REFERENCE TO Northwest Atlantic Fisheries Organization

Serial No. N3099

SCIENTIFIC COUNCIL MEETING - SEPTEMBER 1998

NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

NAFO SCR Doc. 98/98

Patterns in the Annual Weight Increment for Divisions 2J+3KL Cod And Possible Prediction for Stock Projection

by

P.A. Shelton, G.R. Lilly and E. Colbourne

Science Branch, Department of Fisheries and Oceans PO Box 5667, St John's Newfoundland Canada, A1C 5X1

Abstract

Annual weight increment data for Div. 2J3KL cod are examined. Considerable variability in annual weight increment is found. A general linear model containing division and age effects explained 36% of the variance in the logarithm of annual weight increment. The residuals from this model had a temporal pattern which could in part be explained by variability in the area of the cold intermediate layer ($\leq 0^{\circ}$ C). Consideration is given to whether a predictive model based on this relationship could be developed which would have utility in stock projections.

Introduction

Predictive relationships between the environment and biological processes associated with fish production, birth rate, body growth rate and mortality rate, have the potential to reduce the uncertainty in stock assessments. This is particularly the case where management measures such as TACs are imposed in year t+1 based on an assessment of the stock in year t using data collected in t-1 and earlier years. However most correlations between the environment and biological processes have had little utility, and in fact have often been shown to be spurious (Walters and Collie 1988). For example, a model in which recruitment in the NAFO Div. 2J3KL cod stock is predicted from spawner biomass and salinity was put forward as an alternative to the convention of using the geometric mean of past values of recruitment for short-term projections in stock assessments (Myers et al. 1993). However, reanalysis using the cross-validated prediction sums of squares from a non-parametric model indicated that the salinity term was only just significant in the original data and with a further year of data the salinity term was found to be not significant (Shelton and Atkinson 1994).

Despite the general lack of success in finding useful predictive relationships between environment and processes determining fish production, such pursuits continue. Although environment-recruitment relationships have generally been shown to fail, relationships between the environment and fish body growth may hold more promise. Much of the difference in Atlantic cod growth among stocks is thought to be attributable to variability in ambient temperature (May et al. 1965, Brander 1995). Within Atlantic Canada cod stocks, Millar and Myers (1990), Cárdenas (1994), Campana et al. (1995). have found that a significant amount of the variability in growth in terms of length can be explained by temperature. In the analysis by Cárdenas (1994), the area of the cold intermediate layer (CIL) was used as an indicator of thermal conditions in the habitat of Div. 2J3KL cod. Shelton and Lilly (1995) carried out a data exploration exercise which suggested support for the earlier finding by Cardenas (1994) by showing a possible relationship between annual average weight increment in Div. 2J3KL cod over the period 1978 to 1994 and water temperature as measured by the average annual area of CIL. This analysis found no support in the post 1977 data for the hypothesis that cod growth is density dependent and no clear relationships were found with capelin abundance estimates or with variables derived from cod stomach content data. Cárdenas (1994) also found that growth in the three cod stocks examined, including the Div. 2J3KL cod stock, did not vary in response to population size. However, in the Cárdenas (1994) study there was evidence that maximum biomass seems to usually be followed by low growth rates. This may imply that biomass declines partly because of reduced growth rate, rather than growth rate declines because of high biomass.

In this paper we look at the annual weight increment data for cod in NAFO Divisions

- 2

2J+3KL (Fig. 1) more closely and examine the possible relationship between average annual weight increment and area of the CIL in further detail. Some consideration is given to whether a predictive model could be developed which would have utility in providing scientific advice on TAC levels, and how the predictive ability of such model might be tested.

Methods and Results

Data

The number of cod sampled for which body weight measurements are available and for which age was determined directly from the otolith (rather than an age-length key) varies across years (Table 1). During the early years of the surveys, otoliths for aging were obtained from a sample of 25 cod per 3-cm length-group per division. An additional sample of 5 cod per 3-cm length-group was frozen at sea and thawed in the laboratory, where otoliths were extracted and body weight (both whole and gutted, head-on) was recorded. All fish were measured (fork length, cm) at sea. Additional samples of frozen fish were collected in Div. 2J in 1984 and 1985. The number of frozen fish increased in 1988 and subsequent years, when Div. 2J and 3K were both subdivided into 2 areas, and a sample of 5 cod per 3-cm length-group was obtained from each area. The number of cod for which weights were available increased dramatically when weighing at sea was initiated (in 1989 in Div. 2J and 3K and in 1990 in Div. 3L, Table 1). It is suspected that there may be a systematic difference between weights obtained at sea and weights obtained after thawing the laboratory, but in the present study any difference has been ignored. The data set for 1978 to 1995 comprises close to 15,000 aged and weighed fish.

In addition to the subsample, the length frequency of the entire catch for each set, or a random portion of the catch if it is too large to process, is also determined. The sample length frequency is transformed into a population length frequency in each division by areal expansion of the stratified mean catch at length per tow (Smith and Somerton 1981). In this study population mean weight at age by division was obtained by

weighting the individual measurements in the biological sample by the ratio of the estimated number in the population in each 3 cm length class to the number of fish sampled in the 3 cm length class. Because of the low number of samples of older fish, particularly in more recent years, cod greater than age 10 were omitted from the analysis. Annual average weight increment was obtained by subtracting the mean weight at age j in year t from the mean weight at age j+1 in year t+1. The weight increment is assigned to age j for year t+1 because the survey is in fall and most of the growth is considered to take place in the spring and summer of the following year.

Oceanographic transects across the Hamilton Bank (Seal Island) in Div. 2J, off Bonavista Bay across the Div. 3K/ Div. 3L boundary, and in Div. 3L shorewards from the Flemish Cap along the 47° N latitude (Fig. 2) have been surveyed regularly in summer since the 1950s (Colbourne et al. 1994, Colbourne 1995). Annual estimates of the area of the cold intermediate layer (CIL) defined as $\leq 0^{\circ}$ C, have been calculated as an index of thermal conditions within the northern cod habitat (Colbourne 1995). In this study we use the annual average area of the CIL from the three transects for the period 1978 to 1995 (Fig. 2).

Analysis

Average annual weight increments by cohorts within divisions were calculated so that $X_{i,j,k}$ is the weight increment for a cohort in division i at age j in year k. Note that because the data are for fall surveys and most of the growth increment will take place in the following summer, k is the survey year incremented by one year. In order to visually determine possible patterns in the data, the log-transformed annual average weights increments for each age were plotted separately for each division across years (Fig. 3). Weight increments are quite variable within ages among years and across divisions. There is a paucity of data at age 1. At ages 2 and 3 there is some evidence of a declining trend in all three divisions over the time period for which data area available. For ages 4 to 8 there is evidence of a decline in 2J and 3K to a minimum in the early 1990s followed by an increase. These trends are not as evident in 3L or in the data for older ages.

The variation in annual growth increments caused by NAFO Division effects, and age effects were examined by calculating the average of the log-transformed weight increment values for each division across all ages and years and each age across all divisions and years. Weight increments are, on average, smallest in 2J, intermediate in 3K and largest in 3L (Fig. 4). Weight increments, on average, increase with age and become more variable (Fig. 5). The increase is not monotonic, there being little increase in the annual weight increments between ages 4 and 7.

Division and age effects were removed from the weight increment data by applying a general linear model of the form

$$Ln(X_{i,i,k}) = \tau + \alpha_i + \beta_i + \varepsilon,$$

where τ is the intercept, α , is the division effect, β_1 is the age effect and ε is normally distributed error. The model explained 36% of the variance in the logarithm of the annual average weight increment (Table 2).

The mean annual residuals from this model are plotted in Fig. 6. The residuals show a clear pattern with positive values between 1979 and 1983, negative values in 1984 and 1985, strongly negative values in 1990, remaining negative to 1993, positive in 1994 and then negative again in 1995. A scatter plot of the residuals against average area of the CIL suggests a negative relationship (Fig. 7). A relationship with area of the CIL can also be seen by plotting the average total weight increment by fish in a cohort over the ages 3 to 5 against the average CIL experienced by the cohort over that period of their life (Fig. 8). The CIL shows a near-decadel cycle over the time period. Low growth increments tend to be associated with the peaks in the cycle and high growth increments with the troughs in all three divisions.

Based on the apparent relationship between the residuals from Model 1 and the average area of the CIL, the general linear model was expanded (Model 2) to include the area of the CIL in an ANCOVA

$$Ln(X_{i,i,k}) = \tau + \alpha_i + \beta_i + \gamma C I L_k + \varepsilon.$$

This model explained 41% of the logarithm of the annual weight increment (Table 2).

- 5

Subsequent to the initial model fitting, two more years of CIL and survey weight data were collected. Sample size is very small for fish over age 6. Observed versus model predicted weight increments for ages less than 6 for 1996 and 1997 suggests that the model prdicted reasonalby well for the younger ages but less well for the older ages where the observed weight increment was higher than the model predicted (Fig. 9).

Assuming that the model including CIL can predict weight increments in Div. 2J3KL cod to some degree and that is found to be more accurate that using average weights at age, how could such predictions be used in the assessment of the stock? Given the time difference between the measurement of the area of the CIL and the forecasted effect of alternative TACs from the current assessment outlined above, it would be necessary to predict the CIL in the forecast year. The time sequence for the analysis, assessment and forecast are illustrated schematically in Fig. 10.

Analysis of the autocorrelation in the CIL data, for example data from Bonavista transect for the period 1948 to 1995, showed that only the lag-1 correlation, explaining 64% of the variation, is significant (Fig. 11). The implication is that the CIL data can be adequately modelled by a first order autoregressive process. This is demonstrated by subtracting the mean from the data, setting the initial value Y_t to the 1948 value and modelling the remainder of the series by recursively calculating Y_{rel} applying

$Y_{t+1} = r Y_t + \varepsilon$,

where r is the lag-1 regression coefficient (0.8) and ε is normally distributed random noise with standard error equal to the standard error of the data having first subtracted the mean. Y_{t+1} is then added to the mean to obtain the realization. Realizations were randomly generated and compared to the measured time series. Two examples are given in Fig. 12. It is clear that the Bonavista transect CIL can be adequately modelled by a lag-1 autocorrelation model.

Discussion

The literature on the effect of environment on Atlantic cod growth can be divided into

two main categories - those papers that examine the effect of geographical differences in average ambient temperature and those that examine temporal changes in ambient temperature within a specific geographic area. With respect to geographic differences in ambient temperature, Brander (1995) examined the growth of Atlantic cod (derived mainly from commercial catch data) in 17 stocks, and concluded that 92% of the variance among stocks in the logarithm of mean weight at age for ages 2 to 4 fish could be explained by an ANCOVA model with age and temperature effects. Brander (1993) considered that the effect was big enough to have significant consequences for assessments with respect to catch forecasts. Brander's research was preceded by that of Sager et al. (1988) and two ICES studies of cod growth in four Arcto/Boreal systems (Barents Sea, Greenland, Iceland and Newfoundland (Anon 1990), later extended to three other cod systems (Gulf of Maine, Georges Bank and North Sea (Anon 1992). These three references are not cited in the Brander study. Although the primary aim of the ICES studies was to examine the impact of food consumption on growth, across ecosystem differences are attributable in part to ambient temperature. Campana et al. (1995) attribute growth differences on Georges Bank, eastern Scotian Shelf and southern Gulf of St Lawrence to ambient temperature. Shackell et al. (1995) suggest that differences in cod growth among the Scotian shelf and adjacent areas are due to differences in the hydrographic regime.

Studies of geographic variability within cod stocks have been carried out in Iceland (Jónsson 1965), off Labrador and eastern Newfoundland (Flemming 1960; May et al. 1965), between Norwegian fjordic systems (Berg et al. 1993) and in post-larval cod off southwestern Nova Scotia (Suthers et al. 1989). These studies suggest that substantial changes in cod growth can take place with respect to geographic location within ecosystems. In the present study, NAFO Division accounted for a significant portion of the variability in the logarithm of annual weight increment when included in a model with age effects (Table 2).

Annual variability in growth has been reported for many cod stocks. Studies of factors responsible for this variability have generally emphasised temperature as the main causative factor. Some of the stocks for which temperature effects on growth rate have

been suggested include cod on the Scotian shelf (Campana et al. 1995, Shackell et al. 1995), Div. 2J3KL cod (Millar and Myers 1990, Warren 1993, Cárdenas 1994, Shelton and Lilly 1995, Shelton et al. 1996, Krohn et al. 1997) southern Gulf of St Lawrence cod (Beacham 1983), Iceland (Jónsson 1965, Steinarsson and Stefánsson 1991, Cárdenas 1994), North-east Arctic cod (Loeng 1986, Loeng and Gjøesaeter 1990, Jørgensen 1992, Nakken 1994, Nakken and Raknes 1987, Ohzigin et al. 1994, Cárdenas 1994) and West Greenland (Hermann and Hansen 1965). In the analysis of interannual variation in cod growth in Barents Sea, Greenland, Iceland and Newfoundland (2J3KL) cod stocks, Anon (1990) concluded that the overwhelming presence of year effects in the data indicates the existence of a strong environmental effect in cod growth. Significant temperature effects in the Barents Sea, Iceland and Newfoundland stocks were apparent over a variety of analyses.

The present study adds to the body of evidence that cod growth is influenced by the environment. A general linear model fit to the weight increment data that includes age, NAFO Division and average CIL effects explains 41% of the variance. Although a significant amount of the variation in growth is explained in the fit, how useful is this in a predictive sense? The utility of this model in predicting weight increment for use in stock projections still needs to be examined. Because of the lag between the analysis (up to and including year t-1), the assessment (year t) and the projection (year t+1), the model has to be able to make useful 2 year projections. To do this, CIL has to be predicted in year t and year t+1, however there is only a lag-1 autocorrelation in the CIL data. How can this be overcome? How do alternative models with and without CIL compare with each other and with a base model (mean weight at age)? Is it possible to decrease the projection period by reducing the time between the assessment and the prediction? The prediction of the weight increments for fish less than age 6 based in area of the CIL in 1996 and 1997 (not used in the model fit) shows some variability at older ages. Further work to examine the predictive usefulness of the model is required.

Acknowledgements

We acknowledge the considerable efforts of DFO personnel who collected the samples on which this analysis is based. Our recently retired colleague Claude Bishop and his

- 8 -

predecessors in the Gadoids Section in particular have done much to ensure that a comprehensive biological data base is available for northern cod.

9

References

- Anon. 1991. Report of the Multispecies Assessment Working Group, Woods Hole, 4-13 December, 1990. ICES C.M. 1991/ASSESS:7, 246p.
- Anon. 1992. Report of the Multispecies Assessment Working Group, Copenhagen, 16-25 June 1992. ICES C.M. 1992/ASSESS:16, 152p.
- Beacham, T.D. 1983. Growth and maturity of Atlantic cod (Gadus morhua) in the southern Gulf of St Lawrence. Can. Tech. Fish. Aquat. Sci. 1142, 35p.

Berg, E., P. Kanapathippillai, T. Pedersen and J. dos Santos. 1993. Dynamics of growth and sexual maturation of wild and released cod (Gadus morhua L.) in a north Norwegian fjord. Int. Symp.: Sea Ranching of Cod and Other Marine Species, Arendal, Norway, 15-18 June 1993.

- Brander, K. M. 1995. The effect of temperature on growth of Atlantic cod (Gadus morhua L.). ICES J. mar. Sci. 52: 1-10.
- Campana, S.E., R.K. Mohn, S.J. Smith and G.A. Chouinard. 1995. Spatial implications of a temperature-based growth model for Atlantic cod (Gadus morhua) off the eastern coast of Canada. Can. J. Fish. Aquat. Sci. 52: 2445-2456.
- Cárdenas, E. 1994. Some considerations about annual growth rate variation in cod stocks. NAFO SCR Doc. 94/64, 11p.
- Colbourne, E. 1995. Oceanographic conditions and climate change in the Newfoundland region during 1994. DFO Atl. Res. Doc. 95/3, 36p.
- Fleming, A. M. 1960. Age, growth and sexual maturity of cod (Gadus morhua L.) in the Newfoundland area, 1947-1950. J. Fish. Res. Board Can. 17: 775-809.
- Hermann, F. and P.M. Hansen. 1965. Possible influence of water temperature on the growth of the West Greenland cod. Int. Comm. Northwest Atl. Fish. Spec. Publ. 6:557-563.
- Jónsson, J. 1965. Temperature and growth of cod in Icelandic waters. ICNAF Special Publication 6: 537-539.

Jørgensen, T. 1992. Long-term changes in growth of North-east Arctic cod (Gadus morhua) and some environmental influences. ICES J. mar. Sci. 49: 263-277.

- Krohn, M.M., Reidy, S.P., and Kerr, S.R. 1997. Bioenergetic analysis of the effects of temperature and prey availability on growth and condition of northern cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 54 (Suppl. 1):113-121.
- Loeng, H. 1986. The influence of oceanic climate on fishery resources. Seminar on the Barents Sea Resources, Trondheim, 6-7 May 1986: 29-43.
- Loeng, H. and H. Gjøesaeter. 1990. Growth of 0-group fish in relation to temperature conditions in the Barents Sea during the period 1965-1989. ICES C.M. 1990/G:49, 9p.
- May, A. W., A. T. Pinhorn, R. Wells, and A. M. Fleming. 1965. Cod growth and temperature in the Newfoundland area. ICNAF Special Publication 6: 545-555.
- Mehl, S., and K. Sunnanå. 1991. Changes in growth of Northeast Arctic cod in relation to food consumption in 1984-1988. ICES mar. Sci. Symp. 193: 109-112.
- Millar, R. B., L. Fahrig, and P. A. Shelton. 1990. Effect of capelin biomass on cod growth. ICES C.M. 1990/G:25. 10 p.
- Millar, R. B., and R. A. Myers. 1990. Modelling environmentally induced change in size at age for Atlantic Canada cod stocks. ICES C.M. 1990/G:24. 13 p.
- Myers, R.A., K.F. Drinkwater, N.J. Barrowman and J.W. Baird. 1993. Salinity and recruitment of Atlantic cod (Gadus morhua) in the Newfoundland region. Can. J. Fish. Aquat. Sci. 50: 1599-1609.
- Nakken, O. 1994. Causes of trends and fluctuations in the Arcto-Norwegian cod stock. In Proceedings of Symposium on Cod and Climate Change. Rapp. P. -v. Reun. Cons. Perm. int. Exlor. Mer. 198: 212-228.
- Nakken, O. and A. Raknes. 1987. The distribution and growth of northeast Arctic cod in relation to bottom temperature in the Barents Sea, 1978-1984. Comparitive Biology 5: 243-252.
- Ohzigin, V.K., V.L. Tretyak, N.A. Yaragina and V.A. Ivshin. 1994. Dependence of the Barents Sea cod growth upon conditions of their feeding on capelin and water temperature. ICES C.M. 1994/G:32, 12p.

Sager, G., M. Berner and R. Sammler. 1988. Investigations on growth in length and growth increase of the cod (Gadus morhua L.) around the Faroe Islands after data series from Jones (1959-1962) and growth comparison of the Atlantic stocks. Fischerei-Forschung 26:31-37.

- Shackell, N.L., K.T. Frank, W.T. Stobo and D. Brickman. 1995. Cod (Gadus morhua) growth between 1956 and 1966 compared to growth between 1978 to 1985, on the Scotian Shelf and adjacent areas. ICES C.M. 1995/P:1, 18p.
- Shelton, P. A., L. Fahrig, and R. B. Millar. 1991. Uncertainity associated with codcapelin interactions: how much is too much? NAFO Sci. Coun. Studies. 16: 13-19.
- Shelton, P.A. and D.B. Atkinson. 1994. Failure of the Div. 2J3KL cod recruitment prediction using salinity. DFO Atl. Fish. Res. Doc. 94/66, 14p.
- Shelton, P.A. and G.R. Lilly. 1995. Factors influencing weight at age of cod off eastern Newfoundland (NAFO Divisions 2J+3KL). ICES C.M. 1995/P:14, 29p.

Shelton, P.A., Lilly, G.R., and Colbourne, E. 1996. Patterns in the annual weight increment for 2J3KL cod and possible prediction for stock projection. NAFO SCR Doc. 96/47, 23p.

- Smith, S. J., and G. D. Somerton. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: 66 p.
- Steinarsson, B. Æ., and G. Stefánsson. 1991. An attempt to explain cod growth variability. ICES C.M. 1991/G:42. 20 p.
- Suthers, I.M., K.T. Frank, and S.E. Campana. Spatial comparison of recent growth in postlarval Atlantic cod (Gadus morhua) off southwestern Nova Scotia: Inferior growth in a presumed nursery area. Can. J. Fish. Aquat. Sci. 46:113-124.
- Walters, C.J. and J.S. Collie. 1988. Is research on environmental factors useful to fisheries management? Can. J. Fish. Aquat. Sci. 45:1848-1854.
- Warren, W.G. 1993. Some applications of the Kalman Filter in Fisheries Research. ICES C.M. 1993/D:57, 19p.

Year	2J	3K	3L	<u>Total</u>
1978	132	120	0	252
1979	113	120	0	233
1980	140	156	0	296
1981	145	141	138	424
1982	135	160	51	346
1983	173	156	152	481
1984	532	167	0	699
1985	506	143	147	796
1986	119	130	142	391
1987	104	132	161	397
1988	200	249	156	605
1989	890	1055	144	2089
1990	852	970	706	2528
1991	546	764	576	1886
1992	263	538	494	1295
1993	95	355	377	827
1994	62	92	126	280
1995	401	468	236	1105
Total	5408	5916	3606	14930

Table 1. Number of individual fish sampled in 2J3KL fall surveys in each year in each division for which both body weight was taken and age determined from the otolith.

Table 2. Results of the general linear models in which age and NAFO division effects were fitted to the log-transformed weight increment data for 2J3KL cod (Model 1)and for which age, NAFO division and area of the CIL effects were fitted (Model).

Model 1						
	Number of observations R-square		396			
			0.364			
	Residual sums	of squares	182.738			
	Type III Sums o	of Squares				
	Effect	SS	MSE	F	Pr>F	
	Age	9	92.346	10.261	19.88	0.0001
	NAFO	2	14.659	7.330	14.20	0.0001
Model 2						
	Number of observations		366			
	R-square		0.414			
	Residual sums	of squares	168.164			\sim
	Type III Sums o	of Squares				
	Effect	DF	SS	MSE	F	Pr>F
	Age	9	89.562	9.951	20.89	0.0001
	NAFO	2	14.952	7.476	15.69	0.0001
	AVECIL.	1	14.575	14.575	30.59	0.0001

- 14 -

Fig. 3. Log-transformed annual weight increments estimated from survey data for ages 1 to 10 in NAFO Divisions 2J, 3K and 3L.

Fig. 5. Mean log-transformed weight increment plotted against age. Error bars indicate plus and minus one standard deviation.

- 16 -

Fig. $\overline{6}$. Residuals in log-transformed weight increment after removing age and division effects.

- 17

)

Fig. 10. Schematic showing the temporal sequence of events associated with attempting to predict the weight of fish in year t+1 from a predictive growth model which includes CIL fit to the data up to and including year t-1, when used during the assessment carried out in year t.

- 22 -

