NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Fisheries Organization

Serial No. N2954

NAFO SCR Doc. 97/97

SCIENTIFIC COUNCIL MEETING - NOVEMBER 1997

The Greenlandic Fishery for Northern Shrimp (Pandalus borealis) in Denmark Strait 1996 and January-October 1997

by

C. Hvingel, O. Folmer & H. Siegstad

Greenland Institute of Natural Resources Box 570, DK-3900 Nuuk, Greenland

Introduction

At its meeting in November 1996 STACFIS concluded that there was no biological basis for changing the advised TAC of 1997 from the 1996 value of 5,000 tons. The advised TAC has remained at this level since 1993. Like in 1993-1996 the effective TAC for 1997 in the Greenlandic zone was set to 9,563 tons of which 3,888 tons was allocated to Greenland. No effective TAC is set for the Icelandic zone.

Vessels from Greenland, Denmark, the Faroe Islands and Norway participated in the fishery in the Greenlandic zone in 1996 and 1997. The total catches by these nations as reported to Greenlandic authorities amounted to 9,165 tons in 1996 and 5,334 tons in the period Jan-Oct 1997.

Greenlandic vessels accounted in 1996 for 50% of the total catches amounting to 4,546 tons. By the end of October 1997 Greenlandic vessels had taken 27% of the catches equalling 1,429 tons.

The present paper updates time series of total catch, catch composition, effort, CPUE-indices and geographical distribution of the Greenlandic shrimp fishery in Denmark Strait, Greenlandic zone.

Materials and methods

Based on compulsory weekly reporting to Greenlandic authorities by vessels above 75GRT, total catch and number of vessels in the Greenlandic zone was compiled by nation and month.

Logbook data from the Danish, Faroese and Greenlandic fleets were analysed to show the spatial distribution of the fishery and the overall distribution of catches by year, and of catch, effort and catch rates by month.

Logbook data from 32 Greenlandic trawlers fishing in the traditional fishing area north of 65°N were used in a multiplicative model to calculate standardised catch rate indices for the years 1987-1997. Only vessels with at least three years of continual fishing activity in the area were included in the calculations.

Catch and effort were aggregated by vessel, month and year. All cells in with more than 10% of the catch not being sorted by shrimp size were excluded to avoid the influence of cells with non-sorted catch. Each cell was weighted by the included number of hauls. This is a change to the previous calculation procedure, which used indirect weighting by deleting cells with less than 10 hours of effort. Indices were calculated for total catch and

for catches of shrimp larger than 8.5 g to avoid the influence of unreported discard of smaller shrimp (Carlsson & Lassen, 1991).

Significant interactions between YEAR-MONTH, YEAR-VESSEL and VESSEL-MONTH exist in the data but their contribution to the variation is small in relation to that explained by the main effects (VESSEL, MONTH and YEAR). The final analysis was therefore run with main effects only.

Size compositions of shrimp catches in the areas north and south of 65°N were generated from samples from the Greenlandic fishery. Samples taken by observers before processing were sorted by sexual characteristics (McCrary, 1971) and measured to the nearest 0.1 mm carapace length. The data were then pooled in 0.5 mm length groups and adjusted by ratio of weight to the number caught in the set. Numbers from all sets for the month were totalled and adjusted by weight to the monthly catch reported in vessel logs. The numbers from all months were totalled and adjusted by weight to the total catch of the year in the respective areas.

Annual length frequency distributions of catches in the traditional fishing area north of 65°N from 1991 to 1995 and from the area south of 65°N from 1993-1997 were analysed by modal analysis (Macdonald & Pitcher, 1979) in an attempt to isolate year classes. The number of age components and initial estimates of their mean lengths were unknown and the iterations were allowed to run freely for best fit, except for a fixed coefficient of variation at 0.045.

Results and Discussion

Geographical distribution of the Greenlandic fishery

The fishery for shrimp in Denmark Strait has traditionally taken place at the Dohrn Banke north of 65°N. However, since 1993 the fishing pattern has changed as new fishing grounds were found south of 65°N. Figures 1A-G show the geographical distribution of the Greenlandic catches from 1991 to 1997.

In 1995 the fishery north of 65°N was concentrated between 65°30'N and 67°30'N and between 30°W and 32°W. In 1996 the overall areal distribution of the catches in the traditional area were approximately identical, but contrary to earlier years the area was only fished in January and December. Also in 1997 effort was only allocated to January (data covering Jan.-Oct).

Following the introduction in 1993 the new fishing areas south of 65°N received about 50% of the total effort spent by Greenland in Denmark Strait 1994-1995. In 1996 80% of the effort was spent south of 65°N and the preliminary data for 1997 indicate that this development is continuing (Fig 2B). Most catches were taken between 62°N and 62°30'N, but other concentrations were also located.

Reported catches 1996 - October 1997

Table 1 shows catches by month and nation and the numbers of reporting vessels in the Greenlandic zone in 1996 and 1997. Total reported catch in 1996 was 9,165 tons, and at the same level as the year before. Preliminary catch figures indicate that the total catches of 1997 will be at the 1994-1996 level.

A total of 42 vessels participated in the fishery in 1996 and until October 1997 36 vessels have been registered. The seasonal distribution of the fishery was similar to previous years with minimum activity in the summer period.

Catch, effort and unstandardised CPUE from vessel logs

Monthly, semi-annual and annual catch, effort and mean catch rates based on logbooks from the Greenlandic, Danish and Faroese fishery in the Denmark strait were compiled and are given in details in (Skúladóttir, 1997). Only the data of the Greenlandic fleet is presented in this paper.

The Greenlandic fishery in the traditional area north of 65°N has gradually changed from an all year activity with a minimum in the summer months, to effort only being spent only in December and the first three or four months of the year. This time of year generally produces the highest catch rates. In 1996, however, the northern area was abandoned after a short period of activity in January, presumably due to low catch rates compared to the southern area (Fig. 2C). In December the area was revisited but catch rates were still unsatisfactory and only 52 tons were taken. The preliminary data for 1997 tells the same story: low effort and only in January.

Compared to the late 1980's catch and effort in the area north of 65°N has been reduced by approximately one order of magnitude (Table 2 and Fig. 2A+B). The main explanation for this development is not to be found in declining overall catch rates (Fig. 2C) but in a decline in catch rates of large shrimp (see later), which is the prime target of the Greenlandic fishery in Denmark Strait. Participation in the fishery at Flemish Cap and the development of the new fishery in the southern area of Denmark Strait are also major causes of the traditional area being less attractive.

The fishery in areas south of 65°N began in 1993. No decisive seasonal pattern is yet obvious and effort has been distributed over practically all months. The largest catch is generally taken Nov.-Feb. In spite of catch rates being almost twice as high as north of 65°N (Fig. 2C) only about 20-50% of the Greenlandic effort was spent in the southern area during the first three years - probably due to less favourable bottom conditions for trawling in this area. Following this period of learning about 80-90% of total effort was allocated to the southern area in 1996 and 1997.

Total Greenlandic fishing effort in the Denmark Strait has shown a declining trend from about 43,000 hr's in 1989 to a level of about 15,000 hr's in the mid 1990's (Table 2 and Fig. 2F). The preliminary data for 1997 suggests a fishing effort below that level. The total catches followed the same trend until 1993 when the new fishing grounds south of 65°N enhanced overall catch rates and made catches reach a new level of around 4,000 tons (Fig 2E+F). In 1997 catches will probably be at this level.

Standardised CPUE from Greenlandic vessel logs

Results of the multiple regression analysis to standardise catch rates of both large shrimp (>8.5 g) and total catch (Table 3-4) shows that all main effects were highly significant (p<0.0001) and their combined effects explained 73% and 70% of the variation in CPUE respectively. The model diagnostical outputs (residual plots, Cook's D influence statistics, test of normality etc.) indicate that the model and error structures were correct.

All first-order interactions between the effects of YEAR, MONTH and VESSEL were also highly significant, suggesting that the effect of YEAR on CPUE differ from month to month and from vessel to vessel. The contributions of these interactions to the variability within the data set however were small compared to that of the main effects. Thus, the basic model without interactions was considered a good description of the data.

The annual catch rate indices for large shrimp and total catch are presented in Figure 2D. This years index series has been calculated using a different weighting procedure. This meant no changes to the trend of the time series. However, the 1996 data point, that in the previous analysis was the lowest on record is now higher than the 1993 data point.

The two index time series are almost parallel showing a declining trend from 1987 to 1993, succeeded by an increase to a higher level in 1994. This level was maintained through to 1997.

Both in 1996 and 1997 only a small amount of effort was allocated to the northern area. Thus the index values for these years are based on only a few observations and interpretation of these data points as a biomass indices should therefore be done with care.

Length distributions

Besides practical problems collecting samples, adequate sampling in time and space for constructing length distribution of the catches are made difficult by the ongoing changes in fishing pattern. Unsolved problems of population structure further made stratification of the analyses difficult. In this investigation samples taken north and south of 65°N were treated separately. The numbers of samples included are presented in Table 5.

The length frequency distributions of the northern and southern areas are shown in Fig. 3. Modal analysis was applied to the annual length frequency distributions of the Greenlandic catches (Table 6). Runs with 6 age components produced the best fits and estimated reasonable consistent mean lengths from year to year. Skúladóttir (1994) also found 6 age components in a similar analysis. The mean lengths estimated in this study for the northern area show some agreement with her findings. In the southern area the mean length at age turned out a little smaller.

Due to lack of knowledge of shrimp growth in the Denmark Strait assigning of absolute age to the found age components is still a matter of belief. In this paper we assigned age to the year classes as presented by Skúladóttir (1994).

The estimated proportions of each age group in the catch were applied to the total numbers caught to produce a catch-at-age matrix. This matrix was subsequently divided by the standardised fishing effort for the northerm area and the unstandardised effort for the southerm area to produce age-specific indices of abundance (Table 6). In general catch rates for all year classes indicate increasing abundance up to about age 7, suggesting only partial recruitment to the fishery, at least up to age 7.

In the northern area data is available for 1991-1995. As this short time series represent a period at the lower end of the CPUE index time series (Fig 2D) interpretations of "better" year classes as being good should be done in that context. However, some "good" recruitment of young shrimp seemed on its way in 1995 to enter the fishery in the late 1990's. Generally the situation in 1995 seemed better than the previous four years with "good" representation in practically all age groups. Thus the catch composition of the Greenlandic fishery in the northern area may signal an improvement of both spawning stock and recruitment of shrimp in Denmark Strait within the period 1991-1995.

In the southern area catch rates of the largest shrimp were still very good in 1997, in fact the best of the time series (Table 5). Not only female abundance showed an up-going trend since 1993 (Fig. 4) but also male abundance has increased. It is quite possible, however, that these changes are caused by the changes in fishing pattern since the beginning of this fishery rather than an improvement of stock status.

Conclusion

Total catches in Denmark Strait, Greenlandic zone by all nations will probably be at the same level in 1997 as the 1996 catches of about 9,000 tons.

The overall geographical distribution of the Greenlandic fishery in the Denmark Strait in 1996 was maintained in 1997. However, a substantial reduction of effort spent in the traditional area north of 65° has taken place within the last two years.

Effort spent in the southern area has increased since the beginning of this fishery in 1993 and now accounts for 80-90% of the total Greenlandic effort in Denmark strait.

The overall effort spent by Greenland in Denmark Strait seems to have stabilised at around 15,000 hours following a decline from more than 40,000 hours in 1989. The total catches followed the same downward trend until 1993 when the new fishing grounds south of 65°N enhanced overall catch rates and made catches reach a new level of around 4,000 tons. In 1997 catches will probably be at this level.

The overall unstandardised catch rates have increased by a factor 3 since 1993 mostly due to the high catch rates in the new fishing grounds south of 65°N, but also influenced by an increase in biomass north of 65°N as indicated by the standardised CPUE.

The size structure in the northern area as judged from the 1995 data seemed healthy with good representation of several year classes. There were some indications of good recruitment to enter the fishery in the late 1990's. No data was available for 1996-1997.

In the southern area both male and female abundance has increased since 1993 but the data may be highly influenced by the ongoing development of this new fishery.

References

Carlsson, D. M. & H. Lassen (1991). A catch-rate index for large shrimp in the Greenland shrimp fishery in NAFO Division 1B. *NAFO SCR Doc.* 91/57, Serial No. N1941.

Macdonald, P. D. M. & T. J. Pitcher (1979). Age-groups from size-frequency data: A versatile and efficient method of analysing distribution mixtures. J. Fish. Res. Board Can., 36: 987-1011.

McCrary, J. A. (1971). Sternal spines as a characteristic for differentiating between females of some Pandalidae. J. Fish. Res. Board Can., 28: 98-100.

Skúldóttir, U. (1994). The Icelandic shrimp fishery (Pandalus borealis) in the Denmark Strait in 1992-1994, and a preliminary Estimation of age. NAFO SCR Doc. 94/97, Serial No. N2486.

Skúldóttir, U. (1997). The Catch Statistics of the Shrimp Fishery (Pandalus borealis) in the Denmark Strait in the years 1980-1996. NAFO SCR Doc. 96/107, Serial No. N2804.

Table 1. Catch (tons) and number of vessels fishing in Denmark Strait, Greenland zone by months and nation as reported to Greenlandic authorities 1996 and 1997.

Catch	Catches (tons)													
Year	Nation	Jan	Feb	Mar	April	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1996	Denmark	100	36	126	159	103	116	155	0	0	23	78	63	959
	Faroe Isl.	305	175	155	7	0	0	0	0	0	0	65	436	1143
	Greenland	770	454	218	172	0	9	333	411	65	974	770	370	4546
	Norway	267	225	484	529	198	0	43	142	155	228	246	0	2517
	Total	1442	890	983	867	301	125	531	553	220	1225	1159	869	9165
1997	Denmark	0	4	0	236	173	262	232	165	61	66	-	-	1199
	Faroe Isl.	261	268	87	28	0	0	0	0	5	7	-	-	656
	Greenland	1035	220	6	22	0	0	112	0	0	34	-	+	1429
	Norway	342	423	296	485	140	0	82	40	129	113	-	-	2050
	Total	1638	915	389	771	313	262	426	205	195	220	-	-	5334

No. of vessels

а

Г															
	Year	Nation	Jan	Feb	Mar	April	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
	1996	Denmark	1	1	1	1	I	I	1	0	0	1	1	1	1
		Faroe Isl.	8	7	2	1	0	0	0	0	0	0	2	7	8
· · .		Greenland	10.7	. 5	3	3 ·	• 0	1	5	5 -	2	-11-	- 41	6	16
ς. 		Norway	18 ^{,0}	<u></u> 6	12	10``	6	0	1	5	6	្រាំរៀ		0	17
	د . ر ·	Total	27	-19	18	15 d	. 7	2	7	10	F8 1	·23 (23	14	42
1 1 1	1997	Denmark	0	1	0	1;:	.í	ł	1	1.	(jr.)	7115	,č-	-	1
		Faroe Isl.	6.6	•3	3	1.3	0	0	.0	0	5 a]a is	· 1 -	. 62	-	7
	7 (Greenland	12	• 4	1	1	· 0	0	3	0	· '0 '	2	_	-	13
5.4	9 Q	Norway	7.	9	9	9	6	0	2	2	3 65 63	6,	. 5-		15
15	່ອ່ມ	Total	25	17	13	12 ·	.7	1	6	3-	7	10	2-	-	36
	نې د		· ·	• •			·			* 4	•		-c		

S. 77

922 J. : . C L. L.N

× 0 0320

22.32 12

> . 3 ્રક

> > ٠ ų - 1 ri -e₹£

> > > <u>t</u> i ъ£

11.38

REAL

Table 2. Catch (tons) and effort (hr's) by Greenlandic shrimp trawlers fishing in Denmark Strait 1987 1997. Data is given by areas north and south of 65°N and as total area. <u>ч</u>е

· · · · · · · · · · · · · · · · · · ·		-			5 1	5 5 8 8 A.	· .`
		. C	atch (tons)		: Ef	fort (hr's)	а. С
PERMIT	Year	North	South	Total	North ,	South	Total
-1, kr.v 200 -	1987	6627	0	6627	25168	9 · O	25168
New States and Con-	1988	7450	0	7450	37931	• • 0	37931
and the state of the	1989	5981	• • • 0	5981	43382	°0	43382
	1990	6210	0	6210	39254	07 3 4	- 39254
i et al a	1991	4205	Ó	4205	36256	Ó.	36256
	1992	. 2012	0	2012	19712	÷ 0 ·	19712
Addin Addin Solution	1993	1425	. 918	2343	15174	4245	19419
	19945	1056	2869	3925	6200	7780 ⁵	13980
· · · · · · · · · · · · · · · · · · ·		-1913	2135 -	~ 4048		5923 -	15353
	1996	289	4256	4545	3387	12303	15690
	1997	40	1389	1429	294	3452	3746

5

calculating	standardise	d CPUE i	ndices for total shrim	o catches in t	the Denmar	k Strait north of	65°N. 💱 🖉	
Dependent	Variable:	LNCPUE						24 C
Weight:		HAULS						
Source		DF	, Sum of	Squares	à	Mean Square	F Value	Pr > F
Model		52	12548.3	1621782		241.31377342	31.43	0.0001
Error	m. + - 1	709	5442.8	6687340		7.67682211		
Corrected	Total	/61	1/991.1	8309123				
	., F	-Square	3	C.V.		Root MSE	LNC	PUE Mean
l l	C C	.697470	5	6.47202		2.7707078	4.	90633748
				•				
Source		DF	Туре	III SS		Mean Square	F Value	Pr > F
VESSEL		31	3704.9	1043593		119.51323987	15.57	0.0001
YEAR		, 10 ⁻	5390.8	2191622		539.08219162	70.22	0.0001
MONTH		11	5307.5	5506827		482.50500621	62.85	0.0001
				T for	н0:	Pr > T	Std	Error of
Parameter			Estimate	Paramet	ter=0		Es	timate
INTERCEPT			4.218136945 B	7 ¹	11.53	0.0001	Ó.	36580796
VESSEL	OUIN	· · .	0.027941532 B		0.30	0.7622	0.	09230127
	QIUO	-	0.350255079 B	7	3.51	0.0005	, O.	09976981
	OUKV		0.402140827 B		2.20	0.0239	0.	2041/438
			0.249679976 B		3 45	0.0006	0.	00372033
· ·	OUTM		-0.191554891 B	,	-2.02	0.0434	0.	09466335
	OUWH	· .	0.179686590 B		2.38	0.0174	Ō.	07539410
	OUYM		-0.465194714 в	-	-3.21	0.0014	0.	14486918
Į	OWDV		-0.245375495 B		-1,75	0.0808	0.	14035004
ļ	OWGG		0.427644638 в		3.58	0.0004	0.	11943615
	OWLQ		-0.287171863 B		-3.23	0.0013	0.	08891797
	OWQU		-0 12442722914 B		6.74 -1.40	0.0001	0.	0/680/41
	OWID		-0.215180208 B		-1.40	0.1017	. 0.	34077606
	OWUJ		-0.091286344 B	•	-0.34	0.7320	 D .	26643633
	OWVM		-0,184664788 B		-2.21	0.0277	0.	08372780
	OWWP		0.407375266 B		5.34	0.0001	0.	07630973
	OWZR		-0.571956774 B		-4.17	0.0001	0.	13710977
	OXSY		-0.309884377 B		-2.18	0.0292	0.	14182413
}	OYAQ		-0.234914638 B		-1.34	0.1814	0.	17558536
	OYCK		0.333406827 B. 0.249379990 B	•	4.52	0.0001	U. 0	0/396/66
	OYFF		0.242331115 B		2.14	0.0327	0.	11323050
	OYHO		0.590783622 B		9.65	0.0001	ů.	06120234
4	OYKK		-0.011160278 B		-0.16	0.8767	0.	07192751
	OYNR		0.118691731 B		1.52	0.1282	0 -	07792761
	OYNS		0.019312298 B		0.26	0.7963	0.	07478918
	OYRK		0.22826/02/ B		2.46	0.0143	0.	09295149
l	OYXT		0.397614214 B		5 45	0.0000	. 0.	07295744
	OZKO		0.439647274 B		5.79	0.0001	0,	07592067
	ZZZZ		0.00000000 B'		•	•		
YEAR	87		0.740990547 B		2.04	0.0414	0.	36271086
	88		0.591317945 B		1.64	0.1023	0.	36142157
1	89		0.201547356 B		0.56	0.5770	0.	36118921
	90 01		0.080446154 B 0.107566515 B		0.22	0,8239	. 0.	36126915
	92 .		-0.107000010 B		-0.30 	0.7000	· 0.	36262193
	93		-0.566698191 B		-1.56	0.1188	0.	36291047
	94		0.204458137 B		0.56	0.5779	0. 0.	36725752
	95		.0.193013884 в ,		0.53	0.5967	0.	36464409
	96		-0.102442003 B		-0.27	0.7884	0.	38157804
	97		0.00000000 B				•	
MONTH	1		0.647207153 B		14.36	0.0001	0.	04508400
	∠ . 3		0.024204913 B A 4278430A2 B		13./9 9.01	.0.0001	0.	04527860
	4		0.411809107 B		7.14	0.0001	0.	05765473
	5		0.055723741 B		0.82	0.4102	0.	06762043
	6		-0.354315943 B		-1.60	0.1094	ŏ.	22105211
	7		-0.254671528 в		-0.50	0.6168	0.	50873934
	8		-0.372871124 B		-2.99	0.0029	0.	12466939
	9		-0.346735099 B		-4.01	0.0001	0.	08650895
	10 , 11 '		-U.3U269/583 B		~4.06 _5.50	0.0001	<u>o</u> .	0/464328
1	12		0.000000000 B		<u>م</u> د.د	0.0001	0.	00001010
I					•	-	•	

Table 3. ANOVA-table and parameter estimates. Output from the GLM procedure of the SAS application calculating standardised CPUE indices for total shrimp catches in the Denmark Strait north of 65°N.

- 6 -

calculating	stanuaru	Seu CrUE I	noices of simmp>8.5	g in the Deliniark Su	ait north of 05 IN.		
Dependent	Variabl	e: LNCPUE					
Weight:		HAULS					
Source		DF	Sum of	Squares	Mean Square	F Value	Pr > F
Model		52	12930.8	0163281	248.66926217	35.72	0.0001
Frror		695	1838 2	8970934	6 96156793	00112	
		240	4030.2	0124015	0.90190799		
Corrected	Total	/4/	17769.0	9134215			
		R-Square		C.V.	Root MSE	LNC	CPUE Mean
		0.727713	5	4.79460	2.6384783	4	81521604
Source			Type		Mean Scuare	F Value	Pr > F
UDCCDI		21	2202 4	3074007	103 20428223	14 94	0.0001
VESSEL		3 I 1 D	5202.4	3274033	103.30428222	T4'04	0.0001
YEAR		10	6288.9	/318849	628.89731885	90.34	0.0001
MONTH		11	5633.8	0156652	512.16377877	73.57	0.0001
l				T for H0:	Pr > T	Std	Error of
Parameter	•		Estimate	Parameter≠0		E:	stimate
TNTEDCEDT			4 057964488 B	11 65	0 0001	 ∩	34844053
VECCEL	OUTN		0 092047325 P	11:00	0.2519	0	08807068
VESSEL	OUIN		0.082047333 B	0.33	0.3319	0	.00007000
	0010		0.34/2223// B	3.65	0.0003	. 0	.09512792
	OUKV		0.550281905 B	2.83	0.0048	0	.19448834
	QOUQ		0.166818987 B	2.08	0.0382	0	.08031919
	OUPJ		0.253460622 B	3.67	0.0003	0	.06913043
	OUTT		-0.152006704 B	-1 68	0 0927	0	09028004
	OUTUR.		0 206160245 5	1.00	0.0347	0	07100070
	HWOO		0.200100345 B	2.80	0.0043	0	0/1303/0
	MYUO		-0.441723933 B	-3.20	0.0014	0	13804702
	OWDV		-0.227208072 B	-1.70	0.0898	0	.13373173
	OWGG		0.420335986 B	3.69	0.0002	0	.11382324
	OWLO		-0.225025181 B	-2 65	0 0082	0	08481263
	OWOU	,	0 575460771 B	7 94	0.0001	0	07337766
	0000		0.373400771 B	7.04	. 0.0001	0	.07337700
	OWSH		-U.102462046 B	-1.21	0.2269	0	.084/2260
	OWUD		-0.291717821 B	-0.90	0.3691	0	.32456508
	OWUJ		-0.126716280 B	-0.50	0.6177	0	.25377173
	OWVM		-0.179735946 в	-2.21	0.0272	0	08120183
	ONTATE		0 453038044 B	6 22	0 0001	0	07281487
	OWNE		0 543497663 0	4 16	0.0001	0	12066542
	OWZR		-0.343487863 B	-4.10	0.0001	U.	.12000343
	OXSY		-0.274530167 B	-2.03	0.0426	0.	13514025
	OYAQ		-0.226716619 В	-1.36	0.1757	0.	.16727158
	OYBZ		0.357593279 В	5.04	0.0001	0	.07095409
	OYCK		0.191116810 B	2.17	0.0303	0	08805875
	OVEE		0 197564853 B	1 93	0 0676	ů.	10702960
	OTT		0.197304033 D	1.05	0.0070	0.	.10792900
	OTHO		0.504821733 B	8.01	0.0001	0.	.05861/12
	OYKK		0.038868110 B	0.56	0.5754	0.	.06935360
	OYNR		0.127633986 В	1.72	0.0866	0.	.07436837
	OYNS		0.027760457 B	0.39	0.6974	0	.07136573
	OYRK		0.241815893 B	2.73	0.0065	0	.08864009
	TRYO		0.215505779 B	2 89	0 0040	0	07462446
	OVVM		0 416716447 P	5.00	0.0040	0.	06063153
			0 47107494 D		0.0001	0.	07044267
	OZKQ		0.4/1826/90 B	6-51	0.0001	0.	.0/24436/
1	ZZZZ		0.00000000 B	•	•		•
YEAR	87		0.751792325 B	2.18	0.0299	0.	34548754
1	88		0.722750353 B	2.10	0.0361	0	.34422498
1	89		0.335617005 B	0 98	0.3296	0	34398009
1	90		0 152100427 8	0.14	0.0200 0 4604	0	34408670
	90		0.000661630 D	0,44	0.000	0.	34400070
1	91		-0.080001038 B	-0.23	0.8147	0.	. 34409665
	92		-0.375876862 B	-1.09	0.2768	0.	.34538097
1	93		-0.575577558 B	-1.67	0.0963	0	.34562697
1	94		0.059924170 B	0.17	0.8640	0	.34975286
	95		0.100683946 B	0.29	0 7720	0	34727940
1	96		-0 240259359 B	_n ««	0.1720	0.	36327107
1	90		0.00000000 D	-0.00	0.000/	υ.	
	91		0.00000000 B	·- ·	• • • • • • •	· .	
MONTH	1		U.6/3773151 B	15.66	0.0001	0.	.04301646
	2		0.638961806 B	14.78	0.0001	0	.04322374
	3		0.425183590 B	9.38	0.0001	0	04533049
	4		0.352884226 B	6.36	0.0001	0	05548479
	5		0 016657117 B	0.25	0 7995	n	06556102
	5		_0 502499105 B	1 20	0.1225	0.	210E2102
	0		-0.502488105 B	-4.39	0.01/3	0.	.21033192
1	7		-0.229325709 B	-0.47	0.6361	0.	48447052
	8		-0.377978510 B	-3.18	0.0015	0	.11879591
	9		-0.373283219 B	-4.53	0.0001	0	.08244095
ŀ	10		-0.340294851 B	-4.78	0.0001	0	07113954
	11		-0.319593145 B	-5 63	0 0001	ň.	05675296
1	 10		0 00000000 B		0.0001	0.	
1	14		0.00000000 B			-	•

Table 4. ANOVA-table and parameter estir	nates. Output from the GL	M procedure of the SAS	application
calculating standardised CPUE indices of sl	nrimp>8.5 g in the Denmar	rk Strait north of 65°N.	

									Area	nortn
Year/	1	991	1992		19	993	1	994	1	995
Month	S	N	S	N	S	N	S	N	S	Ν
1	30	14898	0	0	0	0	0	0	13	3505
2	28	20127	20	4834	56	16258	19	6682	0	0
3	42	17872	0	0	· 0·	0	0	0	15	6124
4	75	24286	0	0	0	0	0	0	0	0
5	32	9861	0	0	0	0	0	0	0	0
6	0	0	0	. 0	0	0	0	0	0	0
7	. 0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	. 0	0
10	0	0	0.	. 0	0	0	0	0	0	0
11	0	· 0	0	. 0	0	0	0	0	. 0	0
12	0	0	0	. 0	0	0	0	0	0	0
Total	207	87044	20	4834	56	16258	19	6682	28	9629

Table 5. Number of catch sub samples (S) by area taken from Greenlandic trawlers and number of individual shrimp measured (N).

8

1. 6

					•				Area	south
Year/	1	993	1	994	19	95	1	996	19	997
Month	S	N	S	N .	S	N	S	N	S	N
1	·0	0	30	9957	0	0	0	0	0	Õ ,
2	0	0	8	2712	0	0	0	0	0	0
3	10	6560	14	3916	0	0	0	0	0	0
4	37	27933	11	5115	0	0	10	4973	0	0
5	0	0	0	Ó	0	0	7	2571	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	9	3064
8	· 0	0	0	0	. 0	0	12	4405	2	833
9	0	0	0	0	0	0	0	0	-	-
10	0	0	0	0	0	0	0	0	-	· -
11	0	. 0	0	0	0	0	24	6444	-	-
12	0	0	0	0	0	0	0	0	-	-
Total	47	34493	63	21700	0	0	53	18393	11	3897

.

Table 6. Output from modal analyses of annual length frequency distributions of the Greenlandic shrimp catches in Denmark Strait and derived age specific catch rates. Note that the assignment of age to the modes is a matter of convenience rather than actual knowledge of shrimp growth at East Greenland.

Area north

Mean Cpi. length (hill)											
Year class	1991	1992	1993	1994	1995						
3	18.9	18.7	18.7	19.1	19.2						
4	21.2	21.3	21.4	20.7	21.2						
5	23.5	23.8	23.3	22.9	23.0						
6	26.0	25.9	25.9	25.0	25.2						
7	29.4	29.2	28.8	27.9	28.9						
8+	31.2	30.7	31.5	31.1	30.9						

Proportion of total catch

ſ	Year class	1991	1992	1993	1994	1995
ľ	3	0.02	0.04	0.01	0.01	0.05
	4	0.12	0.16	0.06	0.05	0.12
	5	0.22	0.20	0.18	0.22	0.20
	6	0.18	0.18	0.38	0.32	0.27
	7	0.27	0.19	0.25	0.30	0.27
	8+	0.18	0.23	0.12	0.10	0.08

Area south

Mean Cpi, length (mm)											
Year class	1993	1994	1995	1996	1997						
3	18.0	16.8	-	16.3	16.0						
4	20.4	19.5	-	19.1	18.6						
5	22.7	21.9	-	21.4	21.1						
6	· 25.0	24.3	-	23.5	23.3						
7	27.7	27.2	-	26.9	26.5						
8+	30.5	30.1	-	29.1	28.6						

Proportion of total catch

Year class	1993	1994	1995	1996	1997
3	0.01	0.01	· -	0.01	0.00
4	0.11	0.05	-	0.05	0.03
5	0.23	0.11	-	0.24	0.27
6	0.22	0.21	-	0.28	0.19
7	0.18	0.34	-	0.25	0.32
. 8+	0.25	0.28	-	0.17	0.19

Number caught (millions)

Year class	1991	1992	1993	1994	1995
3	9	10	1	1	8
4	52	39	6	4	20
5	96	49	19	19	33
6	78	44	41	28	45
7	118	46	27	26	45
8+	78	56	13	9	13
Total	436	243	108	88	166

N	Jum	hor	callo	htí	mil	lione
*	۰um	UUL	Laug	11L I	uuu	nona,

rumoer caught (numons)							
Year class	1993	1994	1995	1996	1997		
3	1	2	•	3	0		
4	9	11	-	24	4		
5	19	24	-	109	36		
6	18	44	-	126	25		
7	14	72	-	115	42		
8+	20	60	-	78	25		
Total	80	211		455	133		

Abundance index

Year class	1991	1992	1993	1994	1995
3	15	27	4	8	43
4	92	110	21	42	104
5	169	137	64	185	173
6	138	123	135	269	234
7	207	130	89	252	234
8+	138	158	43	84	69
Total	767	685	354	841	866

Number caught per hour (unstandardized)

Year class	1993	1994	1995	1996	1997
3	221	244	-	233	49
4	2028	1352	-	1945	1430
5	4404	3074	-	8835	11708
6	4180	5605	- •	10258	8227
7	3366	9203	-	9348	13573
8+	4759	7663	-	6326	7966
Total	18847	27140		36946	42951

Figur 1A. The spatial distribution of the Greenlandic shrimp catches in Denmark Strait 1991.

- 10 -

Figur 1B. The spatial distribution of the Greenlandic shrimp catches in Denmark Strait 1992.

Figur 1C. The spatial distribution of the Greenlandic shrimp catches in Denmark Strait 1993.

- 12 -

Figur 1D. The spatial distribution of the Greenlandic shrimp catches in Denmark Strait 1994.

- 13 -

Figur 1E. The spatial distribution of the Greenlandic shrimp catches in Denmark Strait 1995.

14 -

Figur 1F. The spatial distribution of the Greenlandic shrimp catches in Denmark Strait 1996.

- 15 -

- 16 -

Figure 2. Catch, effort and CPUE by Greenland vessels fishing in Denmark Strait north and south of 65° N (panel A, B, C and D) and total area (panel E and F). Data for 1997 are incomplete.

17 -

- 18 -

Figure 3. Length frequency distributions of shrimp catches north and south of 65°N in Denmark Strait by Greenlandic vessels.

Figure 4. Catch rates of male (age 3-6) and female (age 7-8+) shrimp in numbers pr. hr. Data from the Northern area are standardised using the standardised CPUE-index for total shrimp catches (se table 3). No data for 1996-1997 were available from the northern area. Data for the southern area are unstandardised. There were no data for 1995 in area south.

19 -