470	1897	826	532	4	1989			6 04		8		179	7951	678	8629	4
•	1674	256	656	G	562	183	2357			28	8	417		1007		1825	7519	37
	848	196	1036	16	447	ß	1358		316			1539		529		2384	6340	¥
	13	118	570	0	134	307	681		779	172	88	369	•	702		2120	3943	4
-	155	307	567	ខ	371 ·	35	1 <u>8</u>			239	8	360		1312		1959	5461	27
	654	125	334		1029		2035		1090	512	264	529 -		<u>85</u>		3349	7526	ଷ୍ପ
	137	85	194	87	1141	101	3011		2007	177	151	756		674		3765	8521	g
	373	32	168	4	1382		847		519	485	20	27		855		1956	4798	36
	83	82	199	2	666		1216	ო	859	576	128	1153		616		3332	5588	3
	28	80	2	თ	251	ŝ	723	179	1547	239	55	663		195		2699	3926	4
	~	Q	0	7	8	4	8	35						1109		1109	1234	5
	65	4	16	8	34	17	210		283	0	0	194		843		1320	1735	4
	50	22	74	20	ę	2	142	ო						1772		1772	2083	76
					67	4	219	0	432	~~	8	350		1550		2381	2707	2
	0	137	g	4	8	œ	0	5	468	150	80 80	276		2460		3443	3711	68

و دور و مر م

. :.. Table 21 Abundance indices (1,000) by year, stratum, West and East Greenland and total for starry skate (*Raja radiata*), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

																nfidence intervals n 1984, 1992 and	
G	38	87	42	44	46	30	30	38	51		50	39	43	59	29	Table 22 Biomass indices (t) by year, stratum, West and East Greenland and total for starry skate (<i>Raja radiata</i>), 1982-96. Confidence intervals (CI) are given at the 95% level of significance in per cent of the stratified mean. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!	
ы М	696	8	307	ğ	322	18	ŝ	¥	8	8	91	512	334	968 896	2824	aja r erag(ច
Σ East	172 96	0						-	555 13(-			328		y skate (R urvey cov	S Fast S
Σ West	9697	2000	6315	7878	6706	3336	7147	19418	13326	4832	10711	4127	4775	612	2217	for starr	S West SF
7.2	172	0	309	166	177	181	. 73	187	489	97	<u> </u>	1 <u>9</u> 6	1059	315	324	Inco	5
7.1																and 1 mean	~
6.2	0	0	146	18	33	22	37	8	0	13		97		34	179	ıland ified 1	71
6.1		0		0	0	ო	0	0	2	ĸ	•	4		~	35	Greel strat	69
5.2	0	0		0	0	5 0	4	0	49	ß		78		0	8	East	6
5.1			37	0		10	4	1	6	12		0	I	0	S.	and cent c	C U
4.2					•				345	38	ß		15	15	ଝ	West per c	Ϋ́Υ
4.1	163	0G G	114	256	203	8	85	150	549	8	206	8	398	115	8	um, ce in	C 7
3.2	83	28	<u>8</u>	56	3		<u>9</u> 0			80	23	8	62	2 ig	111	strat	A 1
							34	207	72						115	year, signi	с с С
	473 5														76) by /el of	3 1
											•				*	ses (t % lev	. C C
2	1412	8	99	184	76	99	ő	386	248	1221	284	ġ	20	5	429	indic le 95'	- 1 C
1.2	1625	580	1673	2393	2807	537	1046	2141	1981	480	598	357	126	5	126	in at th	
1.1	5385	4706	2740	2241	2178	1792	3879	11966	7142	1970	4456	2263	25.20		1273	Table 22 Biomass indices (t) by year, stratum, Wes (CI) are given at the 95% level of significance in per 1994!	
Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1004	1001	1996	Table (CI) ar (CI) ar 1994!	

									- \							
ច	g	¥	31	ឌ	8	କ୍ଷ	8	31	\$	78	6	28	62	75	4	
Σ	6273	2414	2399	2407	2068	1365	1913	4259	2863	<u>1</u>	1345	840	1959	4	571	
Σ East	182.	0	479	240	287 1	298	168	263	634	187	290	240	1315	293	332	
Σ West	1609	2414	1920	2167	1774	1067	1745	3996	2229	907	1055	009	4	147	239	
7.2	182	ò	307	217	242	ลี	88	256	610	8	ଝ	177	1315	270	194	
7.1				•	•				Ň							
6.2	0	0	153	ន	52	:	14	ဖ	0	88		6		33	113	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6.1		o		ò	0	-	0	0	0	-		0		0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5.2	0	٥		0	٩	đ	99	0	24	ო		3	ı	0	0	~~~~~
5.1			19	0		8	0	-	0	.		0		0	8	~~~~~
4.2					·				201	33	27		11	0	6	
4,1	154	2 <u>8</u>	8	57	4	5	8	8	113	11	23	m	8	4	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3.2	ß	27	126	4	3	1	19			42	68	24	4	37	10	
3.1	60 4	332	136	159	122	185	175	314	6	245	222	8	i ე	2	5	
2.2	340	132	8	181	84	•	238	107	20	36	135	5	ନ	;	33	
									528						38	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.2	810	193	334	427	526	149	123	429	203	80	8	8	32	ļ	24	
1.1	2007	696	731	494	517	415	654	202	226	278	328	343	2 000	}	50	
Year	1987	1983	1984	1985	1986	1987	1988	1989	1990	1991	1907	1001	1994	1995	1996	
	•								· ·							

.

•••

Year	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	∑ West	∑ Eeast	Σ
1982	20	11	16	7	9	6	13	2	0	0	0	3	0	5	84	8	92
1983	26	11	25	11	17	5	18	4	1	6	3	14	0	7	117	31	148
1984	23	10	18	7	13	4	16	4	4	4	2	7	0	3	95	20	115
1985	10	8	26	10	17	5	21	4	5	21	14	49	0	28	101	117	218
1986	27	9	16	7	16	7	18	3	3	15	14	37	1	34	103	104	207
1987	25	11	21	4	18	3	21	3	4	6	3	16	° 0	7	106	36	142
1988	34	20	28	5	18	5	16	2	17	8	5	36	0	24	128	90	218
1989	23	10	23	8	3	2	22	3	13	11	9	23	0	11	94	; 67	161
1990	15	6	23	7	14	3	17	4	15	15	6	15	0	11	89	62	151
1991	16	9	21	5	12	4	13	1	0	0	0	0	0	0	81	0	81
1992	6	6	6	5	6	5	6	4	0	0	0	0	0	5	44	5	49
1993	9	6	8	6	10	8	7	0	8	5	6	18	0	14	54	51	105
1994	16	13	12	8	10	6	7	4	0	0	0	0	0	0	. 76	0	76
1995	0	0	3	0	10	7	10	5	8	6	6	17	0	12	· 35	· 49	84
1996	5	5	8	5	12	5	10	5	6	9	5	13	0	9	55	. 42	97
<u>Σ</u>		135	254		185		215	48		106	73	248	1	170	1262	682	1944

Table 23 Number of temperature measurements by stratum and total, 1982-96.

Table 24 Mean near bottom temperature (°C) by stratum and weighted total (by stratum area), 1982-96. Incomplete coverage of the survey area in 1982, 1984, 1991, 1992, and 1994!

		****	*****												
Year	1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	Total
1982	2.54	3.627	1.953	3.1	3.256	3.633	2.623							4.6	3.138
1983	2.028	3.713	1.42	3.819	2.139	4.808	2.16			4.117		4		2.943	3.012
1984	1.365	2.79	1.617	3.886	2.462		2.519					4.129			2.698
1985	4.19	5.154	3.116	4.612	2.614	4.336	4.444		5.04	5.19	4.421	4.3		3.3	4.181
1986	3.669	4.393	4.014	5.073	4.203	5.066	4.102			4.796	4.042	4.516		3.347	4.136
1987	3.086	4.89	3.393		3.504		3.53			4.467		4.4		3.3	3.782
1988	2.548	4.328	3.034	4,956	4.228	5.234	4.333	ч.	4.479	4.56	4.298	4.578		3.792	3.958
1989	2.323	3.953	2.718	4.525			2.579		3.392	3.743	3.648	4.064		3.146	3.296
1990	2.497	3.922	3	4.809	3.421	r	2.516	1	4.395	4.57	3.252	4.019		3.025	3.46
1991	3.533	4.726	3.477	4.204	3.016	ì	2.997								3.558
1992	3.9	4.418	2.911	4.457	2.985	4.691	1.938							3.472	3.49
1993	3.007	4.003	2.36	3.36	4.711	4.959	2.773		3.771	4.056	4.328	4.394		2.821	3.597
1994	2.914	4.436	3.747	4.641	3.848	5.109	3.773								3.62
1995					4.229	4.614	3.469	4.242	2.601	3.623	3.683	4.318		3.834	3.862
1996	4.614	5.506	4.414	5.688	5.61	5.7	5.057	5.732	4.505	5.129	5.32	4.903		2.848	4.709

Table 25 Parameters of a multiple linear correlation and regression model of near bottom temperature.

dependent variable: independent variables: f()=near bottom temperure (°C) v=year w=month x=depth (m) y=latitude (positive decimal) z=longitude (negative decimal)

f(v,w,x,y,z)=-58.4364+0.0370v-0.3614w+0.0073x-0.1856y-0.0548zn=1944, p<0.000000, r=0.55, r²=0.31

CONTRACTOR DATE OF THE OWNER OWNER OWNER OWNER			***********************************	
Effect	Value	p-Level	 Regression Weight 	
Intercept	-58.4364	0.000001		
Year	0.0370	0.000000	0.124176	,
Month	-0.3614	0.000000	-0.264087	
Depth	0.0073	0.000000	0.553018	
Latitude	-0.1856	0.000000	-0.280423	
Longitude	-0.0548	0.000000	-0.325326	

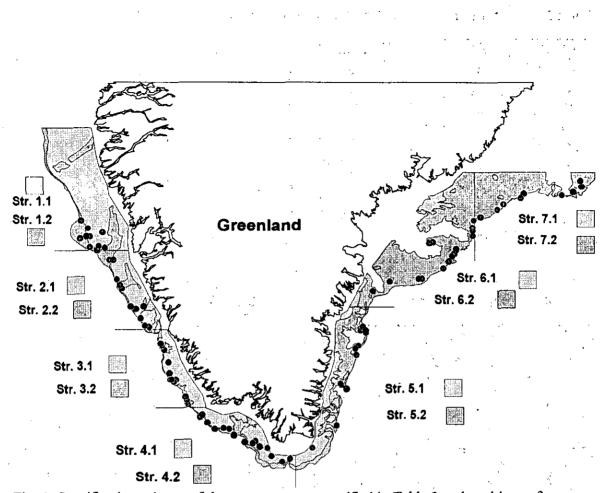


Fig. 1 Stratification scheme of the survey area as specified in Table 2 and positions of survey hauls in 1996.

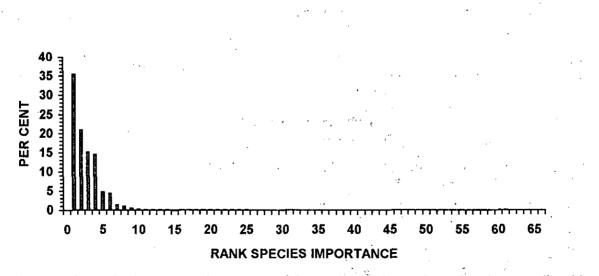


Fig. 2 Rank species importance in per cent of the total catch in numbers. Species were listed in Table 4 by rank order.

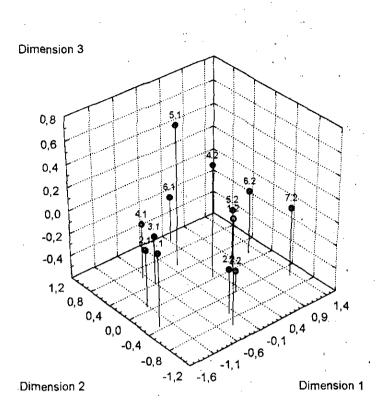


Fig. 3 Scatter plot of distances between strata (multidimensional scaling) based on logtransformed mean species composition, 1982-96. Distances were calculated applying the coefficient of Euclidean Distance.

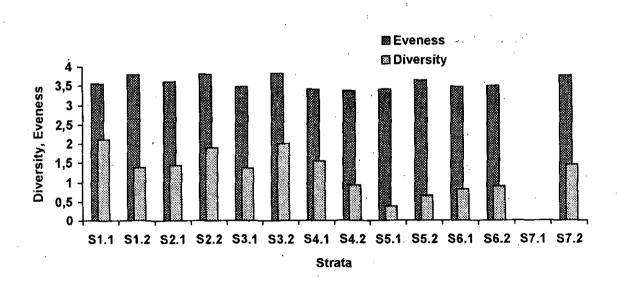
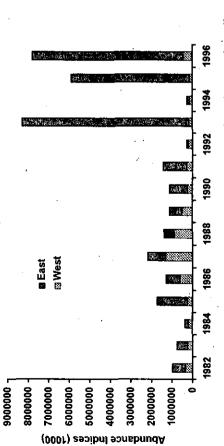



Fig. 4 Diversity and eveness indices by stratum based on mean species composition as listed in Table 5, 1982-96.

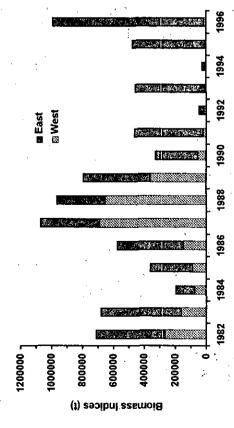


Fig. 6 Biomass indices off West, East Greenland and total for all fish species aggregated as listed in Table 6, 1982-96. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

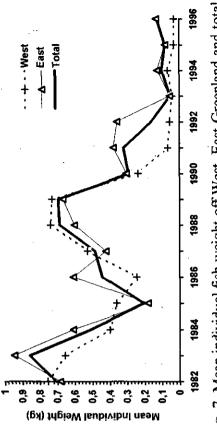
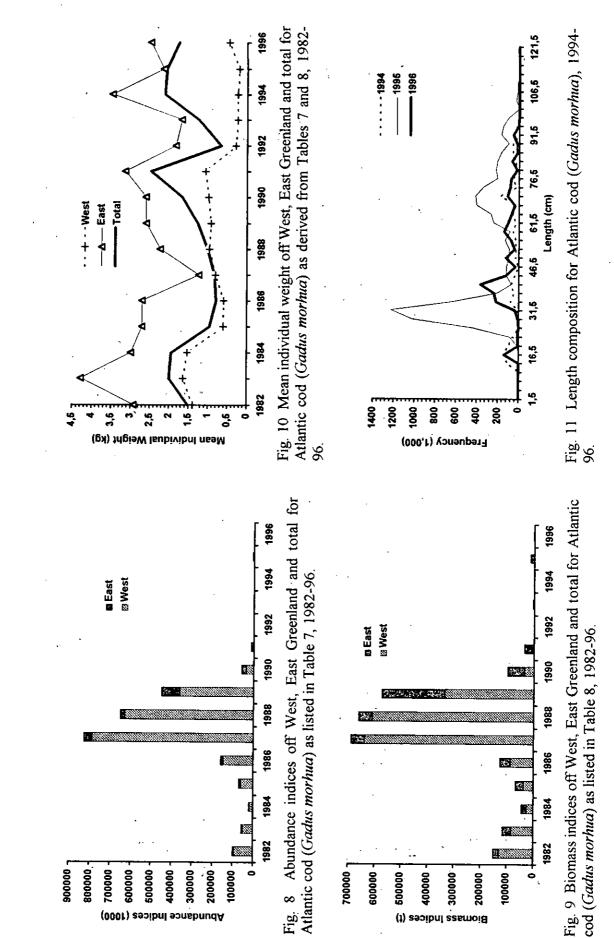
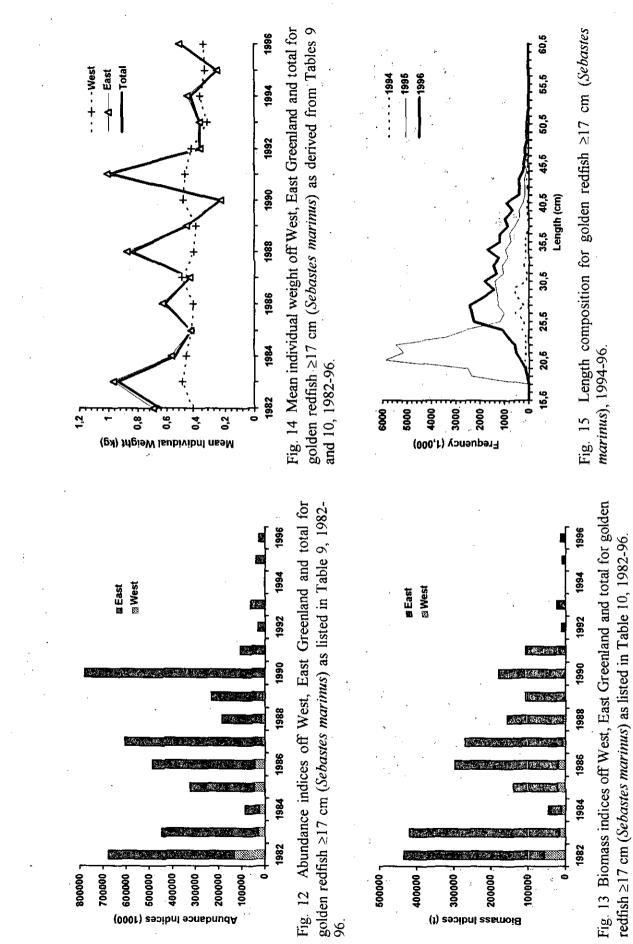




Fig. 7 Mean individual fish weight off West, East Greenland and total as listed in Table 6, 1982-96. Incomplete survey coverage off East Greenland in 1984, 1992 and 1994!

- 22 -

- 23 -

- 24 -

deep sea redfish ≥ 17 cm (Sebastes mentella) as derived from Tables Fig. 18 Mean individual weight off West, East Greenland and total for 1994 1992 1990 1988 1986 1984 11 and 12, 1982-96. 1982 Fig. 16 Abundance indices off West, East Greenland and total for deep sea redfish ≥ 17 cm (Sebastes mentella) as listed in Table 11, 1996

1994

1992

1990

1988

1986

1984

1982

1982-96.

ò

0.1 0.05

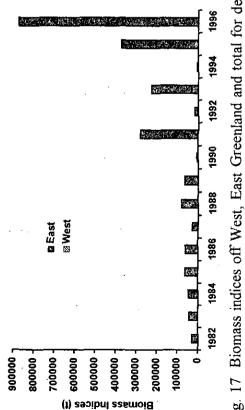
0,15

(kg) trigisW leubivibri nesM

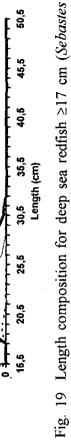
Mest

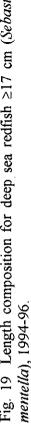
2500000 -

Abundance Indices (1000)


2000000 1500000 0000001

500000


🖪 East


5000000

4500000 400000 3500000 3000000

1995 1996

-1994

000006

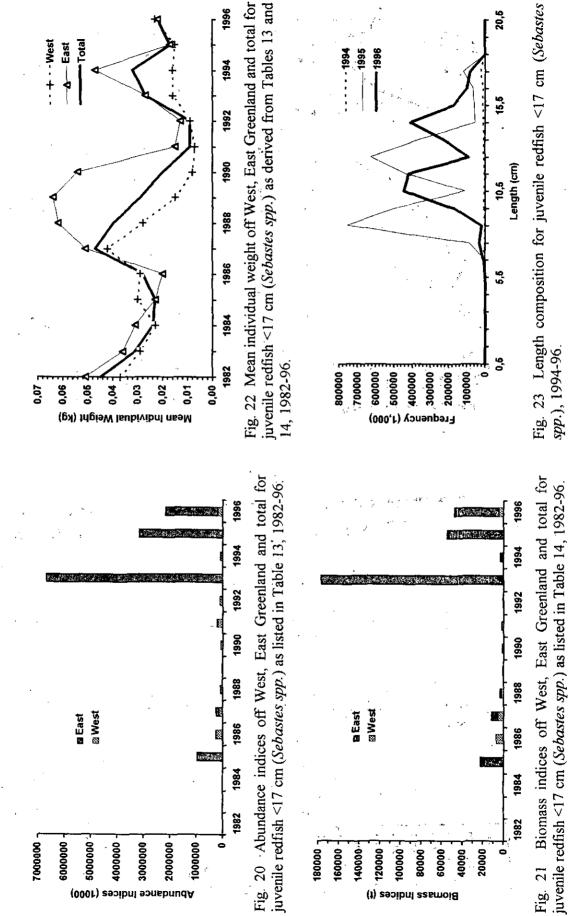
800000 700000 600000 600000 400000

Frequency (1,000)

200000 100000

300000

25 -

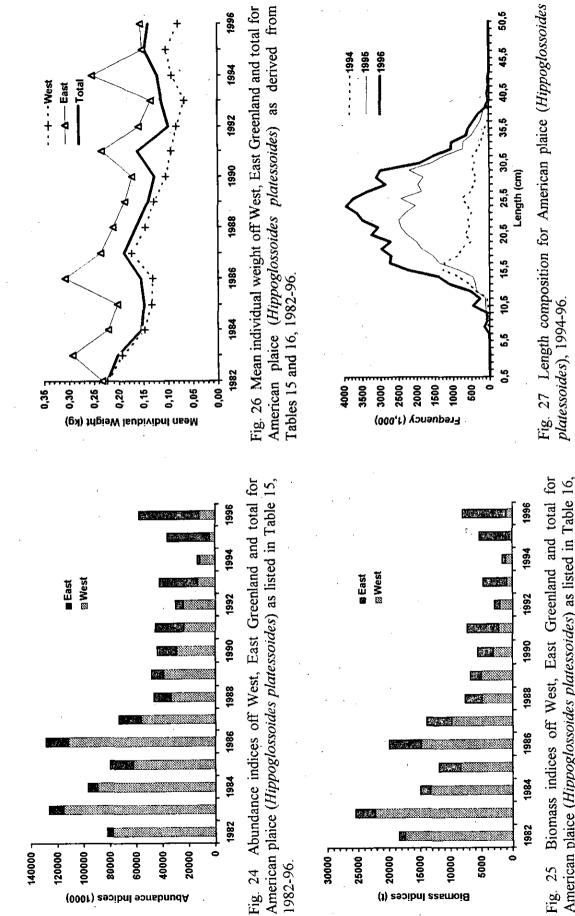

1996

Total

- + - - West --<u>A</u>---East

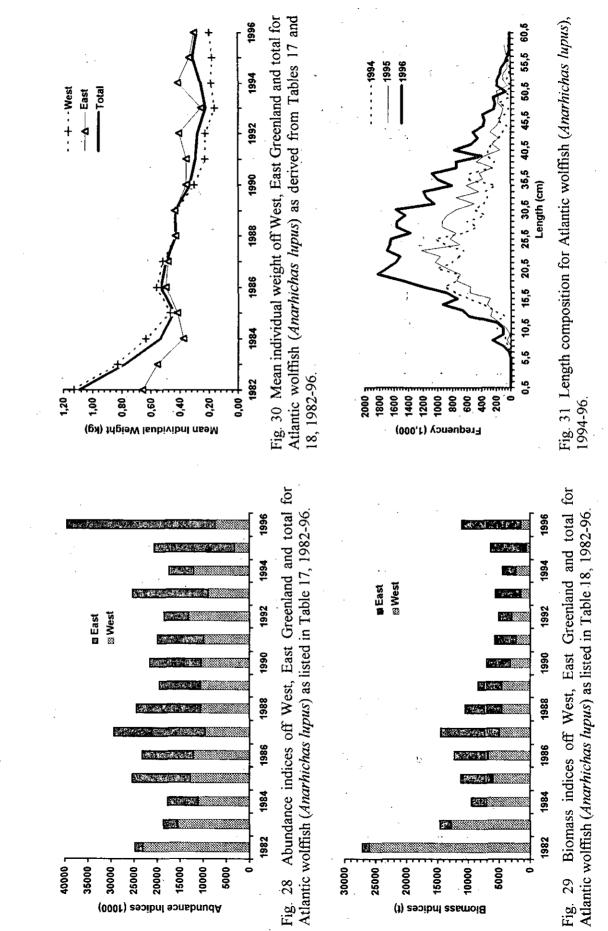
0,45 4.0 0,35 0,3 0,25 0,2

9 0

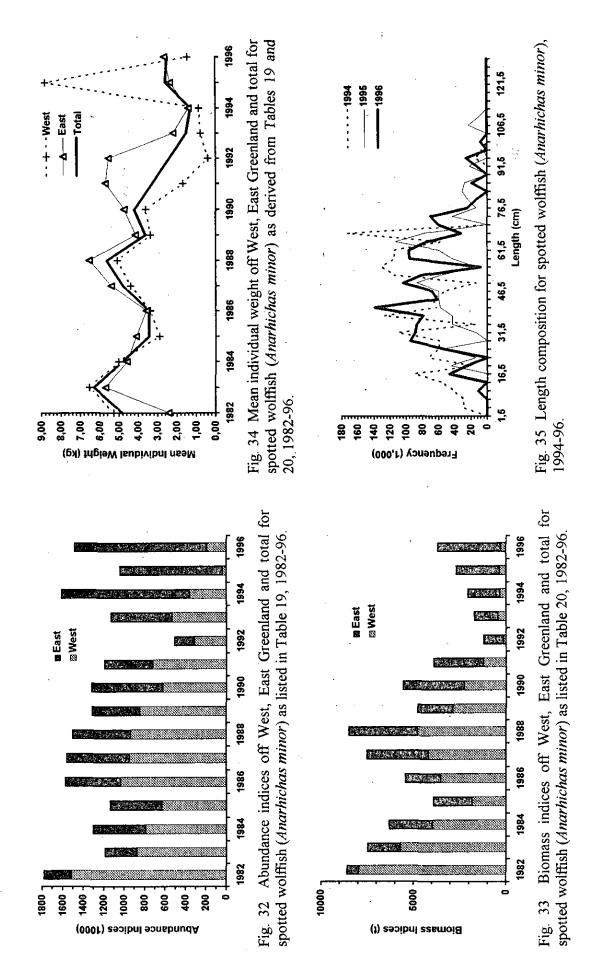


Biomass Indices (1)

(0001) secibril ecrebrudA


spp.), 1994-96.

26 -



- 27 -

American plaice (Hippoglossoides platessoides) as listed in Table 16, 1982-96.

- 28 -

- 29 -

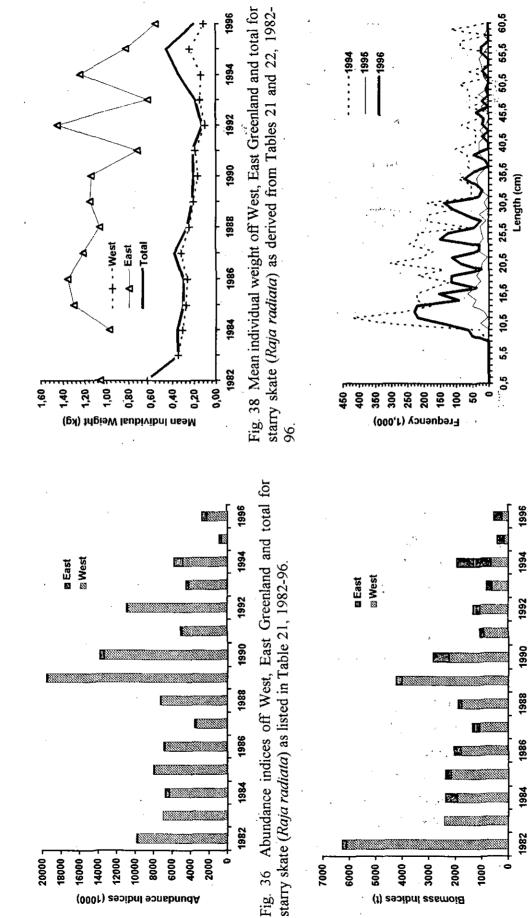


Fig. 37 Biomass indices off West, East Greenland and total for starry skate (*Raja radiata*) as listed in Table 22, 1982-96.

Fig. 39 Length composition for starry skate (Raja radiata), 1994-96.

Fig. 40 Mean near bottom temperature by stratum and total off Greenland as listed in Table 24, 1982-96. Weighted (by stratum area) mean temperature off Greenland is illustrated as a bold line, respectively.

- 31 -

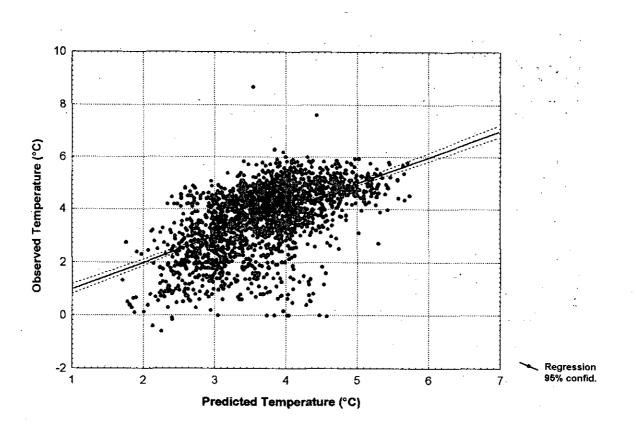


Fig. 41 Near bottom temperature model based on significant year, month, depth, and position effects as specified in Table 25.

· · ·