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Abstract 

We examine the database of over 500 spawner-recruitment series compiled 
by Myers et al. (1995) to search for parameters that are constant, or nearly 
so, at the level of a species or above. We find that the number of spawners 
produced per spawner each year at low populations is relatively constant 
within species and that there is relatively little variation among species. 
This quantity can be interpreted as a standardized slope at the origin of 
a spawner-recruitment function. We employ variance components models 
that assume that the log of the standardized slope at the origin is a nor- 
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mal random variable. This approach allows improved estimates of spawner-
recruitment parameters and the estimation of empirical prior distributions 
for Bayesian analysis. 

Introduction 

Perhaps the most fundamental parameter in population biology is the re-
productive rate'at low population size. We will analyze this parameter in 
terms of the maximum annual reproductive rate, which we define as the 
average rate replacement spawners are produced per spawner per year at 
low abundance (after a time delay for the age at maturity). The maximum 
annual reproductive rate is central to the estimation of the following: 

• the population growth rate, i.e., "r", (Cole 1954; Pimm 1991; Myers 
et al. 1997). 

• limits to overfishing (Mace 1994; Myers et al. 1994; Cook et al. 1997; 
Myers and Mertz 1998). 

• the dynamic behaviour of the population, i.e. whether the population 
has oscillatory or chaotic behaviour. 

• extinction models and population viability analysis (Lande et al. 1997). 

• establishment of biological reference points for management. In some 
cases, e.g. the estimation of the maximum sustainable yield under the 
Ricker model, it suffices to determine the reference point. 

The purpose of this paper is to provide a comprehensive analysis of this 
parameter in terms of a relatively simple statistical model, to attempt to 
determine under what conditions the parameter is invariant, e.g. constant 
for a species, and to provide empirical Bayesian priors for the estimates. We 
use the extensive database of stock and recruitment data compiled in Myers 
et al. (1995) and Myers and Barrowman (1996). 

Formulation 

Estimating Reproductive Rate 

Semelparous species, whose members conveniently die after reproduction, 
immensely simplify the lives of students of the population biology of many 
insects and Pacific salmon of the genus Oncorhynchus. One generation fol-
lows the next in easy units, usually simply numbers. The relationship be-
tween the numbers in year t, Nt , and the numbers in year t plus the age at 
maturity, antat, is typically given in the form 

Nt+amat  = aNt emf (NI)  , 	 ( 1) 

where the density-dependent mortality, f (Nt ), is a non-negative function 
such that f (Nt ) .4)- 0 as Nt  -4 0. 

The dynamics of iteroparous species is more complicated. Typically, the 
number of recruits, R t , is a function of the egg production or a proxy such 
as weight of spawners at time t, St , as in the form 
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Rt  = aSt emf (st ) , 	 (2) 

where f(St ) is the density-dependent mortality as before. 
We follow the usual convention in fisheries of assuming the number of 

eggs produced is proportional to the biomass of spawners. The Ricker model 
has the form 

— R t  = aS e (38t  
( 3 ) 

where a is the slope at the origin (measured perhaps in recruits per kilogram 
of spawners). Density-dependent mortality is assumed to be the product of 
[3 times the recruitment. 

For the forthcoming calculations, the slope at origin, a, must be stan-
dardized. First consider 

= a • SPRF,0 

where SPRF=0  is the spawning biomass resulting from each recruit (perhaps 
in units of kg-spawners per recruit) in the limit of no fishing mortality (F = 
0). This quantity, a. , represents the number of spawners produced by each 
spawner over its lifetime at very low spawner abundance. The quantity, 
required for our calculations is the number of spawners produced by each 
spawner per year (after a lag of a years, where a is the age at maturity). If 
adult survival is p, then et = E:)° 0  p s̀ ei, or summing the geometric series 

= 13(1 — ps ) = a • SPRF,0 (1 — ps ) . 	 (4) 

This quantity, a is the maximum annual reproductive rate, and will be the 
main focus of this study. 

A word of warning is needed in the interpretation of the maximum an-
nual reproductive rate. The above formulation is for the deterministic case. 
However, if stochastic variations in survival are included, then the quantity, 

would be interpreted as the maximum of the average annual reproductive 
rate, e.g. the reproductive rate may be higher or lower for any given year. 

The Ricker model provides a reasonable model for 
estimating the slope at the origin 

The simplest form of density-dependent mortality is linear, i.e. f (S) ,3S, 
in Eq. 1. We will show that under reasonable conditions this is perhaps the 
best first approximation. A simple generalization of the Ricker model is 

f (S) /3S", 	 (5) 

where y controls the degree of nonlinearity in the functional form of density-
dependence (Bellows 1981). For most of the data sets there is not sufficient 
data to estimate y; however, our purpose is only to insure that our estimates 
of a are robust to our assumptions about 7. We will examine data for cod 
because there is excellent data for these populations and all have been re-
duced to low levels, which will enhance our ability to estimate a. We held 
my fixed at values of 0.5, 0.75, 1, 1.25, and 1.5 (Fig. 1 and 2) and estimated 
a and /3. The functional fits are displayed in terms of survival (log(c.)) 
versus S, where R has been multiplied by SPRF=o(1 — ps) • 

Fig. 1 near here 

Fig. 2 near here 



If y < 1, then survival is a convex function of spawner biomass, and the 
limit of survival is infinity as S 0. Thus, this model is unrealistic for this 
case. Furthermore, an examination of the survival versus spawner curves 
reveals that this is often because of a completely unwarranted extrapolation 
beyond the lowest observed spawner abundance (Fig. 1). For 7 > 1, survival 
is a concave function, and the derivative of survival as S —> 0 will always be 
zero. 

In practice the Ricker model is a reasonably cautious estimate of the 
limit for management purposes. If -y < 1 is assumed, then a greater a is 
estimated, while the assumption of y > 1 'results in only a slight increase in 
the estimate of a (Fig. 1 and 2). If we examine the 4 cod populations with 
the largest range in observed spawner bioinass, the estimate of the slope at 
the origin appears reasonable in all cases for the Ricker model, while the 
estimate for 7 = 0.5 is inflated commensurately with the gap between the 
origin and the lowest observation of spawner abundance. 

We also considered another common 3 parameter model, the "Shepherd 
Function", i.e., 

aS R =  	 (6) 1 + (57K) 4  

This model was first proposed by Maynard Smith and Slatkin (1973) and was 
discussed by Bellows. (1981). The parameter K has dimensions of biomass 
and may be interpreted as the "Threshold Biomass" for the model. For 
values of biomass S greater than the threshold K, density-dependent effects 
dominate. The parameter S may be called the "degree of compensation" of 
the model, since it controls the degree to which the (density-independent) 
numerator is compensated for by the (density-dependent) denominator. If 

= 1, then the Beverton-Holt model is recovered. However, for (5 < 1 sur-
vival is infinity as S 0; again, in this case the model cannot be considered 
as a reliable method to extrapolate to low population sizes. For S > 1, the 
derivative of survival as S 0 will always be zero. However, even if -y = 1, 
i.e. the Beverton-Holt model, then many estimates of the slope at the ori-
gin will be infinity. That is, if K 0, then a oo is a perfectly feasible 
solution. 

The Deriso-Schnute model (Hilborn and Walters 1992), an alternative 
3 parameter model, has the Ricker and the Beverton-Holt as special cases. 
However, it suffers from the same problems we stated above: survival is not 
constrained to be finite except when the model is a Ricker model, or it has 
the derivative of survival as S 0 constrained to be zero. 

Any estimation of the slope at the origin is necessarily an extrapolation 
since there can be no observations at zero spawner abundance. The sim-
plest extrapolation is a linear one (in the relationship between log survival 
and spawner abundance), while alternative assumptions will often produce 
unreasonable estimates. 

One situation in which a Ricker model would not give a precautionary 
estimate would be if mortality increased at low spawner abundances, known 
as depensation or the Allee effect. Myers et al. (1995) carried out a meta-
analysis and could find no convincing evidence that depensation occurred 
for exploited fish populations. We conclude that the estimate of a from the 
Ricker model is a reasonable precautionary limit. 
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In this section we have argued that the Ricker model is often a reasonable 
model for the estimation of the & (some alternative approaches are discussed 
below). For the cod populations in the North Atlantic we have seen that 
the estimates are only slightly modified if survival is a concave function of 
spawner biomass. The alternative assumption, that log survival is a convex 
function, which usually results in the assumption that survival greatly in-
creases at low spawner biomass (Fig. 1) is not strongly supported by the 
data and may be very dangerous for management decisions in extrapolations 
to low abundance. 

Estimation Method 

Variance Components Models 

Our contention is that focusing on one population at a time can be mislead-
ing. In this section we shall demonstrate how this can be avoided by incor-
porating the estimation of the Ricker model into a standard linear mixed 
model. This can then easily be estimated using widely available software, 
e.g. SAS or SPLUS. 

We will change notation slightly so that our results are directly in the 
standard notation of variance components and mixed models. We consider 
p populations, subscripted by i, for each of which we want to estimate a 
model of the form 

R '  't  log =
t 	

log a-, + /3181,t Ett 	 (7  S 	 ) 

where we assume that log li t  is a normal random variable, i.e. a random 
effect. We define a, E loges;. 

We consider the log survival, log 14, of a yearclass from a given population 
as an element of a vector y. If there are n, observations for population i, 
then the first n 1  elements of the vector y will be the n i  log survivals for the 
first population, followed by the n 2  log survivals for the second population, 
and so on. 

We consider the fixed effects of the model first. In our case, the param-
eters we estimate are the overall mean, tt , for the model and p regression 
parameters, We consider the spawner abundances, So , as known, and 
will estimate the density-dependent regression parameter, /3„ for each pop-
ulation. By happy coincidence, the standard mixed model notation for the 
vector of fixed effects parameters is 0. The unknown vector j3 consists of 
the overall mean, t, and the p ,32 's. The vector 0 is related to y by the 
known model matrix X, whose elements are 0, 1, and 81,t; the form of this 
matrix is given below. 

We will let the log of the slope at the origin, a;, be an unknown random 
effect that is constant for each population, i.e. they are assumed to be 
drawn from a normal distribution with variance that is estimated in the 
model. We shall use the standard mixed model notation for the unknown 
vector of random effects u, whose elements will be a,. The vector u, is 
related to the y by a known model matrix Z; the form of Z is given below. 

In standard mixed model notation, we have: 

y-=-X0+Zu-ke 
	

(8) 
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Here, c is an unknown random error vector. For example, consider the 
simple case of two populations, each of which are observed for three years 
and the first year is denoted as 1. The above equation can then be written 
as 
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where yi, t  = log Mt . The generalization provided by the mixed model en-
ables one not only to model the mean of y (as in the standard linear model), 
but to model the variance of y as well. We assume that u and E are uncor-
related and have multivariate normal distributions with expectations 0 and 
variances D and R, respectively. The variance of y is thus 

V = ZDZ i  + R 	 (10) 

Note that when R =a 21 and Z = 0, the mixed model reduces to the stan-
dard linear model. 

One can model the variance of the data, y, by specifying the structure 
(or form) of D and R. In the simplest case one might assume that the 
error variance is the same for all populations, i.e. R = a 2 1. However, 
we estimate a separate estimation error variance for each population, a?. 
We also test if the residuals are autocorrelated. If they are, we estimate a 
separate autocorrelation parameter, p„ for each population. This results in 
a block diagonal structure for R. 

Now that we have transformed the problem into this form, estimation is 
trivial because high quality software exists for this problem (Appendix A). 

The likelihood function for the data vector y AiN 	V) is 

6 -4 ( y  -xoyv - 1 (y -xp) 
L = L(f3,V1y) = 	 1 	 (11) 

There are two common approaches to analyze this function: maximum likeli-
hood (ML) and restricted maximum likelihood (REML) (Searle et al. 1992). 
REML differs from ML for this model in that it takes into account the de-
grees of freedom used for estimating the fixed effects, whereas ML does not. 
Furthermore, in the case of balanced data REML solutions are identical 
to ANOVA estimators which have known optimality properties. For these 
reasons, we will use REML, but will consider ML for robustness. 

Estimation and prediction of individual population parame-
ters 

The use of mixed models allows us to obtain improved estimates of param-
eters for any one population. In general we not only wish to estimate the 
model parameters, we wish to predict the random variables for each popu-
lation. In our case we wish to estimate the density-dependent parameter p 
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and predict the slope at the origin, which is assumed to be a random vari-
able, for each population. To obtain the Best Linear Unbiased Predictors 
(BLUP) we need the mixed model equations 

	

X 1 11, -1 X 	X'11.-1 Z 	1 f $ 1_ I X'11. -l y 1 

	

[ Z 1 11-1 X 	+ 	j [ u j 	[ Zit-1 y j 
(12) 

Where we use to represent solutions. 
Without the D-1  in the lower right-hand submatrix of the matrix on 

the left, they would be the ML equations for the model treated as if u 
represented fixed effects, rather than random effects. Although the above 
equation has been discussed in terms of classical methods, the same result is 
arrived at using a formal Bayes analysis of incorporating prior information 
into the analysis of data (Searle et al. 1992). 

Our estimation methods above provide estimates of m, i.e. log di. To 
obtain estimates of the a ; , exponentiate the estimate of a, and multiply by 
er'" , where (7,2  is the square of the standard error of a,. 

Data sources and treatment 

The data we used are estimates obtained from assessments compiled by My-
ers et al. (1995). For marine populations, population numbers and fishing 
mortality were estimated using sequential population analysis (SPA) of com-
mercial catch at age data for most marine populations. SPA techniques in-
clude virtual population analysis (VPA), cohort analysis, and related meth-
ods which reconstruct population size from catch at age data (see Hilborn 
and Walters (1992), chapters 10 and 11, for a description of the methods 
used to reconstruct the population history). Briefly, the commercial catch at 
age is combined with estimates from research surveys and commercial catch 
rates to estimate the numbers at age in the final year, and to reconstruct 
previous numbers at age under the assumption that commercial catch at 
age is known without error and that natural mortality at age is known and 
constant. 

For Pacific salmon stocks, spawner abundance is the estimate of the 
number of upstream migrants discounted for mortality within the river and 
recruitment combines catch and the number of upstream migrants. 

SPA techniques were used for the freshwater species except for brook 
trout. The 7 brook trout populations were from introduced populations in 
California mountain lakes (DeGisi 1994); these populations were estimated 
using research gillnets and maximum likelihood depletion estimation. 

Time series of less than 10 years are not included in this analysis. The 
SPRE=0  was calculated using estimates of natural mortality, weight at age, 
and maturity at age. Maturity and weight at age were usually estimated 
from research surveys carried out for each population. 

A major source of uncertainty in the SPA estimates of recruitment and 
spawning stock biomass (SSB) is that they usually assume that catches 
are known without error. This is particularly important when estimates of 
discarding and misreporting are not included in the catch at age data used 
in the SPA. These errors are clearly important for some periods of time for 
some of the cod stocks (Myers et al. 1997) and these errors will affect our 
estimates of the number of replacements each spawner can produce at low 
population densities (a). 



Results 

We first estimated the maximum annual reproductive rate, a„ individually 
for each population using a standard Ricker model fit (Fig. 3, Table 1). 
We then used the mixed model to estimate the true variability among pop- 
ulations in the the maximum annual reproductive rate. As expected, the Fig. 3 near here 

estimate of the true variability in the maximum annual reproductive rate is 
much less than the sample variability because individual estimates contain 
estimation error. For example, for pink salmon, if Ev is estimated separately 
for each stock, then there is a order of magnitude range of the estimates. 
However, if Et is assumed to be a random variable, then the mixed model 
estimates suggests that the true range is very small, with all the true values 
being very close to 3 (Fig. 3). Cod show a similar story. The number of 
replacement spawners per spawner per year for cod at low abundance is be-
tween 3 and 4; resulting in a maximum net reproductive rate (if there is no 
fishing mortality) of between 15 and 20. The maximum annual reproductive 
rate for herring appears to be slightly less, and for hakes of the genus Mer-
luccius, e.g. silver hake and Pacific hake, is around 1. Some anadromous 
species, e.g. sockeye salmon, appear to have a maximum annual reproduc-
tive rate of around 4 or 5, while others, e.g. pink salmon, have a much lower 
rate. 

The most remarkable aspects of the results is the relative constancy of 
the estimates of the maximum annual reproductive rate. The log of the 
maximum reproductive rate is almost always close to one for the species 
with more than one population in our analysis (Fig. 5a). For the species Fig. 5 near here 

with multiple populations only Pacific Ocean perch and silver hake have a 
maximum annual reproductive rate less than 1; all other species have esti-
mates that range between 0.2 and 1.6 (all of these numbers will be inflated 
when the estimates are converted to a linear scale from the log scale). 

We believe that the low estimates for Pacific Ocean perch are probably 
associated with its very low adult natural mortality. Its maximum lifetime 
annual reproductive rate is around 3 (Fig. 6a). This value is low compared 
to other species, which suggests that it should be harvested much more 
cautiously than other species. Fig. 6 near here 

The estimates of the maximum annual reproductive rate for species for 
which we have only one population are much more variable than the species 
with many populations (Fig. 5b. and 6b). The greater variability in these 
estimates is at least partially caused by estimation error. However, several 
species have maximum reproductive rates that suggest that they cannot 
sustain intense fisheries. In some cases this is certainly true. The south-
ern bluefin tuna in the Southern Ocean and the pelagic armourhead on the 
Southeast Hancock Seamount were both greatly reduced by overfishing. In 
other cases, there may be serious problems with the assessments. For exam-
ple, the grey mullet has supported a fishery around Taiwan for many years, 
so it is unlikely that the true maximum reproductive rate is as low as we 
estimated. 

Despite the large variation in the individual estimates, our general con-
clusion about the relative constancy of the maximum annual reproductive 
rate stands, the estimates are usually around 3. 

There are exceptions for individual stocks, but these usually have large 
standard errors. 
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In order to make our individual and mixed model analysis comparable, 
we used a first order autocorrelated error assumption for the species if an 
autocorrelated error model was needed for populations of the species. We 
used this assumption for cod, (Fig. 4). 

We next estimated the mean and variance of log & for each species for 
which there was sufficient data, and finally the predicted value of each log & 
under the mixed model. 

Note that there is less variance in the BLUP numbers from the traditional 
estimates (Fig. 4). The estimates with relatively few data points, e.g. Fig. 4 near here 

Gulf of Maine cod, are pulled towards the overall mean more than those 
populations with many years of data, e.g. Iceland cod. 

Note that herring has a smaller maximum reproductive rate than many 
species. The lower mean is due to a few stocks in the northern north Atlantic 
which have been reduced to very low levels (the Iceland stocks, the Norway 
(often called the "Arcto-Norwegian") stock, and the Georges Bank stocks). 

Limitations and Alternative Approaches 

The approach we have described here has many advantages, but researchers 
should be aware of the limitations of the approach, and alternative ap-
proaches. 

The first limitation is the functional form assumed for density-dependent 
mortality. The Ricker model, and the nonlinear Ricker model (Eq. 5), 
used here is not appropriate for some species. For example, we did not 
consider coho salmon (Oncorhynchus kisutch) in this analysis because there 
the shape of the spawner recruitment curve was clearly asymptotic, similar 
to a Beverton Holt function. We will consider nonlinear mixed models in a 
future paper using the methods of Lindstrom and Bates (1990). 

Second, we have also assumed that the distribution of the & is approx-
imately lognormal. This distribution appears to be a reasonable approxi-
mation in most cases considered here, but violations of the assumption may 
cause biases (Verbeke and Lesaffre 1996). 

A third assumption is that the model residuals are lognormal. This is 
by far the most common assumption used in fitting spawner recruitment 
models (Hilborn and Walters 1992); however, it may not always be the most 
appropriate assumption. The gamma distribution appears to give more 
reasonable fits to some stock recruitment data (Myers et al. 1995). 

A fourth assumption is that all populations within a taxon are compara-
ble, i.e. the maximum reproductive rate for populations within a species (or 
higher taxon) is described by a lognormal distribution. However, this pa-
rameter may vary in a systematic way among populations, e.g. populations 
in colder conditions may have a lower maximum reproductive rate. Such 
hypotheses can be investigated by letting the maximum reproductive rate 
be a random variable whose mean is a function of an exogenous variable, 
e.g. temperature. 

If any of the above four assumptions appear to be seriously violated, 
then an alternative approach is needed. Perhaps the most convenient al-
ternative framework to construct this type of model is either a Bayes or 
empirical Bayes hierarchical model (Efron 1996). Punt and Hilborn (1997) 
have recently reviewed these approaches in fisheries management. McAllis-
ter (1994) implement an empirical Bayes approach to estimating a parameter 
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functionally related to the slope at the origin, e.g. the steepness parameter, 
using an earlier version of the data set used here. 

The maximum likelihood estimators that we have used to estimate the 
underlying distribution of annual reproductive rates may result in estimates 
that are less "heavy tailed" than they should be (Efron 1996). 

It should be remembered that this analysis does not get rid of known 
biases, e.g. estimation error in spawner abundance and time-series bias, in 
the treatment of spawner recruitment relationships, see Hilborn and Walters 
(1992) for a review. 

Discussion 

The analysis presented in this paper suggests a new and unsuspected finding: 
the maximum annual reproductive rate for any of the species examined is 
typically between 1 and 6. This number may be less for some species and 
more for others, but the relative constancy of the annual reproductive rate 
is an unanticipated, and very important, finding. 

This analysis is consistent with our preliminary analysis (Myers et al. 
1996); but was an unsuspected finding. For example, the common belief that 
there is no relationship between spawner biomass and recruitment is founded 
on the notion that the maximum reproductive rate for fish is essentially 
infinite (this belief is based upon the observation that fecundity of fish is 
often large). This erroneous belief is caused by the lack of attention paid to 
the information content of different data sets (Myers and Barrowman 1996; 
Myers 1997). 

Hypotheses 

This broad generalization demands an explanation. First, consider the lower 
limit of the annual reproductive rate at low abundance. This represents the 
"average" value that should occur at low abundance. Clearly, if this value is 
much less than 1, then the population may very well go extinct because the 
value would probably be below one for considerable lengths of time because 
of variation in the environment. 

Why then would the annual reproductive rate be bounded at the upper 
end? A reasonable, but speculative, answer is that a very high value of the 
reproductive rate would imply an excess of resources that are not exploited. 
In this case, other competitors would be expected to evolve to exploit these 
resources. 

Reducing Uncertainty 

The uncertainty of the biological processes underlying the population dy-
namics of exploited species can be greatly reduced by combining data from 
many studies. The relative constancy of the maximum reproductive rate 
allows for simple, broad conclusions to be reached on the management of 
fish stocks. That the maximum reproductive rate is typically around 1 to 6 
replacement spawners per spawner per year is a powerful tool for the man-
agement of fish stocks. It allows the maximum exploitation rate to be quickly 
estimated (Myers and Mertz 1998), and the recovery rates of exploited fish 
populations to be calculated (Myers et al. 1997). 



Many of the crucial parameters needed for fisheries management can be 
estimated using the the maximum reproductive rate analyzed here, and the 
simple approximations, see (Myers and Mertz 1998; Myers et al. 1997). All 
that is required to use these approximations is data on natural mortality, 
age at maturity, and the maximum reproductive rate. These approximate 
formulas will require testing and verification, but this approach should allow 
progress to be made on critical issues. Thus, even if the maximum repro-
ductive rate is not known for a species, the estimates complied in this paper 
allow them to be approximated, or our estimates can be used as priors in a 
Bayesian analysis. 
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Appendix: Estimation in SAS 
This appendix demonstrates how to fit the proposed model to data for 

a single species. In the SAS data step, a dataset is created with 3 variables 
per observation: the name of the stock (i.e. population), stock, the number 
or biomass of spawners, s, and the survival, surv, respectively. The survival 
is log(R/S), where recruitment, R, has been multiplied by SPRF=0(1 — Ps), 
so we will obtain estimates of a, in the appropriate units. 

The SAS code for fitting the model with autocorrelated recruitment is 

proc mixed method=reml; 
class stock; 
model surv= s*stock /solution; 
random int /subject=stock; 
repeated /subject=stock group=stock type=AR(1); 

This model assumes autocorrelated errors, and fits a separate first-order 
autocorrelation parameter and error variance are fit for each stock. 
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Fig. 1. Survival, log( Q.), versus spawner abundance for 6 cod stocks. The 

modeleddensity-dependent mortality of the form f (S) = 11,57  is shown 
for 7 = 1.5 , y = 1, and y = 0.5. We have standardized recruitment, 
by multiplying by SPRE, D (1 p,), which allows survival to be inter-
preted as the annual replacement of spawners per spawner. Thus, the 
intercept of the fitted curves provide an estimate of log iv, i.e. the log 
of the maximum annual reproductive rate. 
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Fig. 2. Box plots of the log of the scaled slope at the origin, log(&) for 
the twenty major cod stocks in the North Atlantic as a function of the 
form of density-dependent mortality f (8) = 1387  . When 7 = 1 the 
Ricker model is recovered. 
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Fig. 3. Histograms of the individual maximum likelihood estimates of the 
log of the maximum annual relmoductive rate compared with restricted 
maximum likelihood estimates of the true variability in the log of the 
annual reproductive rate, log(d) from our mixed model analysis (solid 
line). The estimates for each individual population show a much wider 
variability because these estimates include the estimation error from 
each maximum likelihood lit. We can estimate the variability of the 
true underlying distribution because we can estimate the estimation 
error variance. Note that the top axis of the plots shows the rowans-
formed annual reproductive rate. 
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for species with multiple populations, where the error bars represent 
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reproductive rate (this estimate is sometimes zero if only two or three 
populations are sued in the analysis). 
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Fig. 5b Same as above but for species with only one population in the 
database, where the error bars represent the standard error of the 
estimate. 
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Fig. 6a. Estimates of the log of the maximum lifetime reproductive rate 
for species with multiple populations, where the error bars represent 
the estimated standard deviation of the log of the maximum lifetime 
reproductive rate; b species with single populations, where the error 
bars represent the standard error of the estimate. 
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Fig. 6b Same as above but for species with only one population in the 
database, where the error bars represent the standard error of the 
estimate. 
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