NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N2853

NAFO SCR Doc. 97/23

SCIENTIFIC COUNCIL MEETING - JUNE 1997

Results of a Stratified Random Bottom Trawl Survey in NAFO Divisions 2GH in 1996

by

K. Yokawa National Research Institute of Far Seas Fisheries 5-7-1 Orido, Shimizu 424, Japan

and

M. Satani Japan Marine Fishery Resource Research Center 3-27 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan

Introduction

Southern sub-stock of Greenland halibut has been a main target of the bottom trawl/gill net fisheries since 1990 especially in the NAFO Regulatory Area. While recent trend of over exploitation of this sub-stock was apparent, the Scientific Council of NAFO could not find an appropriate effort level on this sub-stock. Part of the reason for this can be attribute to the shortage of survey coverage on this sub-stock. This document reports the result of a stratified random bottom trawl survey in NAFO Divs. 2GH, where no scientific survey has been conducted in recent years, during August 1996 conducted under the cooperation between Japan and Canada. The aim of survey was to estimate stock sizes and to obtain information on distribution, size composition and biology of Greenland halibut(*Reinhardtius hippoqlossoides*) and other demersal fishes such as roundnose grenadier (*Coryphaenoides rupestris*) and beaked redfish (*Sebastes mentella*) in Divs. 2GH.

Materials and Method

One stratified random bottom trawl survey was conducted by the R/V Shinkai Maru (3395 GRT, Japan Marine Fishery Resource Research Center) in August 1996 in NAFO Divs. 2GH at depths between 201 to 1,500 m. Stratification of the survey area was followed by Canadian new stratification scheme (Bishop, 1994) and the number of trawl stations in each stratum was allocated in proportion to the area of each stratum with a minimum of two stations per stratum.

Trawl operations were made not only in daytime but also in night time, by assuming that habitat of Greenland halibut did not change between day and night. Towing duration and speed were 30 minutes and 3.5 knot. The net was equipped with a 140 mm mesh codend with a 30 mm mesh liner. Wing spread was approximately 40 m. Detailed information on the vessel and gear is given in Yamada et al. (1988). The swept method was applied to for biomass estimation, assuming the catchability coefficient as 1.0. The coefficient of variation (C.V.) is standard error of estimate divided by estimate.

All the catches of Greenland halibut were measured as total length to cm below, and roundnose grenadier and roughhead grenadier as anal fin length to 0.5 cm below. Size compositions were made in 1.0 cm groups for Greenland halibut, and 0.5 cm groups for roundnose grenadier and roughhead grenadier. The size composition in a stratum was calculated as the average of standardized size composition of each station (fish/km² swept area). Size composition by depth strata was calculated as the average of the size composition of each stratum, using the stratum area as weighting factor.

- 2

194 (Bas 1)

Results

Trawl operations were successfully made at 81 stations out of 89 in Div. 2G, and at 62 stations out of 68 designed in Div. 2H (Table 1). When rough bottom conditions or gill nets set of the fishers prevented towing at some designated stations deeper than 751 m, the captain changed the stations to the nearest points within the strata. Finally, two strata in both divisions were not covered. Data in strata covered with single tow were combined with the data in next stratum with same depth range. Biomass estimates and their CV value of 23 species/species groups are shown in Table 2 and detailed data by each stratum shown in Tables 3 and 4.

1. Greenland halibut

(1) Biomass, abundance and distribution

Greenland halibut was the most abundant species and was caught at all stations (Fig. 1). Most of catches (83%) were obtained from strata north of 59° 40' in Div. 2G (Table 7). While in Div. 2H, higher catch rates were observed in the southern stations.

The estimated biomass and abundance were 29,000 tons and 50,000 thousands fishes in Div. 2G and 25,000 tons and in 88,000 thousands fishes in Div. 2H (Tables 3, 4, 5, and 6). About half of the total estimated biomass was obtained from strata deeper than 1001 m in Div. 2G with their ratio of abundance to the total was 28 %, while about quarter biomass with 8% abundance to the total were obtained from the same depth range in Div. 2H.

(2) Size composition

The size compositions expressed as densities (number/km²) at each 1 cm length class by depth strata were shown in Fig. 2 for Div. 2G and Fig. 3 for Div. 2H. The density of Greenland halibut was higher in Div. 2H than in Div. 2G at depths shallower than 1000 m. Positions of the peaks of the modes at each depth stratum were same between two divisions. Size of fishes caught became larger as depth strata went deeper and the position of the peak of the mode in deepest stratum was around 47-48 cm in both divisions.

Sex ratio (male/female) by depth strata was shown in Fig. 4. Data for unsexed samples were excluded for the calculation of the sex ratio. Sex ratio was around 1.0 at depth range between 201 to 750 m followed by sharp increase to 1.5 in Div. 2G and 2.4 in Div. 2H at depth strata of 751-1000 m (Tables 5 and 6). In the strata deeper than 1001 m, sex ratio was about 1.2 in Div. 2G and about 1.5 in Div. 2H.

2. Roundnose grenadier

Roundnose grenadier was caught mainly from strata deeper than 751 m in both divisions (Tables 3 and 4). Estimated biomass of roundnose grenadier was 2,300 tons in Div. 2G and 2,700 tons in Div. 2H.

The size compositions expressed as densities (number/km²) at each 0.5 cm length class by depth strata were shown in Fig. 5 for Div. 2G and Fig. 6 for Div. 2H. Shapes of the modes were appeared to be different at each depth stratum between two divisions.

High densities of small sized and unsexed indivíduals were observed in depth strata deeper than 1001 m in Div. 2G. Position of the mode of the larger fishes was about 3 - 4 cm higher in Div. 2H than in Div. 2G.

3

3. Roughhead grenadier

While roughhead grenadier was caught at all strata deeper than 751 m in both divisions as roundnose grenadier, some higher catches were observed in strata shallower than 750 m in Div. 2G (Tables 3 and 4). Estimated biomass of roughhead grenadier in Div. 2G (1,800 tons) was 5 times higher than that in Div. 2H (400 tons). Almost of all the catches (92%) in Div. 2G were obtained in strata north of 59° 40' as

Greenland halibut (Table 7).

The size compositions expressed as densities (number/km²) at each 0.5 cm length class by depth strata were shown in Fig. 7 for Div. 2G and Fig. 8 for Div. 2H. Size of fishes caught spread over the range between 5 to 30 cm and no notable mode were observed in depth strata between 401 - 1500 m in both of two divisions. Relative high densities in depth strata of 301-400 m and 401-500 m were observed only in Div. 2G and a notable mode with its peak around 18 cm was observed at depth strata of 301-400 m.

4. Redfishes

Sebastes mentella was dominant in both of two divisions, and it was mainly caught in the depth range between 401 to 1250 m in Div. 2G and between 401 to 1000 m in Div. 2H. Estimated biomass of *S. mentella* was 3.7 times higher in Div. 2G (2,500 tons) than that in Div. 2H (700 tons).

Unsexed size frequencies by the data collected arbitrarily from catches are shown in Fig. 9 for Div. 2G and Fig. 10 for Div. 2H. Data of depth strata with less than 50 fishes were not shown in figures. Size frequency was mono-modal with its peak at around 22 - 24 cm in all depth strata except for depth stratum of 301-400 m in Div. 2G which had another mode with its peak at around 8-9 cm.

Discussion

Apparent inclines of the distribution of Greenland halibut and roughhead grenadier were observed in Div. 2G. About 80% of the total estimated biomass of Greenland halibut was obtained from strata north of 59° 40′ in Div. 2G (Table 7). Although part of the reason of this distribution inclines of Greenland halibut can attribute to the fact that only 4 successful hauls out of 12 planned were made at deeper (>751 m) and southern (south of 59° 40′) strata in Div. 2G, relatively low catch rate of Greenland halibut observed in southern strata in Div. 2G and northern strata in Div. 2H (table 8) should suggest the existence of the distribution gap of Greenland halibut.

If this observed incline of distribution of Greenland halibut reflects true distribution pattern, then fishes inhabiting in northern strata (north of 59° 40', 918 -929) in Div. 2G should be an outflow of northern sub-stock of Greenland halibut which distributes in Subareas 0 and 1. The southward redistribution was recently reported for the southern sub-stock of the Greenland halibut (NAFO SC, 1994). The southward outflow of northern sub-stock which was suggested by the present survey should occurred in conjunction with the redistribution of the southern sub-stock. Bishop, C.A., 1994. Revisions and additions to stratification schemes used during research vessel survey in NAFO Subareas 2 and 3. NAFO SCR Doc. 94/43.

Northwest Atlantic Fisheries Organization, 1994. Stock assessments/Greenland Halibut in Subarca 2 and Divisions 3K and 3L. NAFO Scientific Council Reports 1993. pp.99-103.

Yamada, H., K. Okada, and O. Jorgènsen. 1988a. West Greenland groundfish biomasses estimated from a stratified-random trawl in 1987. NAFO SCR Doc., 88/31.

Table 1. Outline of the survey.

2G					
Strata No.	Depth Range (m)	Area (Km)	Proprotion (%)	Hauls successful	Hauis planned
901	201-300	3739	13.6	11	11
908	201-300	2006	7.3	4	. 4
911	201-300	2373	8.6	5	5
924	201-300	2593	9.4	5	5
926	201-300	1485	5.4	3	3
902	301-400	412	1.5	3	2
912	301-400	250	· 0.9	2	2
923	301-400	796	2.9	2	2
927	301-400	2854	10.4	6	6
903	401~500	274	1.0	2	2
913	401-500	213	0.8	2	2
922	401-500	638	2.3	2	2
928	401-500	2686	9.8	6	6
904	501-750	525	19	2	2
914	501-750	388	14	2	2
921	501-750	487	18	2	2
929	501-750	4325	15.7	12	12
905	751-1000	563	20	1	2
915	751-1000	320	1.0	6	2
920	751-1000	500	21	· •	2
906	1001-1250	785	2.1	, <u>-</u> 1	2.
016	1001-1250	501	1.9		<u></u>
010	1001-1250	1004	1.0	2	
007	1251-1500	1004	3.5	2	
017	1251-1500	666	4,5	0	
917	1251-1500	1766	, 2.1	2	
Total	201-1500	07505	100.0	2	3
Tota	201-1300	27525	100.0	L	09
2H					
Strata No.	Depth Range (m)	Area (Km²)	Proprotion (%)	Hauls successful	Hauls planned
931	201-300	947	4.4	2	2
943	201-300	1214	5.7	2	2
950	201-300	895	4.2	2	2
953	201-300	998	4.7	2 '	2
955	201-300	1334	6.2	2	2
958	201-300	1008	4.7	2	2
932	301-400	189	0.9	2	2
944	301-400	2950	13.7	5	. 5
949	301-400	707	3.3	0	2
952	301-400	607	2.8	2	2
959	301-400	611	2.8	2	2
933	401-500	- 171	0.8	2	2
942	401-500	189	0.9	2	2
945	401 500	1581	7.4	2	2
948	401 500	844	3.9	2	2
951	401-500	803	3.7	2	2
960	401-500	367	17	2	5
934	501-750	268	12	2	2
941	501-750	305	14	1	5
946	501-750	2473	11.5	5	5
947	501-750	779	3.6		
961	501-750	724	3.0	5	5
925	751-1000	220	1 5.4	2	
940	751-1000	223	1.0	2	
062	751-1000	000	1.0	2	
026	1001-1250	0.00	3.9	<u><u></u></u>	
000	1001-1250	208	\ I.Z	2	Ž
939	1001-1250	440	2.1		2
903	1001-1250	909	4.2	2	2
937	1251-1500	322	1.5	2	2
938	1201-1500	1170	3.1	0	2
304	1201-1500		5.5	2	2
110130	. ////~/5/01	. //454		i 67	

Division	20	G	2	H
	Biomass(t)	CV(%)	Biomass(t)	CV(%)
Total catch	52,866	10	41,749	13
Greenland halibut	29,222	17	25,029	7
American plaice	102	21	344	12
Witch flounder	1	72	25	41
Atlantic halibut	615	40	82	60
Roundnose grenadier	2,250	37	2,736	44
Roghhead grenadier	1,827	19	363	16
Redfish S. mentella	2,474	26	663	23
S. marinus	2	100	74	95
Wolffish Northern	296	35	118	45
Spotted	71	39	78	40
Striped	1	58	23	52
Atlantic Cod	161	28	180	24
Other demarsal fishes	9,187	54	2,044	14
Dogfishes	237	42	230	34
Catsharks	20	100	5	23
Greenland Shark	0	_	5,125	100
Rays	1,542	15	1,744	22
Snow crab	0		53	· 41
Other crabs	89	42	74	21
Northern shrimp	3,874	49	2,004	27
Other shrimps	821	22	610	47
Other smaller shrimps	1	100	15	77
Cephalopodas	73	40	130	48

Table 2. Estimated biomass and its CV value of each species/species group.

Table 3. Estimated biomass (ton) of each species/species groups by strata in Div. 2G.

8	1 908	116	924	926	902	912	923	927	903	913 2	922	928	904	914	929	921 92	0+905	919-90	016+916	17-918	otal
4	- 1	n	ĉ	'n	с,	2	2	9	7	2	2	9	2	2	12	2	က	. 2	~	ώ	81
201- 20	Ň	- 10	201- 2	<u>101- 30</u>	<u> 30</u>	1- 30	11- 30	11- 401	1- 401	1- 401	- 401	- 501	- 501	- 20	1- 501	- 75		001- 10	01- 1	251-	-10
0 300		300	300	300	400	400	400	400.	500	500	500	500	150	750	750	750	1000	1250	1251	1500	1500
1 2139		432	1063	1463	189	54	774	3891	77	188	347 5	421 6	209 2	166 6	392	127	2796	4361	3936	14499	52866
112		93	318	852	27	20	40	1780	49	<u>98</u>	173 3	537	423	86 4	831	61	2261	3823	2509	7209	29222
9		9	0	0	ņ		0	4	0		0	4	0	0	0	0	-	0	8	0	102
°		0	0	0	0	0	0	0	0	0	0	0	+	0	0	0	-	0	0	0	-
0		0	0	0	0	0	0	0	0	-	0	129	0	0	485	0	0	0	0	0	615
0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17	173	456	1603	2250
0		2	0	٢	-	0	0	077	2	4	ъ	579	24	10	56	-	29	6	, 66	182	1827
9		ç	en en	ch.	2	7	6	61	Ð	11	145	385	139 2	259	338	55	347	50	549	e	2474
0		0	0	0	0	Ģ	2	0	0	0	0	0	0	Q	0	0	0	0	0	0	2
0		0	0	37	¢	0	¢	119	0	0	0	62	0	0	69	0	0	0	0	0	296
°		0	15	23	+	0	0	12	0	0	0	e	0	0	0	Q	0	0	0	0	71
°	-	¢	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	-
~		2	0	5	-	4	9	117	g	2	0	er.	0	0	0	0	0	0	0	0	161
197		216	436	364	38	19	43	298	=	ę	æ	184	15	ლ	109	en en	30	144	268	5262	9187
_	Q	0	0	0	0	o	0	0	0	0	0	0	0	0	42	0	54	67	0	74	237
~	0	0	0	o	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	20	20
_	0	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
~	ŝ	6	161	116	2	2	ω	384	0	0	4	448	-	5	192	ო	თ	ო	თ	109	1542
_	o	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	e	e	2	0	0	0	: ?	0	0	0	0	ຕ	0	o	14	ę	S	Q	34	Ξ	68 .
111	ø	0	26	21	114	-	650	324	7	0	0	36	0	0	0	0	0	0	0	0	3874
	ģ	95	88	33	0	0	0	12	0	-	-	42	4	+-	253		41	4	12	5	821
_	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-
	0	0	9	-	-	0	2	0	-	0	1.	6	-	1	0	0	-1	0	26	22	73

Table 4. Estimated biomass (ton) of each species/species groups by strata in Div. 2H.

Stratum	931	943	953	955	958	932	944	952	959	933	942	945	948	951 9	60 9	46 9-	17 9	61 934+941	935	940	962	963	936+93	937	964	Total
No. of successful tows	7	2	~	2	2	2	5	2	2	2	2	2	2	2	2	ц.	~	2 3	2	5	2	2	3	2	2	. 60
Depth range (m)	201	201-	201-	201-	201- 2	301-	301- 3	301- 3	01-4	01- 4(01- 4(01- 40	11- 40	11- 40	1-50	1- 501	- 50	- 501-	751-	751-	751-	1001-	1001-	1251-	1251-	201-
	300	300	800	300	300	400	400	400	400	500	500	500	500	500 5	1 00	50 7:	50 7	50 750	1000	1000	1000	1250	1250	1500	1500	1500
Total biomass	188	213	1697	519	259	57	1553	2461	220	62	47 3(335 60	71 24	147 15	38 551	6 115	0 11	30 795	1852	1381	798	1775	3803	1355 3	3125	41749
Greenland halibut	48	68	788	96	46	30	913	890	65	45	14 2	782 6	385 15	150	95 48	76 86	36 6	30 465	1728	913	592	1431	2299	868	1890	25029
American plaice	4	-	27	25	9	0	16	32	g	0	o	53	32	10	0	38 4	0	0 4	0	0	0	o	0	0	0	344
Witch flounder	-	0	0	0	0	0	0	0	Ģ	ò	0	0	0	0	0	2		9	2	4	0	0	9	0	0	25
Atlantic halibut	0	0	0	0	0	0	o	0	0	0	0	0	0	17	0	0	3	0 0t	0	2	0	0	0	0	0	82
Roundnose grenadier	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	14 23	Ξ	341	60	168	1224	223	674	2736
Roghhead grenadier	0	0	0	0	0	-	43	0	2	5	0	4	0	34	9	13	0	25 15	32	42	4	:	65	39	25	363
Redfishes S. mentella	9	0	4	17	4	~	32	9	-	4	٢	38	ç	37	11	31	-	31 233	23	35	10	Ó	9	0	0	663
S. marinus	0	0	0	0	0	0	5	0	0	0	-	0	0	0	0	0	0	0	0	0	0	O	0	0	0	74
Wolffishes Northern	0	0	0	0	0	0	42	0	0	~	0	0	0	0	o	18	0	0	0	0	0	0	0	31	13	118
Spotted	0	0	41	0	5	-	0	10	ო	¢	0	0	ò	1 9	0	0	0	0	0	0	0	0	0	0	0	78
Striped	4	9	0	0	ę	0	6	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23
Atlantic Cod	0	4	0	0	പ	-	28	77	1	ო	0	5	0	38	4	4	-	0	0	0	0	0	0	0	0	180
Other demarsal fishes	105	93	129	231	43	2	24	40	80	с	22	44	103	79	9	24 11	2	23 23	15	25	40	76	67	110	478	2044
Dogfishes	0	0	0	0	0	0	°	0	0	0	0	0	0	0	0	0	0	8. 1	5	7	83	17	75	19	10	230
Catsharks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0,0	0	0	¢	0	0	S	0	сл С
Greentand Shark	0	0	0	0	0	0	0	0	0	0	0	0 51	125	0	0	0	0	0	0	0	0	0	0	0	0	5125
Rays	ŝ	0	5	85	¢	e	117	563	9	2	0	91	7 69	114	0	65 E	2	0 2	0	5	0	¢	7	31	0	1744
Snow crab	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0 14	19	0	0	¢	20	0	0	53
Other crabs	4	0	¢	0	¢	0	0	0	0	-	0	4	0	¢	2	ŝ	° O	4	ę	7	-	16	21	2	e	74
Northern shrimp	Ξ	-	411	0	147	0	250	844	118	0	¢	0	0	222	0	0	0	0	0	0	0	0	0	0	0	2004
Other shrimps	-	38	276	63	0	0	9	0	0	0	0	15	49	25	0	49 4	2	17 3	0	ີ	æ	9	-	0	5	610
Other smaller shrimps	0	0	0	ò	0	0	0	0	0	0	2	0	0	0	5	0	0	0	0	0	0	Ċ	0	0	0	15
Cephalopodas	0	0	0	0	0	0	2	0	0	0	-	0	2	2	0	-	8	1 0	0	0	0	51	4	27	28	130

Table 5. Abundance of Grennland halibut in Div 2G by strata.

Depth	Stratum	Male	Female	Unsexed	Total	Propotion	male/female
201-300	901	1,771,194	1,604,948	2,393,642	5,769,784		1.10
	908	104,925	154,496	1,765,071	2,024,492		0.68
	911	103,440	128,086	1,668,860	1,900,385		0.81
ļ	924	324,124	461,999	1,251,946	2,038,069		0.70
	_ 926	717,420	801,067	111,025	1,629,512		0.90
	Total	3,021,102	3,150,596	7,190,544	13,362,243	0.27	0.96
301-400	902	94,350	95,031	-	189,381		0.99
	912	39,622	33,606	-	73,228	·	1.18
	923	93,439	68,859	25,259	187,556	• •	1.36
1	927	1,122,234	1,329,106	<u>471,785</u>	2,923,125	[0.84
	Toal	1,349,645	1,526,601	497,043	3,373,290	0.07	0.88
401-500	903	94,616	83,891		178,506		1.13
	913	153,619	127,063	· –	280,682		1.21
	922	221,145	164,786	-	385,931	1	1.34
	928	2,434,026	2,806,261	-	5,240,287		0.87
	Total	2,903,405	3,182,001	-	6,085,406	0.12	0.91
501-750	904	536,496	408,185	-	944,681		1.31
	914	282,461	206,443	-	488,904		1.37
	921	71,730	33,108	-	104,838		2.17
	929	3,866,203	3,331,145	105.800	7,303,148		1.16
	Total	4,756,891	3,978,881	105,800	8,841,571	0.18	1.20
751-1000	905+920	3,046,596	1,269,720	. –	4,316,316	0.09	2.40
1001-1250	906+916	2,333,381	1,398,058	. –	3,731,439		1.67
	919	2,736,050	1,642,689	-	4,378,739		1.67
ļ	Total	5,069,431	3,040,747		8,110,178	0.16	1.67
1251-1500	917+918	3,462,937	2,446,001		5,908,938	0.12	1.42
201-1500	Total	23,610,007	18,594,548	7,793,387	49,997,942	1.00	1,27

- 8 -

Table 6. Abundance of Grennland halibut in Div 2H by strata.

Depth	Stratum	Male	Female	Unsexed	Total	Propotion	Male/Female
201-300	931	74,969	39,120	1,518,371	1,632,460		1.92
	943	352,647	337,108	717,136	1,406,890		1.05
	953	2,164,615	2,108,329	-)	4,272,944		1.03
	955	191,933	147,943	586,781	926,657		1.30
	958	110,594	139,150	505,643	755,387		0 <u>.7</u> 9
	Total	2,894,758	2,771,650	3,327,930	8,994,338	0.10	1.04
301-400	932	32,451	32,409	1,122,868	1,187,729		1.00
	944	2,519,366	2,502,970	3,606,949	8,629,285		1.01
	952	3,049,695	2,537,102	-	5,586,797		1.20
	959	135,840	177,827	155,599	469,266	 	0.76
,	Total	5,737,353	5,250,308	4,885,416	15.873,077	0.18	1.09
401-500	933	84,627	78,401	-	163,027		1.08
1	942	24,412	23,699	-	48,111	1	1.03
}	945	6,576,080	6,528,341	417,718	13,522,139	.	1.01
	948	1,211,695	960,515	115,523	2,287,733		1.26
	951	2,406,812	2,227,101	78,666	4,712,579		1.08
	960	151,427	158,437	40,661	350,525		0.96
	Total	10,455,052	9,976,494	652,568	21,084,114	0.24	1.05
501-750	934	444,762	337,337	-	782,099		1.32
	941	483,428	224,531	-	707,959		2.15
	946	10,183,716	9,716,448	191,866	20,092,030		1.05
1	947	1,918,875	1,726,663	1.063,447	4,708,985]	1.11
1	981	1,227,633	598,276		1,825,909	<u> </u>	2.05
	Total	14,258,415	12.603,254	<u>1,255,313</u>	<u>28,116,981</u>	0.32	1.13
751-1000	935	2,410,365	1,728,549	-	4,138,914	i	1.39
	940	853,618	673,393	· –	1,527,011		1.27
	962	725,511	272,859		998,370		2.66
	Total	3,989,494	2,674,801		6,664,295	0.08	1.49
1001-1250	936	755,315	689,392	-	1,444,707		1.10
]	939	1,154,682	1,123,220	-	2,277,902	j	1.03
	963	910,178	600,330		1,510,509		1.52
	Total	2,820,176	2,412,942	_	5,233,118	0.06	1.17
1251-1500	937	306,092	309,400	-	615,491	{	0.99
	964	718,273	684,667	-	1,402,940		1.05
	Total	1,024,365	994,067	-	2,018,432	0.02	1.03
201-1500	Total	41 179,611	36,683,516	10 1 21 228	87,984,355	1.00	1.12

Division	Southern strat	a (strata <917)	Northern strat	a (strata >918)
	Biomass(t)	Ratio	Biomass(t)	Ratio
Total biomass	17,505	34%	34,609	66%
Greenland halibut	5,195	17%	24,636	83%
American plaice	75	73%	28	27%
Witch flounder	2	100%	0	0%
Atlantic halibut	1	0%	614	100%
Roundnose grenadier	1,161	56%	910	44%
Roghhead grenadier	153	8%	1,695	92%
Redfishes S. mentella	1,497	58%	1,105	42%
S. marinus	0	0%	2	100%
Wolffishes Northern	9	3%	287	97%
Spotted	18	25%	53	75%
Striped	1	66%	0	、 34%
Atlantic Cod	33	20%	128	80%
Other demarsal fishes	5,986	76%	1,864	24%
Dogfishes	· 2	1%	233	99%
Catsharks	14	100%	0	0%
Greenland Shark	0	-	0	_
Rays	95	6%	1,460	94%
Snow crab	0	-	0	-
Other crabs	54	62%	33	38%
Northern shrimp	2,817	73%	1,057	27%
Other shrimps	357	44%	463	56%
Other smaller shrimps	1	100%	0	0%
Cephalopodas	35	45%	42	55%

Table 7. Comparison of the esitimated biomass between northern strata and southern strata in Div. 2G.

Table 8. Comparison of average catch (ton/km²) of G. halibut between southern and northern strata in both divisions at area deeper than 751 m (number in parenthesis indicates number of set).

Depth	2	G	2	Н
(m)	Northern strata ¹⁾	Southern strata ²⁾	Northern strata ³⁾	Southern strata4)
751-1000	2.4 (2)	- 1.1 (1)	0.7 (2)	4.0 (4)
1001-1250	3.5 (2)	2.0 (2)	1.6 (2)	3.2 (3)
1251-1500	4.4 (2)	0.4 (1)	1.6 (2)	2.7 (2)

¹⁾, Strata north of 59° 40'
²⁾, Strata south of 59° 40'
³⁾, Strata north of 56° 40'
⁴⁾, Strata south of 56° 40'

Fig. 1. Catch distribution of Greenland halibut in Divs. 2GH.

Fig. 2. The density (number/km²) of G. Halibut by length class and by depth strata in division 2G.

Fig. 3. The density (number/km²) of G. Halibut by length class and by depth strata in division 2H.

- 12 -

Fig. 5. The density (number/km²) of roundnose grenadier by length class and by depth strata in Div. 2G.

Fig. 6. The density (number/km²) of roundnose grenadier by length class and by depth strata in Div. 2H.

- 16 -

Fig. 8. The density (number/km²) of roughhead grenadier by length class and by depth strata in Div. 2H.

- 18 -

· . .

Fig. 10. Size frequency of Sebastes mentella by depth strata in Div. 2H.