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Index NAO ICE CIL BT VT GSF SSF

SA 3 catch 52543 | 0.3475 | -0.3427 | 0.3915 | 0.3216 | -0.4561 | ~0.6506

index 0.0115 | 0.0647 | 0.0148 | 0.0059 |0.0258 | 0.0219 | 0.0004
73 29 50 48 48 25 25

SA 4 catch 0.2257 | -0.3377 | -0.3819 | 0.4067 | 0.3007 | -0.2455 | -0.5965

index 0.0469 |[0.0732 |[o0.0062 |o0.0041 [o0.0378 |0.2378 | o0.0016
78 29 50 48 43 25 25
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Introduction

The northern short-finned squid (llex i]leccbrbéus) is distributed from central Florida to Newfoundtand and
Labrador (Squires 1957, Dawe and Warren 1993). I supports summer-fall fisheries on the eastern USA Shelf, the
Nova Scotia Shelf, and in Newfoundland coastal waters.

This species spawns south of Cape Hatters central Florida, presumably in close proximity to the Gulf Stream
(Trites 1983). Spawning occurs throughout most of the year, with several seasonal peaks, the major peak being in
winter (Lange and Sissenwine 1983). Young stages are advected northeastward by the Gulf Stream (Trites 1983).

Larvae, and probably egg masses, are transported within the fast-flowing landward portion of the Gulf Stream
(Fig. 1), (Rowell and Trites 1985, Hatanaka ¢t al. 1985) whereas small juveniles of about 1-3 cm manile length
(ML) are concentrated in the Gulf Stream Front (Fedulov and Froerman 1980, Dawe et al. 1982, Dawe and Beck
1985a, 1985b, Rowell and Trites 1985, Rowell et al. 1985, Hatanaka et al, 1985). Larger juveniles are
concentrated at the Shelf-Slope Front in spring (Fig. 2). Squid catches from dirccted squid surveys in May-June
on the southwest slope of the Grand Bank were generally associated with incursion of the Shelf-Slope Front and
bottom temperatures of 5°C or greater (Dawe and Warren 1993). Simitarly, squid occurrence in Newfoundland
coastal waters is associated with local water temperature, at less than 30 m depth, exceeding 5°C (Beck et al.
1994). Squid distribution on the Nova Scotian Shelf is associated with bottom temperatures greater than 6°C
(Rowetl et al. 1985). ‘

It may be expected that yearclass strength would be greatly affected by environmental variation for an annual
species which is so closely related to oceanographic features, This may be especially true at Newfoundland, the
approximate northern limit of the species range of distribution (Dawe and Warren §993, Mann and Drinkwater
1994, Coclho ct al. 1994). '

In this paper we review trends in squid catch and abundance in both Canadian Atlantic squid fishery areas,
Nova Scotia (NAFO Subarea 4) and Newfoundland (NAFO Subarea 3). We atlempt to relate annual variation in
catch by fishing area to indices of broad-scale variation within the Gulf Stream System. We also cxamine the
relationship of squid abundance at Newfoundland to local environmental indices.

Mecthods

We use comumercial caich by fishery area as an index of abundance of the single yearclass squid population,
Estimates of yearly caich date back 10 1920 for Subarea 4 and to 1911 for Subarea 3 (Mercer 1973, Dawe 1981).




However, catches have been greatly affected by market-related changes in fishing effort (IFig. 3).  We
approximately adjusted for periodic changes in fishing effort by expressing catch as a proportion of the maximum
within each of three relatively distinct time periods, 1925-52, 1953-69, and 1970-97 (Fig. 4). Market conditions
were relatively constant and catch fluctuations similar within each time period at Newfoundland (Fig. 3). The
earliest period was extended back to 1920 for Subarca4. A subjective ranking of Newfoundland inshore
abundance gencrally agrecs with trends in catch. The catch indices were significantly positively correlated
between Subareas 3 and 4 (r, = 0.6914, p = 0.0001) and each was negatively serially correlated (p = 0.001-0.002).

Indices of environmental variation used for correlation with squid abundance indices (Table 1) included the
North Atlantic Oscillation (NAQ) and the Newfoundland Shelf ice area (ICE).. Other indices included Station 27 -
bottom temperature (BT), and Station 27 vertically integrated temperature (VT). We include these two ocean
temperature indices becausc the short-finned squid is a diel migrator, being near bottom during daylight and
dispersed in the water column at night. Another continental shelf index used was thickness of the Cold
Intermediate Layer (CIL). Occanic indices which reflect variability within the Gulf Stream System were
latitudinal displacement of the Guif Stream Front (GSF) and the Shelf Water-Slope Water Front (SSF). For all
comparisons Spearman corrclation coefficients were calculated.

Results and Discussion

Synchrony between inshore Newfoundland and Nova Scotian catch indices reflects squid fisheries dependent
on recruilment from the winter peak spawning in both areas (Coclho et al. 1994). In both fishery areas the
occurrence and duration of periods of low abundance increased throughout the time series,

The environmental indices were significantly correlated, with few exceptions (Table 1). The BT, VT, CIL
and SSF were also all significantly serially corrclated, whereas NAQ, ICE and GSF were not. The strong.
correlations between the North Atlantic Oscillation and the continental shelf indices (ICE, CIL, BT, and VT)
reflect the effects of strong northwesterly winds associated with high NAQ anomalies. These winter-spring strong
northwesterlies bring cold Arctic air into the Newfoundland area which promotes ice coverage and reduces
melting (Colbourne ct al. 1994). These winds also promote downward mixing of cold water (Mann and
Drinkwater). A high NAO and strong cyclonic circulation is also related to-a northward displacement of the Guif
Stream Front. Taylor et al. (1992) noted that shifts in the Front are related to changing weather patterns over the
North Atlantic. However, the mechanism is unclear because anomaly winds oppose the displacements. Taylor
{1996) noted that northward displacement is associated with reduced cyclone frequency and that meandering may
not be simply related to any single atmospheric variable.

The squid abundance index for both Subarcas was significantly correlated with most of the environmental
indices. The strong correlations with the NAO (Fig. 5), the Guif Stream Front, and the Shelf-Slope Front (Fig. 6),
particularly for Subarea 3 (Table 2) suggest that winter-spring conditions during the early oceanic phase of the life
cycle are important in regulating recruitrent.

High squid abundance was related to a weak NAO and southward displacement of both oceanic fronts, but
correlations were stronger with the Shelf-Slope Front than with the Gulf Stream Front (Table 1, Fig. 6).
Southward displacement of the Gulf Stream front is associated with an increase in the speed of the Stream
(Drinkwater and Myers 1993} Northward displacement, then, ‘is  associated with a slow and
extensively-meandering Gulf Stream. This effectively increases the length of the Gulf Stream Front and the speed
of advection. Also, Warm Core Eddies (WCE’s) are frequently formed by ‘pinching-off” of Gulf Stream
meanders (Trites 1983, Myers and Drinkwater 1989). Large quantities of larvac and juveniles are entrained in the
periphery of WCE's (Dawe ¢t al. 1982, Dawe and Beck 1985b). Thus, anticyclonic WCE’'s represent
‘concentrated packages’ of young squid, which may move to the southwest in Slope Water as far ‘upstream’ as
Cape Hatteras before they dissipate or are resorbed by the Gulf Stream (Trites 1983). 1t appears generally that
northward displacement of the Gulf Strcam may negatively impact recruitment to Canadian fishery areas, perhaps
through inefficient passive advection of young stages. Southward displacement of the Gulf Stream is directly



related to zoop!ankfon production in the NE Atlantic (Taylor and Stephens 1980, Taylor ct al. 1992) and
recruitment of eels (Anguilla sp.), which spawn in the Sargasso Sea and rely upon the Gulf Stream for advection
of young stages (Castonguay et al. 1994),

‘Latitudinal displa’cement‘s of both the Gulf Stream Front and Shelf-Slope Front were strongly correlated with
annual arca of icc coverage and both Station 27 temperature indices (Table 1).  Similarly, squid catch at

Newfoundland was most closely correlated with the same local oceanographic indices (Table 1), High squid cateh -

was associated with a warm occanographic regime on the continental shelf (Fig, 5 and 7-8). Reclationships of
~squid abundance with cimtinentat shelf temperature indices did not appear 1o be linear (Fig, 7-8), as is frequently
the case in interactions between physical and biological parameters (Mann and Drinkwater- [994).  Squid
abundance may be variable when the temperature indices are high, but cold wndmona particularly for extended
periods, are related to low squid abundance (Figs. 5 and 7-8). o

Relationships described here for northern fishery areas probably reflect effects on the entire single stock
population, since abundance trends are- q1gn1ﬁuantly poqmvely correlated among all three fishery areas (Dawe and
Hendrickson, this meetmg) : :

~ These environmental relationships are supportive of a general life history strategy proposed for short-finned
squid by Coetho et al. (1994). A relatively stable resource exists in the southern-most fishery area in USA waters.
Total population size or yearclass strength is affected predominantly by the winter spawning group, the progeny
of which are advected to northern waters in synchrony with the spring productivity peak. This strategy is highly
adaptive in that environmental conditions which promote strong yearclasses also favour population expansion
through expedient advection of young stages and a suitable oceanographic fegime in the northern-most area. This
. assures sufficiently l’dpld growth and maturation to support the long spdwnmg m:grdtmn and so complete the life
Ceyele. :
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‘Table.1. Cotrelation matrix for environmental indices, including Spearman’s r,;

years. P vatues in bold are significant at the (.05 probability level.

L

probability value and number .of

Index NAQ ICE CIL "|.BT’ VT | GSF . ¢
ICE 0.5238
S 0.0035
99 - AT
CIL (1.3930 {.5397 '
0.0048 | 00025
50 {29 ~ .
BT -0.5118 -().8813 -0.4326
0.0002 0.0061 0.0021
48 29 48 - o
VT -0.42499 - -0.7813 -0.3067 .7990
0.0023 0.0001 0.034¢ . 0.0001
48 29 48 48
GSF 0.5374 0.7006 0.2355 -0.60591 -0.5371
0.0015 0.0001 (.1943 0.0602 0.0015
32 29 32 32 . 32
SSF 0.1870 .6419 0.3055 -0.5812 -0.4655 (.5883
0.3707 0.0005 0.1374 0.0023 G.01%0 0.0020
25 25 25 25 25 25
NAO North Atlantic Oscillation annual anomaly (1920-97)
ICE Newfoundland shelf ice area; km® x 10° (1969-97)
CIL Thickness of the Cold Intermediate Layer, m (1948-97)
BT Station 27 annual mean Bottom Temperature, “C (1950-97)
VT Station 27 annual mean Vertically Integrated Temperature,
0-176 m (1950-97)
GSF Latitudinal displacement of the Gulf Stream Front (55°W-75"W),
annual anomaly (1973-97)
SSF Latitudinal displacement of the Shelf Water-Slope Water Front

(55"W-75"W), annual anomaly (1973-97)

Table 2. Correlations of catch indices with environmental indices. Each cell includes Spearman’s correlation
coefficient, probability value, and number of years. P values in bold are significant at the 0.05 probability level.

Index NAO 1CE CIL BT VT GSF SSF

SA 3 catch index | 0.2943 {13475 0.3427 0.3919 0.3216 0.4561 0.6506
0.0115 L0647 0.0148 -0.0059 0.0258 0.0219 0.0004
73 29 30 48 43 25 25

SA 4 catch index | 0.2257 0.3377 0.3819 0.4067 0.3007 (1.2455 0.5965
0.0469 0.0732 0.0062 0.0041 0.0378 0.2378 0.0016
78 29 50 48 48 25 23
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