

NOT TO CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Fisheries Organization

NAFO SCR Doc. 99/38

SCIENTIFIC COUNCIL MEETING – JUNE 1999

An Assessment of Greenland Halibut in NAFO Subarea 2 and Divisions 3KLMNO

by

 W. B. Brodie, W. R. Bowering, D. Power, M.J. Morgan, and G. Boland Science Branch, Department of Fisheries and Oceans
 P. O. Box 5667, St. John's, Newfoundland, Canada AlC 5X1

Abstract

Assessment of the Greenland halibut stock in Subarea 2 + Divisions 3KLMNO was based primarily on the interpretation of research vessel and CPUE indices. No VPA was possible due to the lack of catch-at-age data for all years. The biomass of fish greater than 35 cm was below average in 1998, but still appears to be increasing slowly. The number of older, mature fish in the surveys remains low, and SSB estimates are still uncertain.

Surveys in 1997 confirmed the abundance of year-classes previously thought to be strong, although in 1998, the 1995 year-class did not appear to be as strong as previously thought, based on the Canadian surveys. The 1996 and 1997 year-classes do not appear to be as large as those of 1993-1995.

There was a significant reduction in catches from a range of 50 000 to 70 000 tons in the early-1990s, to between 15 000 and 20 000 tons in 1995-98. The biomass of fish greater than 35 cm continues to increase, although at a slow rate, and is still relatively low, but should continue to increase in 1999-2000 if current levels of exploitation are maintained. The success of most fisheries in 1999-2000 will depend mainly on the 1992 and 1993 year-classes, based on typical age compositions observed in the past. The 1994 and 1995 year-classes should not have a major effect on most fisheries until 2001.

The NAFO Scientific Council was unable to advise on a specific TAC for this stock for 2000. However, given the present level of fishable biomass, SC recommended that a catch in 2000 of about 30 000 tons is likely to allow the stock to continue to increase.

Catch History and TACs

The fishery for Greenland halibut in this management area began in the early-1960s, using synthetic gillnets in the deepwater bays of eastern Newfoundland, particularly Trinity Bay. As catches declined here, the effort moved progressively northward in the other bays along the east and northeast coast of Newfoundland. Subsequently, vessels moved further offshore to the deep channels running between the shallow fishing banks. Catches increased from fairly low levels in the early-1960s to over 36 000 tons by 1969 and ranged from 24 000 tons to 39 000 tons over the next 15 years. With the exception of 1987, catches in the late-1980s were around 18 000 to 20 000 tons (Table 1A; Fig. 1).

In 1990, an intense fishery for Greenland halibut developed in the NAFO Regulatory Area (NRA) of Div. 3L and 3M, in the deepwater areas known as Sackville Spur and Flemish Pass. The development of this fishery resulted in a rapid escalation of catches to about 47 000 tons in 1990. Catches in the NRA in 1991 to 1993 were estimated to be around 55 000 tons in each year although some estimates were nearer 75 000 tons in at least one of these years. Overall, catches from the stock during 1991 to 1993 were estimated to be between 62 000 and 65 000 tons annually. Best estimates of catch suggested a decline to about 51 000 tons in 1994, although some estimates ranged as high as 56 000 tons. As a result of management measures introduced by the NAFO Fisheries Commission in 1995 (extensive quota

restrictions and 100% observer coverage in the NRA), catches were greatly reduced (Table 1B). In 1995, the catch was estimated to be about 15 000 tons, increasing to almost 19 000 in 1996, and to about 20 000 tons in 1997-98. Catches from the stock in 1995-98 represent a reduction of about two-thirds compared to the average annual catch of the previous 5 years.

The major participants in this fishery in the NRA have been EU/Spain and EU/Portugal, as well as a variety of non NAFO-member countries such as Panama, although by 1994, more than 80% of the catch was estimated to have been caught by EU (Spain) alone. Prior to 1990, Canada, USSR, GDR, and Poland were usually the main participants in the fishery, although Portugal and Japan became increasingly involved in the fishery after 1984 (Table 2). Canadian catches have been taken mostly by gillnet, although a significant proportion has been taken by otter trawlers. With the exception of 1987, catches declined steadily inside the Canadian zone since the late-1970s from a high of over 30 000 tons to less than 3 000 tons in 1994 and 1995. This declining trend was mainly a result of low catch rates and reduced effort, as multi-licensed vessels fished other species such as snow crab that offered a better return on costs. This fishery improved in 1996 and 1997, and catches increased to around 6 000 tons in each year, but were lower in 1998 at around 4 100 tons (Table 3). The majority of Canadian catch in the last 2 years has come from Div. 3K, and the seasonal patterns are similar in both years. The breakdown of total catches in 1998, by country and Division, is given in Table 4.

The traditional gillnet fishery has been conducted by relatively small vessels (<20 m) fishing in the deepwater channels near the Newfoundland and Labrador coast as well as the Newfoundland east coast deepwater bays using an average mesh size of 150 mm. However, this component of the fishery has declined in recent years. The Canadian gillnet catches taken during recent years are mainly from a fishery along the deep edge of the continental slope in Subarea 2 and Div. 3KL, although some fishing still occurs nearshore, mainly with 140 mm gillnets. Some fishing by Canadian gillnetters is now taking place along the southwest slope of the Grand Bank in Div. 3O although catches have been relatively low. In an attempt to reduce the catch of young Greenland halibut in the new deepwater gillnet fishery, it is illegal to use a gillnet mesh size of less than 190 mm while fishing Greenland halibut in the Canadian zone in depths > 400 fath. (732 m).

Canadian otter trawl catches peaked at about 8 000 tons in 1982, declined to less than 1 000 tons in 1988, then increased to about 7 400 tons in 1991 which is the highest level since 1982. In 1992, otter trawl catches were less than half that of 1991 due to low catch rates. Since then, catches by this fleet have been less than 1 600 tons annually, and were at very low levels in 1998. Almost all the Canadian otter trawl catch in 1996-98 occurred in Div. 2J and 3K.

The TAC for this resource (Subarea 2 and Div. 3KL only), increased from 35 000 tons in 1980 to 55 000 tons in 1981-84, and 100 000 tons in 1986-89 (Table 1B, Fig. 1). These increases in TACs were the result of research vessel survey estimates of stock biomass which indicated high levels of fishable biomass (in excess of 400 000 tons) as well as prospects of several better than average recruiting year-classes. Despite the large TACs, catches in the 1985 to 1989 period were lower than in the preceeding years. After observing an estimated reduction in stock biomass from the late-1970s to the late-1980s in Subarea 2 and Div. 3KL of about 50%, the TAC was reduced to 50 000 tons in 1990 and this level was maintained to 1993 despite the substantive declines in stock size throughout the normal range of observed historical stock distribution. Although the Scientific Council, in June 1993, could not advise an appropriate catch level for 1994, the TAC was reduced to 25 000 tons by Canada in Subarea 2 and Div. 3KL in consideration of low levels of stock size estimated for the area. It was intended that this catch should include all catches in Subarea 2 and 3 for conservation purposes. In 1994, management of G. halibut in Subarea 2 and Div. 3KLMNO became the responsibility of the NAFO Fisheries Commission, which imposed a TAC of 27 000 tons for 1995. This level was maintained for 1996 to 1998 inclusive, and was proportioned throughout the management area in an attempt to reduce high concentrations of effort in localized areas. For 1999, Scientific Council recommended that an increase in catch to about 30 000 tons should not impede recovery, but Fisheries Commission set the TAC for 1999 at 33 000 tons.

Commercial Fishery Data

i) Catch-at-age and mean weights-at-age

Sampling data were available from the 1998 catches of Russia, Spain, France, and Portugal. Canadian data were not presented, as the otolith readings were not completed. The Russian fishery in Div. 3LM caught fish mainly in

the range 34-50 cm, with a peak at 38 cm in 3L and 42 cm in 3N. The Spanish fishery consisted mainly of fish in the same length range, aged 5-7. The peak age in each of Div. 3L, 3M and 3N was 6 years. French catches in Div. 3L were comprised of similar sized fish, although the catches in Div. 3M were mainly fish between 50 and 60 cm. Length and age compositions of the Portuguese catches in Div. 3LMN were similar to the Spanish catches in that ages 6 and 7 predominated. Overall, ages 5-8 appeared to dominate otter trawl catches, with a peak usually at age 6 or 7, depending on fleet and area.

Due to the uncertainty regarding catch information on fisheries in the NRA since 1989, as well as the lack of adequate sampling data for some fleets in some years, catch-at-age data for this stock are incomplete. Brodie *et al.* (1998) presented catch-at-age for Canadian catches only from 1988-97. Prior to 1989, data are available from the entire annual fisheries which took place mainly in the Canadian zone, and have been presented in some previous assessments of this stock (see Bowering *et al.*, 1996). Ages 6-8 dominated the catch in most years up to 1991. Mean weights-at-age in recent years were similar, and no trends are seen in the mean weights over the period 1988-97. For the next assessment of this stock, an attempt will be made to update the Canadian catch-at-age for 1998 and 1999, and to compile the total international catch-at-age for this stock for years after 1990.

ii) Catch and effort

Catch and effort data from the directed fishery for G. halibut during the period 1975 to 1993 were obtained from ICNAF/NAFO Statistical Bulletins and were combined with provisional 1994-1998 NAFO data. The catch/effort data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index for hours fished, as has been done in the last few assessments of this stock. Factors included in the model were a combination country-gear-tonnage-class category type (CGT), month, NAFO Division and year. Except for the year category type, individual observations of catch or effort data less than 10 units were eliminated prior to analysis as were categories where there were less than five occurrences in the database. It should be noted that the number of observations in 1997 and 1998 were extremely low relative to the rest of the time series. The regression was significant (p < 0.05), explaining 62% of the variation in catch rates (Table 5). The standardized catch rate index (Table 6, Fig. 2) shows high between-year variability, especially in the late-1970s to mid-1980s. There was an increasing trend from the mid-1970s that peaked in 1982 and CPUE subsequently declined to the lowest levels observed in the 1990's. The substantial increase from 1996 to 1997 is not statistically significant, given the high variability around the mean CPUE, particularly in 1997 (Fig. 2). The catch rate in 1998 was similar to 1997, although there were few observations in each year. For the whole time period, catch rates were generally higher in winter and higher in Subarea 2, based on the coefficients in Table 5.

Portuguese catch rates have increased each year from 1994 to 1998 in Div. 3L, but are below the values observed in 1988-90. There are no apparent trends in Div. 3N, and CPUE in Div. 3M increased from 1995 to 1997, but declined in 1998. Overall (Div. 3LMN), Portuguese CPUE showed a similar pattern as in Div. 3L, showing an increase since 1994.

Canadian Research Vessel Surveys

From 1977-94 in Div. 2J and 1978-94 in Div. 3K, Canadian stratified random surveys were conducted during autumn by the research vessel *Gadus Atlantica* using an Engel 145' bottom trawl. In Div. 3L from 1981-83, surveys were conducted by the *A.T. Cameron* using a Yankee 41.5 bottom trawl and in 1984-94 by either the *A. Needler* or the *W. Templeman* (sister ships) using an Engel 145 bottom trawl, which differed somewhat from the trawl used on the *Gadus Atlantica*. Surveys have been carried out in Div. 2GH in 1996-98, but only sporadically before then. In 1995-98, the surveys in autumn in Subareas 2 and 3 were conducted by the research vessels *Teleost*, *W. Templeman* and *A Needler* using a Campelen 1800 shrimp trawl with rockhopper footgear (for details on the trawls used in these surveys, see McCallum and Walsh, 1996). Warren (1996) outlined the conversion factors for G. halibut catches, required for comparison of results from 1995 and onward with those prior to 1995. The 1997 assessment of this stock contained several tables and figures outlining these comparisons for G.halibut (Brodie *et al.*, 1997).

Table 7 gives an outline of the Canadian survey coverage, by division and depth, for the 1996-1998 Canadian surveys in SA 2 + 3KLMNO. Maps of the stratification schemes used in the surveys are shown in Fig. 3 to 7. The following points comparing survey coverage between years are noteworthy:

- About 850 sets were completed in each of the 3 years, with just under 60% of the sets occurring in Div. 2J3KL.
- Coverage in the deep water of Div. 3NO has not been as extensive as in other areas in the autumn surveys, particularly in 1996 and 1997. In 1998, good coverage of all depths was achieved in Div. 3N, and to 1100 m in Div. 3O.
- In 1997 and 1998, only the strata deeper than 731 m on the west and north sides of Flemish Cap (in the Flemish Pass and Sackville Spur areas of Div. 3M) were surveyed, compared to a complete survey of Div. 3M in 1996.
- Coverage was somewhat better in Div. 2G in 1997 compared to the other 2 years. Coverage in Div. 2H, 2J, 3K, 3L, and areas of Div. 3NO < 731 m were quite similar between years.
- The survey coverage was extended into new inshore strata in Div. 3K and 3L in 1996, and this was repeated in 1997 and 1998.

i) Geographic distribution of G.halibut

The spatial distribution of Greenland halibut in Div. 2J and 3KL from the autumn surveys was examined by depicting standardized survey catches as circles and subsequently plotting these circles on a map of the survey area according to the position of each catch (Black, 1993). Circle diameters were chosen to represent proportionally increasing size groups of catch weight (kg) established from a cursory examination of the entire database. All catches within the bounds of a particular size grouping are represented by the same circle diameter. Tows where G. halibut did not occur are depicted with a plus (+) symbol.

Data from all autumn surveys prior to 1995 (Engel trawl) were depicted in Bowering *et al.* (1996). During the earlier surveys, Greenland halibut were relatively abundant in the deep channels running between the shallow fishing banks, especially in Div. 2J and 3K. They were also plentiful along the slope of the continental shelf. This distribution pattern remained fairly consistent to about 1987, but after 1987, a decreasing trend in abundance was clearly apparent, detected first in Div. 2J. This was followed by a similar trend in Div. 3K by 1990. By 1993, survey catches in Div. 2J and 3K were extremely low and the highest catches in the area were taken in the central part of Div. 3K.

In 1995-98 the survey results using the Campelen trawl showed similar patterns in the distribution of catches (Fig. 8, 9). Throughout this survey period, most of the largest catches in numbers occurred in the channels between shallow banks, particularly in Div. 3K and in northern 2J. The largest catch weights of G.halibut followed a similar pattern, but some were also recorded along the deepwater slopes of Div. 3KL, particularly in 1997 and 1998. There are no obvious breaks in the north-south distribution of this species in these surveys, although catches in the shallowest survey areas were consistently low, with few fish being found in depths less than about 150 m.

To look for differences in distribution of G.halibut by size, data from the 1998 survey were split into length categories above and below 35 cm. The smaller fish tend to be distributed more in the channels between the fishing banks, and less toward the continental shelf (Fig. 10). Catches of fish less than 35 cm tended to be smaller in areas south of Div. 3K. The larger fish overlapped the distribution of smaller fish throughout the survey area, but were found mainly in deepwater areas along the slope where the younger fish were often absent, or present only in low densities (Fig. 11). In both 1997 and 1998, fish greater than 35 cm were found consistently along the slope edge in Div. 3K, and the northern part of Div. 3L.

ii) <u>Biomass indices</u> (converted from Engel to Campelen equivalents prior to 1995, and Campelen surveys in 1995-1998)

<u>1998 survey</u>. Tables 8 to 15 give detailed results of the 1998 survey, by Division, for Div. 2GHJ and 3KLMNO. The 1998 survey was incomplete in Div. 2G. In Div 2H, strata 948 and 946 accounted for about 53% of the abundance and 45% of the biomass (Table 9, Fig. 4). In Div. 2J, no single stratum contained more than 16% of the abundance or 11% of the biomasss. Strata 204 and 208 accounted for about 20% of the biomass in Div. 2J (Table 10, Fig. 5). In Div. 3K, adjacent strata 627 and 631 (401-500 m in Funk Island Deep, Fig 4) contained almost a third of the abundance and 28% of the biomass (Table 11). In Div. 3L, biomass and abundance tended to be more evenly distributed, with no single stratum containing more than 9% of the total biomass in 1998 (Table12), similar to 1997. Strata 737 and 741 (732-914 meters, Fig. 7) ranked 1 and 2 in terms of biomass in Div. 3L. In most of the depth zones greater than 367 m on the shelf edge in Div. 3L, catches declined from north to south (Table 12, Fig. 11), with the obvious break being the 200 mile

limit. In Div. 3M, catches were similar to those in the same depth in adjacent areas of Div. 3L, eg. on each side of the Flemish Pass. About 30% of the biomass in the 9 surveyed strata in Div. 3M occurred in stratum 528 on the northwest portion of Flemish Cap (Table 13, Fig. 7). In Div. 3N, coverage was completed in all but 2 strata (both deeper than 1097 m). No stratum contained more than 15% of the biomass, and the strata ranked 1 and 2 in both abundance and biomass were somewhat shallow compared to other Divisions (strata 378 and 381, depth 184 – 274 m, Table 14 and Fig. 7). In Div. 3O (Table 15), no sets were done in depths greater than 1 097 m, although all strata shallower than this were surveyed in 1998. Most of the biomass (56%) and abundance (54%) were found in the 3 strata in depths between 732 and 914 m.

<u>1995-1998 Campelen surveys</u>. Biomass increased from 1995 to 1996, and again to 1997 in all 3 Divisions (2J3KL), as seen in Tables 16-18, although the 1995 estimate is biased downward by the omission of several deep strata throughout the area. This increase continued in 1998 for Div. 3K and 3L, with the biomass in Div. 2J declining to the level estimated in 1996. Comparing the 4 years in each Division, only Div. 2J and 3L (1997) had confidence intervals around estimates of abundance and biomass which were very wide. In 1998, confidence intervals were widest in Div. 2G and 3N (Table 19). Overall, the trawlable biomass estimate for Div. 2J3KL was about 260 thousand tons in both 1997 and 1998, and 331 thousand tons in the surveyed areas of SA 2 + Div. 3KLMNO in both years (Tables 19 and 20).

<u>Comparison of Campelen and Engel surveys</u>. Results of the data analysis (Warren, 1996) from the comparative fishing exercises carried out between the *Gadus Atlantica* using the traditional Engel 145' bottom trawl and the *Teleost* using a Campelen 1800 shrimp trawl with rockhopper footgear (McCallum and Walsh, 1996) were evaluated in 1996. All length frequency data on Greenland halibut collected during the autumn surveys of the *Gadus Atlantica* using the Engel 145' bottom trawl from 1977-94 in Div. 2J and 3K were converted to Campelen trawl catch equivalents to allow for direct comparison of the old data series with the results of surveys from 1995 onwards (Bowering *et al.*, 1996). The conversion for the Engel's trawl used in the surveys in Div. 3LNO has not yet been evaluated, although there was little deepwater coverage in Div. 3L in most Engel surveys, and no autumn coverage of Div. 3NO at all prior to 1990.

To allow comparison of the biomass estimates in Div. 2J and 3K from the two time periods (pre-1995 and 1995-98), the converted abundance at length was transformed to biomass at length using length-weight (L/W) relationships. The converted biomass from Div. 2J3K combined for 1978-94, and the L/W-converted Campelen values for 1995-98, are shown in Fig. 12. As was noted in the last two assessments of this stock, the L/W-converted biomass estimates in 1996 and 1997 were about 10% lower than the actual biomass derived from catch weights, suggesting a problem with the L/W equation used in the calculations. In this assessment, annual L/W relationships were used for 1990-97 (Table 3 of Gundersen and Brodie, 1999). For years prior to 1990, the 1990 L/W relationship was used, and for 1998, the 1997 values were used. The total (2J3K, all sizes) converted biomass estimates are compared against the values calculated with the old L/W relationship (Bowering and Stansbury, 1984) in Fig. 13. In every year, the biomass estimates calculated with the new L/W data are higher. One reason for this could be that the earlier L/W calculations were made with data from fish that had been frozen then thawed, and some weight may have been lost in the thawing process. In any case, the biomass estimates calculated with the new L/W values appear to be more accurate, as indicated by the comparison of the 1995-98 data (actual Campelen surveys) against the swept-area ('STRAP') biomass estimates, derived from set by set catch weights (Fig. 13). After a steady decline from the mid-1980s to 1992, the biomass has since increased, with the values in 1996 to 1998 being equal to the level seen in the late-1980s (Fig. 12).

A closer look at the trends in the biomass of fish above and below 35 cm continues to reveal some interesting patterns (Fig. 12). In the years prior to 1988, the trawlable biomass estimates in Div. 2J and 3K were comprised mainly of fish larger than 35 cm. As the stock size declined in these areas, the biomass became dominated by smaller fish (the actual change-over occurred from 1991 to 1992). It is thought that much of the biomass of older fish in these areas probably migrated to the deepwater areas of the NRA in Div. 3LMN, resulting in the sharp increases in catch in the early-1990s. While the biomass of the larger fish has remained fairly low throughout the 1990s, increasing somewhat from 1995-98, the biomass of G. halibut smaller than 35 cm has increased sharply, to levels in 1996-98 which are substantially higher than the values seen prior to 1993. Although these comparisons must be done with the Engels-Campelen conversion in mind, it should be noted that the 1993 and 1994 unconverted values for biomass less than 35 cm are also higher than the earlier values, ie. the increased recruitment was apparent before the switch in trawl gears occurred (Brodie *et al.*, 1997).

Figure 14 shows the split, by Division, of trawlable biomass from the 1998 Canadian survey (based on the length-weight calculations). Similar to 1996 and 1997, close to two-thirds of the biomass was found in Div. 2J3K, with no more than 17% being found in any other Division (Table 20). It making this comparison, it must be noted again that coverage was not complete in all areas in all years, mainly in the deep areas of Div. 2G, 3N, and 3O. Nonetheless, the 1998 survey gives a reasonably comparable biomass estimate with those from the 1996 and 1997 surveys, in that they all cover the majority of the stock area down to 1500 meters. Figure 14 also indicates the components of the biomass above and below 35 cm, by Division. Larger fish made up more than 50% of the biomass in Div. 3L and 3NO, and about 50% in Div. 2GH, but were a much smaller percentage in Div. 2J and 3K, as was the case in 1996-97. Few small fish were found in Div. 3M, as there were no sets in this Division in depths less than 731 m.

iii) <u>Abundance indices</u> (converted from Engel to Campelen equivalents prior to 1995, and Campelen surveys in 1995-1998)

The age compositions from the 1996, 1997, and 1998 surveys, by Division, are shown in Table 21. In all three years, the 1995 year-class is dominant, followed by the 1994 (the 1996 year-class was slightly larger than the 1994 in the last survey). The majority of these cohorts were located in Div. 2J and 3K in all three years. Fish older than 9 comprised less than 0.4% of the total abundance in all years, with the highest numbers of older fish being found in Div. 3KL in 1997 and 1998. Overall, there was a decrease of about 13% in total abundance from 1996 to 1997, and a further decline of 28% in 1998, explained by the decline in the 1994 and 1995 year-classes during these years. Subsequent year-classes (1996 and 1997) do not appear to be as large as those of 1994 or 1995, based on the limited amount of data in the 1997 and 1998 surveys. Although there has been an overall reduction in abundance, the index of age 5+ abundance has increased by almost 80% from 1996 to 1998 as the 1992 and 1993 year-classes entered this age range. As noted previously, the number of fish aged 9+ is a relatively small portion of the abundance index, and was stable in 1996-97 before declining in 1998.

To allow comparisons over the longest possible period (1978-98), data from Div. 2J and 3K combined are used as an index of abundance. The converted data (Campelen equivalent, 2J3K only) are shown in Table 22.

The converted abundance indices for various age groupings are presented in Fig. 15. One readily apparent feature of these data plots is the general increase in the abundance index from cohorts at ages 3-5. The overall trend has been increasing from the early-1980s, although there was a drop in 1990-91, and 1995 (Fig. 9). This figure also shows that the high points were in 1993, 1997, and 1998. On the other hand, the cohorts at ages 6-9 declined rapidly in the late-1980s and early-1990s, and ages 10+ declined since the early-1980s. Both these series have stabilized at very low levels in the mid-1990s, with a slight increase in the age 6-9 group in 1996 and 1997 before levelling off in 1998. Ages 10+ increased somewhat from very low levels in 1994-95, but remain far below levels observed in up to the mid-1980s. The increase in recruitment and decrease in older fish abundance are consistent with previous conclusions that Greenland halibut migrate from the survey area in Div. 2J3K when they reach about age 5, particularly since about 1990. The reason for the increase in recruitment is not known, as it was generally believed that the stock had declined to lower levels in the 1990's, which is when the increase in young fish was indicated by the survey. Little can be said about SSB for this stock, as it is clear that few fish of spawning age, about 9+, are found in the surveys in many recent years. Thus it is not possible to determine a stock-recruit relationship for this stock with available data.

iv) <u>Recruitment indices and year-class strengths (based on converted estimates)</u>

Although the converted data allow comparisons of year-class strengths throughout the time series, it should be noted that there is considerable uncertainty about the conversion factors at each end of the size range. Thus a cautious approach is warranted when comparing numbers at the youngest ages. Nonetheless, it is clear that the recent data show an increase in recruitment, and a decrease in the number of older fish in the index area (2J3K). The 1995 year-class was clearly a strong one, as it was in West Greenland also. In the 4 Campelen surveys (1995-98, Table 22), this year-class was the highest in the series of age 0, 1, and 2 (comparing across the 4 years). However, it was ranked 3 of 4 at age 4, similar in size to the 1993 year-class.

In general terms, the data indicate that estimates of recruiting year-classes at ages 2-4 exhibited an increasing trend since the early-1980s except for the 1987 and 1988 year-classes. The 1990 and particularly the 1991 year-classes

appeared to be at least better than average in Div. 2J3K, but only at younger ages (Table 22). Early indications also suggested that the 1992 and 1993 year-classes were above average, but the values for the 1992 year-class in the 1996 and 1997 surveys were average at best, and certainly below average in 1998. The observations on the declining strength of the 1990-92 year-classes over time support the hypothesis that G.halibut migrate out of the area as they grow older. In 1998, the 1993 year-class ranked 5th out of 21 observations at age 5, supporting previous observations on the strength of this year-class. Compared with the 1993 cohort, the 1994 year-class was somewhat more abundant at ages 2 and 3, and less abundant at age 4.

More confidence in the size of these recent year-classes should be developed over the next couple of years' surveys. Greenland halibut generally recruit to otter trawl fisheries around age 5, and usually dominate catches in this fishery at ages 6-9. If the year-classes of the early- to mid-1990s were indeed above average, then increased catch rates should be evident in the near future. However, as noted, interpretation of the survey indices for Div. 2J3K is made difficult by the suspected migration of older fish from this area. Figure 16 shows that there is no significant relationship ($r^2 = 0.04$) between abundance estimates of age 3 and 6 of the same cohort in the 2J3K data (Table 22). Year-classes in the late-1970s and early-1980s showed a much higher population size at age 6 than did year-classes of the late-1980s and early-1990s, despite having a generally lower abundance at age 3 in the same survey index. One explanation is migration of fish from the 2J3K area between ages 3 and 6 in the late-1980s, which is consistent with the escalation of the fishery at this time in Div. 3LMN. With the continued development of a time series of surveys covering Subarea 2 and Div. 3KLMNO, further analysis and evaluation of indices of abundance, biomass, and recruitment will be possible.

v) Mortality estimates

Figure 17 compares the total mortality estimates (Z-values) from 2J3K survey data at ages 7+/6+ against the trends in catch from the entire stock area (SA 2 + Div. 3KLMNO). The sharp increase in Z in Div. 2J3K in the early-1990s mirrors the increase in catch from the stock area, most of which came from the NRA in Div. 3LMN. Z-values decreased substantially after 1995, following reductions in the catch from the stock, but increased in 1998. Again, how much of the Z-value is actually migration out of the 2J3K area (and likely into the NRA) is impossible to say. Nonetheless, Z-values for this part of the population were above 1.0 in each year from 1990 to 1995, and again in 1998, which is substantially higher than the values calculated for the 1980s. Values calculated from the 1995-97 surveys are similar at around 0.3 to 0.6 to those observed in the mid-1980s, when catches were in the range of 18 000 to 28 000 tons.

Figure 18 shows the trends in Z's for ages 5 to 6, 7 to 8, and 9 to 10, from the same 2J3K survey index. These data all show increases in mortality from the mid-1980s to early-1990s, followed by a decline. The 1998 value for ages 5/6 were above average, but Z's for ages 7/8 and 9/10 were similar to those observed in 1985-87, above values of the early-1980s and below peak values of the early-1990s.

Results from Other Research Vessel Surveys

i) EU stratified-random surveys in Div. 3M.

These surveys indicated that the Greenland halibut biomass index on Flemish Cap in July in depths to 730 m, ranged from 4 300 tons to 8 600 tons in the 1988 to 1994 period. The estimated biomass has increased in each year since then, to reach a maximum value of 24 000 tons in 1998, which was slightly more than double the 1996 estimate (Vazquez, 1999). The age composition data indicated that the abundance in 1998 was dominated by ages 3-7, similar to the 1997 survey, indicating that an increase in recruitment is mainly responsible for the increase in biomass. The 1994 and 1995 year-classes had the highest values in the time series at ages 1, 2, and 3. Few fish older than age 10 were encountered in any of these surveys, probably because no depths greater than 730 m were fished.

ii) Spanish stratified-random surveys in Div. 3NO Regulatory Area.

During April-May of 1995 to 1999, stratified-random bottom trawl surveys were conducted by EU-Spain in the Regulatory Area of Div. 3NO to a depth of 730 m in 1995, 1 100 m in 1996, 1 275 m in 1997, and 1 460 m in 1998-99. The estimated biomass (comparable strata from 1996-99 only) was about 35 000 tons in 1996, 45 000 tons in 1997, 85 000 tons in 1998, and 75 000 tons in 1999 (Paz and Duran, 1999). The total biomass estimated in

1999, including the deep strata not surveyed previously, was 121 000 tons, compared to 148 000 tons in 1998. In 1999, the size composition was dominated by fish in the 32 to 41 cm range, with a peak at 34-35 cm. Few fish above 60 cm were caught, consistent with previous surveys.

STACFIS and Scientific Council Conclusions on Stock Status

The year-classes of 1990 and 1991 have recruited to fisheries in most areas, and CPUE indices have increased somewhat since 1994. The biomass of fish greater than 35 cm was below average in 1998, but still appears to be increasing slowly. The number of older, mature fish in the surveys remains low, and SSB estimates are still uncertain.

Surveys in 1997 confirmed the abundance of year-classes previously thought to be strong. In 1998, the 1995 year-class did not appear to be as strong as previously thought, based on the Canadian surveys. The 1996 and 1997 year-classes do not appear to be as strong as those of 1993-1995, based on data at ages 1 and 2 from some recent surveys. Some concerns remain about the ability to predict the strength of year-classes recruiting to the fishery from their size at younger ages in the surveys, given the short time series (1996-98) of data covering the entire stock. This also affects interpretation of mortality estimates from surveys.

There was a significant reduction in catches from a range of 50 000 to 70 000 tons in the early-1990s, to between 15 000 and 20 000 tons in 1995-98. Based on the available information STACFIS concluded that the biomass of fish greater than 35 cm continues to increase, although at a slow rate. This biomass index is still relatively low (about half of long-term average from surveys in Div. 2J3K), but should continue to increase in 1999-2000, if current levels of exploitation are maintained. The success of most fisheries in 1999-2000 will depend mainly on the 1992 and 1993 year-classes, based on typical age compositions observed in the past. The 1994 and 1995 year-classes should not have a major effect on most fisheries until 2001.

Scientific Council concluded that the biomass of fish greater than 35 cm should continue to increase in 1999-2000, if current levels of exploitation are maintained. The Council was unable to advise on a specific TAC for 2000. However, given the present level of fishable biomass, SC recommended that a catch in 2000 of about 30 000 tons is likely to allow the stock to continue to increase.

References

- BLACK, G. A. 1993. ACON data visualization software : user manual version 7.14. Unpublished manuscript. 179 p. (G. Black, Dept of Fish. and Oceans, P.O.Box 550, Halifax, Canada B3J 2S7).
- BOWERING, W. R., W. B.BRODIE, M. J. MORGAN, D. POWER, and D .ORR. 1996. The status of the Greenland halibut resource in the management area of NAFO Subarea 2 and Divisions 3KLMNO. NAFO SCR Doc., No. 73, Serial No. N2748.
- BRODIE, W. B., W. R.BOWERING, D.POWER, and D.ORRr. 1997. An assessment of the Greenland halibut in NAFO Subarea 2 and Divisions 3KLMNO. *NAFO SCR Doc.*, No. 52, Serial No. N2886.
- GAVARIS, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. *Can. J. Fish. Aquat. Sci.*, **37**: 2272-2275.
- GUNDERSEN, A. C., and W. B. BRODIE. 1999. Length-weight relationships of Greenland halibut in NAFO Divisions 2GHJ and 3KLMNO, 1990-97. *NAFO SCR Doc.*, No. 31, Serial No. N4087.
- MCCALLUM, B. R., and S. J. WALSH. 1996. Groundfish survey trawls used at the Northwest Atlantic Fisheries Centre, 1971 to present. *NAFO SCR Doc.*, No. 50, Serial No. N2726.
- PAZ, X., and P. DURAN. 1999. Results from the 1999 Spanish bottom trawl survey in the NAFO Regulatory Area of Divisions 3NO. *NAFO SCR Doc.*, No. 57, Serial No. N4116.

- VAZQUEZ, A. 1999. Results from bottom trawl survey of of Flemish Cap in July 1998. NAFO SCR Doc., No. 22, Serial No. N4073.
- WARREN, W. G. 1996. Report on the comparative fishing trial between the Gadus Atlantica and Teleost. NAFO SCR Doc., No. 28, Serial No. N2701.

Table 1A. Catches of Greenland halibut in the Northwest Atlantic by Division, 1977-97.

Van	012 20	Dig 2H	Div 21	Div 3K	Div 31	2+3KI	Footnote c	Div. 3M	DIV. 3N	Div. 30	Total	Total
100)	010,20	DIV. MI				Litera		1. 1434.1			reported	estimated ^b
1977	1778	1524	8237	13446	6956	31941		42	3	62	32048	
1978	1899	1207	3723	24107	7596	38532		528	6	4	39070	
1979	577	1623	3415	19843	8610	34068	34069	12	18	6	34104	
1980	36	444	1466	17923	12773	32642		141	75	9	32867	
1981	1799	2141	1358	16472	8912	30682		3	49	20	30754	
1982	370	8984	5931	6794	4135	26214		2	56	6	26278	
1983	111	5671	6028	11374	4655	27839		7	12	3	27861	
1984	214	4663	6368	8432	5132	24809		43	12	9	24873	26711
1985	193	2358	6724	5775	3560	18610		184	35	1	18830	20347
1986	455	1564	6823	4237	2799	15878		49	8	4	15939	17976
1987	2700	2631	12464	6860	6283	30938		307	173	0	31418	32442
1988	2068	2463	1971	6389	6195	19086		48	75	6	19215	19215
1989	837	1821	2952	7840	6046	19496	20092	491	38	9	20034	20034
1990	2809	1225	2845	4579	10779	22237		3040	1287	17	26581	47454
1991	3715	2252	3045	2229	15627	26868	26780	3426	4192	37	34523	65008
1992	1373	235	476	3883	29193	35160	I	14902	7132	425	57619	63193
1993	963	405	214	2398	25092	29072		8282	14693	644	52691	62455
1994 ^a	1045	210	203	1032	18257	20747		12741	14138	3403	51029	51029
1995 ^a	1109	412	375	641	5843	8380		3454	2948	490	15272	15272
1996 ^a	598	621	1063	2544	4487	9313		783	934	367	11397	18840
1997ª	365	619	1734	2658	9227	14603		1965	2958	332	19858	19858
1998ª	362	351	1863	1400	10214	14190		3385	2112	259	19946	19946

1977-93 from NAFO Statistical Bulletins. 1994-98 are best estimates of NAFO Scientific Council.

a provisional b In some years, estimates range above and below reported catch. Estimates from SCR 97/52. c Slight discrepancies between totals by country in the 1960-90 summary Bulletin and the totals by Div. in the annual Bulletins.

Table 1B. Catches and TAC's of Greenland halibut in SA 2 + Div. 3KLMNO, 1960-98. Includes estimated catches for years 1984 and later. TAC's from 1995 onward set by NAFO Fisheries Commission.

Year	Catch(2+3KL)	2+3KLMNO	TAC
60	938	995	
61	741	786	
62	588	624	
63	1602	1621	
64	3928	4252	
65	9501	10069	
66	19244	19276	
67	25644	26525	
68	31986	32392	
69	36520	37241	
70	36402	36839	
71	24654	24834	
72	29822	30038	
73	28944	29291	
74	27123	27588	40000
75	28681	28814	40000
76	24599	24611	30000
77	31941	32048	30000
78	38532	39070	30000
79	34069	34104	30000
80	32642	32867	35000
81	30682	30754	55000
82	26214	26278	55000
83	27839	27861	55000
84	24809	26711	55000
85	18610	20347	75000
86	15878	17976	100000
87	30938	32442	100000
88	19086	19215	100000
89	19496	20034	100000
90	22237	47454	50000
91	26868	65008	50000
92	35160	63193	50000
93	29070	62455	50000
94		51029	25000
95		15272	27000
96		18840	27000
97		19858	27000
98		19946	27000
99			33000

Table 2. Greenland halibut landings (tons) by year and country for Subarea 2 and Divisions 3KL only, from 1960-93. Does not include catches from Div. 3MNO. Data from 1960-90 from Stat Bull summary 1960-90 (1995), 1991-93 from annual Stat Bull.

	1977		17967	755	5998	•	15	4308	'	1953	350	'	476	'	119	•	'	9	'	31941
	1976		9306	927	5942	•	9	6199	'	1512	-		•	•	73	-	32	•	•	24599
	1975		7807	622	8447	•	•	9439	•	2025	•	•	62		231	•	48	'	1	 28681
	1974		5745	515	7105	'	117	9650		2701	4	ľ	1112	2	161	2	9	ī	1	27123
	1973		6840	707	0906	•	501	8652	8	1681	950	•	201	65	207	•	•	•		28944
	1972		8952	86	6986	•	1389	10183	120	402	970	e	731	•	•	•	•	•	ſ	29822
	1971		9408	•	5234	2	•	9094	~	606	•	•	•	•	•	•	•	•	•	24654
	1970		10706	13	8266	•	647	7384	228	9158	ŗ	·	•	•	-	'	•	•	•	36402
	1969		11553	202	5406	-	36	9268	4	10014	•	•	1	•		•	•	•	•	36520
	1968		13322	4	5806	•	•	8732	'	4122	•	•	•	'	•	•	•	•	•	31986
Year	1967		16604	42	3296	•	•	4287	•	1415	•	•	•	·	•	•	•	•	•	25644
	1966		16209	355	1114	•	,	242	•	1324		-	·	-	·	-	•	•	•	19244
	1965		8082	•	666	•	-	479	•		•		•	•	1.	1	•	•	•	9501
	1964		1757	35	1834	'	·	302	•	•	•	•		-	·	•	•	·	·	3928
	1963		776	10	691	•	1	125	•	•	•	ï	•	•	·	ī	-	•	•	1602
	1962		586	•	•	•	•	•	•	•	•	•	2	•	•	•	•	•	•	588
	1961		741	•	•	•	•		•	•	•	1	•	•	•	-	•	•	•	741
	1960		660	278	•	•	•	1	-	•	1	-		•	-	•	1	-	-	938
		Country	Canada	FRG	Poland	Iceland	Norway	USSR(Russia)	Romania	GDR	Denmark-F	Spain		Denmark-G	Portugal	France(M)	France(SPM)	Japan	Other	Total

	1993		110	4452	•	'	'	1	•	•		14	22682	ŀ	1	346	1	1	1576	2	29072
	1992		1000	1060	45	'	'	'	22	1	-	255	23264	6	,	2129	•		2469	•	35160
	1991		0110	6418	8	•	•	1531	2753	- - -	1	608	4787	4	,	8768		1	1903	•	26780
	1990			9121	•	•		933	1313	•.	12	508	492	•	- ;-	8250	•	•	1608	•	22237
	1989		01011	119/01	5	360	ŀ	80	1058	•	1727	703	13	•	•	3168	596	•	478	•	20092
	1988		1110	8451	43	904	•	·	1063	•	2246	740	15	•	•	4118	•	·	1506	·	19086
	1987			13450	-	1001	-	•	6716	•	3268	2877	107	'	•	1390	•	•	2128	-	30938
	1986		0100	8213	15.	177	•	•	770		1868	451	•	•	•	3107	-	•	1277	-	15878
Year	1985			1/221	482	460	•	-	149	•	1850	193	•	•	•	2940	'	•	258	•	18610
	1984		00017	1/283	6	943	•	18	440	'	2498		•	e.	•	2612	,	•	1003	÷	24809
	1983		10001	19031	0	5258	1	15	937	'	2587	'	1	•	'	•	1	•	•	6	27839
	1982		01001	1924B	57	1111	•	•	1471	•	2487	·	•	-	'	1818	-	7	14	•	26214
	1981	-	10110	24125	1	1806	•	•	3325	,	1350	•	1	•	1	16	,	•	60	-	30682
	1980			31//4	55	203	•	1	238	•	316		•	22	'	21	'	•	12	•	32642
	1979		01000	79940	15	1813	-	8	1961	•	178	•	4	110	•	. 38	•	-	'	1	34069
	1978		00000	24092	1022	5215	-	e	5632	e	1636	268	,	53	•	-	,	5	e	-	38532
		Country	-	Canada	FRG/ Deu	Poland	Iceland	Norway	USSR(Russia)	Romania	GDR	Denmark-F	Spain	UK	Denmark-G	Portugal	France(M)	France(SPM)	Japan	Other	Total

	Gillr	net+Lo	ongline			Otter Trawl							
	2G	2H	2J	ЗK	3L	3N	30		2J	3K	3L	30	Total
Jan							13						13
Feb						1	33						34
Mar							20						20
Apr							34		-	1	1		36
May	64		15	95	119				13	2		1	309
Jun	148		344	375	196				4	4			1071
Jul		48	473	577	50				2	14			1164
Aug	111	210	307	275	96								999
Sep	20	93	122	49	84					-			368
Oct	19		2	8	54								83
Nov					8								8
Dec													0
Total	362	351	1263	1379	607	1	100		19	21	1	1	4105
		Div.	Totals						G	ear Totals			
1998	2G	2H	2J	3K	3L	3N	30		GN	ОТ	LL		
	362	351	1282	1400	608	1	101		3956	42	107		

Table 3. Canadian catches of G.halibut in SA 2+3 in 1998.

Table 4. Catche	s of G.halibut i	n SA 2+3	in 1998 b	y country	and Divis	ion.			
	2G	2H	2Ј	ЗК	31	ЗМ	3N	30	Tota
Canada	362	351	1282	1400	608		1	101	4105
Japan					1927	123		3	2053
Portugal					1710	694	766	72	3242
Spain					3790	2062	1303	83	7238
Russia					1562	286	42		1890
France			581		617	220			1418
Total	362	351	1863	1400	10214	3385	2112	259	19946
Data are as reporte	d by each contrac	ting party.							
No surveillance or o	observer estimate	s included.							

Table 5. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized catch rate series for Greenland halibut in NAFO SA2 + Div. 3KLMNO. Effort is hours fished. (1998 based on preliminary data).

REGRESSION	I OF MU	LTIPLI	CATIVE	MODEL				VAR	REG.	STD.	NO.	
MULTIPLE F	1		. 0	.788		CATEGORY	CODE	#	COEF	ERR	OBS	
MULTIPLE F	R SQUAR	ED	. 0	.621								
							12	29	0.069	0.075	64	
ANALYSIS C	F VARI	ANCE				3	21	30	0.007	0.084	51	
							23	31	0.013	0.065	108	
SOURCE OF		SUMS	0F	MEAN			31	32	-0.248	0.079	108	
VARIATION	DF	SQUAR	ES	SQUARE	F-VALUE		32	33	-0.067	0.090	143	
			• •				33	34	-0.428	0.109	77	
INTERCEPT	1	6.56	F2	6.56F2			34	35	-0.137	0 115	58	
	•						35	36	-0 168	0 145	21	
REGRESSION	59	1 91	F2	3 24E0	17 550	4	76	37	-0.060	0.225	11	
CotrylGeariTC	18	4 10	F1	2 28FD	12 342	+	70	38	0.115	0.216	10	
Division	11	1 06	C 1	9 60E-1	5 109		79	30	0.110	0.210	10	
Nonth		0 66		1 0450	6 700		70	35	0.323	0.234	10	
Voon		0.00	EU E4	1.2460	0.700		79	40	0.110	0.229	10	
rear	23	2.71	C I	1.1000	0.3/5		80	41	0.360	0.237	12	
							81	42	0.171	0.225	15	
RESIDUALS	633	1.17	E2	1.85E-1			82	43	0.417	0.219	19	
TOTAL	693	9.64	E2				83	44	0.376	0.212	24	
							84	45	0.292	0.214	23	
REGRE	SSION	COEFFI	CIENTS				85	46	0.094	0.215	21	
			• • • • • •				86	47	-0.205	0.214	-24	
		VAR	REG.	STD.	. NO.		87	48	0.090	0.206	33	
CATEGORY	CODE	#	COEF	ERR	OBS		88	49	-0.277	0.215	22	
							89	50	-0.120	0.219	22	
Cntry Gear TC	3125	INT	-0.806	0.214	693		90	51	-0.056	0.218	26	
Division	9						91	52	-0.414	0.213	52	
Month	22						92	53	-0.521	0.212	99	
Year	75						93	54	-0.325	0.216	84	
1	3123	1	-0.101	0.157	9		94	55	-0.479	0.218	100	
	3126	2	-0.017	0 167	8		95	56	-0 395	0 233	21	
	10127	3	1 064	0 186	8		96	57	-0 566	0.200	23	
	11125	1	0.259	0.100	16		90	57	0.000	0.220	23	
	11120		0.200	0.134	10		97	50	-0.040	0.209	,	
	11120	5	-0.112	0.204			90	59	-0.020	0.364	2	
	11127	6	0.402	0.125	17							
	14124		0.613	0.083	/6							
	14126	8	0.780	0.114	23							
	14127	9	0.471	0.120	22	LEGEND FOR	AVOVA	RESUL	TS:			
	15126	10	0.431	0.201	6							
	16127	11	0.287	0.090	51	CGT CODES:						
	19124	12	-0.283	0.098	102	3123 = Can	(NFLD)	тс з				
	19125	13	0.003	0.107	75	3125 = Can	(NFLD)	TC 5	15126	= Norway		тс
	19126	14	0.312	0.121	28	3126 =	•	TC 6	16127	= Poland		тс
	20125	15	0.420	0.187	7	10127 = For	mer FRG	TC 7	19124	= Spain		т¢
	20126	16	-0.012	0.144	12	11125 = For	mer DDR	TC 5	19125	= · *		тс
	20127	17	0.048	0.097	37	11126 =		TC 6	19126	= *		тс
	27125	18	0.221	0.105	24	11127 =		TC 7	1 20125	= Former	USSR	то
2	1	19	0 235	0 097	29	14124 = .lan	an	TC 4	1 20126	= "	0000	то
-	, 2	20	0 105	0.003	23	14126 -	u 11		1 20120	- *		то
		20	0.100	0.033	40	14120 -		TC 7	1 07105	- Con (11)		TO
	3	21	-0.0/2	0.08/	42	1412/ =			2/125	i ⊂an(M) Tl		10
	4	22	-0.049	0.083	48	ALL OT the	apove C	u ar	e stern '	IL.SMTEL2		
	5	23	0.157	0.086	41							
	6	24	0.142	0.082	46	DIVISION CO	DES:					
	7	25	0.001	0.073	64	21 = 2G, 22	= 2H,	23 = 3	2J, 31 =	3K, 32 =	3L	
	8	26	0.103	0.067	81	33 = 3M, 34	= 3N,	35 = 3	30			
	10	27	-0.295	0.071	72							
	11	28	-0.063	0.069	81							

Table6. Standardized catch rate index for Greenland halibut in NAFO SA2+ Div.3KLMNO from a multiplicative model utilizing hours fished as a measure of effort. (1998based on preliminary data).

PREDICTED CATCH RATE

LN TR	ANSFORM	RETRAN	SFORMED			
YEAR	MEAN	S.E.	MEAN	S.E.	CATCH	EFFORT
1975	-0.8059	0.0457	0.479	0.101	28814	60169
1976	-0.8657	0.0243	0.456	0.071	24611	53979
1977	-0.6910	0.0193	0.544	0.075	32048	58872
1978	-0.4834	0.0218	0.669	0.098	39070	58391
1979	-0.6877	0.0297	0.543	0.093	34104	62774
1980	-0.4458	0.0222	0.695	0.103	32867	47320
1981	-0.6351	0.0194	0.576	0.080	30754	53426
1982	-0.3886	0.0152	0.738	0.091	26278	35603
1983	-0.4295	0.0134	0.709	0.082	27861	39286
1984	-0.5141	0.0126	0.652	0.073	26711	40977
1985	-0.7122	0.0148	0.534	0.065	20347	38094
1986	-1.0112	0.0136	0.396	0.046	17976	45358
1987	-0.7161	0.0136	0.532	0.062	32442	60937
1988	-1.0825	0.0148	0.369	0.045	19215	52099
1989	-0.9255	0.0141	0.432	0.051	20034	46408
1990	-0.8619	0.0118	0.461	0.050	47454	103035
1991	-1.2198	0.0109	0.322	0.034	65008	201806
1992	-1.3266	0.0111	0.289	0.030	63193	218298
1993	-1.1312	0.0123	0.352	0.039	62455	177561
1994	-1.2844	0.0133	0.302	0.035	51029	169190
1995	-1.2007	0.0215	0.327	0.048	15272	46758
1996	-1.3723	0.0171	0.276	0.036	18840	68328
1997	-0.8464	0.0334	0.463	0.084	19858	42915
1998	-0.8259	0.1000	0.457	0.141	19946	43664

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.140

Year	Division		Ship		
		Teleost	W.Templeman	A.Needler	Total
1996	2G	127 - 1436 (47)	·		47
	2H	122 - 1415 (77)			77
	2J	126 - 1410 (117)			117
	ЗK	111 - 1368 (115)	126 - 472 (60)		175
	3L	805 - 1433 (31)	51 - 671 (180)		211
	ЗM	784 - 1400 (18)	127 - 707 (68)		86
	ЗN	390 - 1147 (13)		37 - 309 (69)	82
	30	68 - 690 (26)	65 - 139 (19)	63 - 304 (16)	61
					856
1007	00				
1997	20	201-1209 (69)			69
	21	220-1382 (71)			71
	20	123-1488 (117)			117
	31	143-1431 (155)	117-421 (20)		175
	31	700 1070 (00)	35-714 (134)		205
	211	799-1379 (26)			26
	30		41-769 (100)		100
	30		62-611 (81)	_	81
					844
1998	2G	143-1488 (34)			
	2H	98-1473 (83)			34
	2J	126-1398 (118)			83
	ЗK	122-1415 (154)	101 246 (17)		118
	3L	691-1437 (32)	34-675 (17)		1/1
	ЗM	768-1436 (26)	04-070 (172)		204
	ЗN	834-1447 (12)	37-1079 (107)		26
	30	(12)	82-1076 (107)		119
			02-10/0 (90)		96
					851

--

Table 7.Summary of sets in Canadian fall surveys in SA 2+3 in 1996 - 1998.Depth range is given in meters, numbers of sets appear in parentheses.

Table 8. Summary of survey results for G.halibut, fall 1998, Div. 2G.

			_		Number			Weight (kg)	
Depth(m)	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
<=200	909	381457	2	23.0	8,773,509	968	0.71	270,834	1.0
	910	321755	2	1.8	572,010	6	0.04	11,440	0.0
201 - 300	908	80473	2	42.0	3,379,876	2048	5.61	451,455	20
	911	95192	3	72.3	6,885,574	849	5.52	525,144	5
301 - 400	902	16507	2	12.5	206,342	13	4.05	66,855	3
	912	10042	2	24.0	241,007	162	8.68	87,114	28
401 - 500	903	11005	2	28.5	313,639	265	11.18	122,980	21
	913	8529	2	15.5	132,196	13	4.35	37,100	0.4
501 - 750	904	21047	2	27.5	578,788	113	11.83	248,879	7
	914	15544	2	36.5	567,371	613	13.55	210,627	104
751 -1000	905	22560	2	45.5	1,026,481	685	30.50	688,081	315
1001 -1250	906	31501	2	20.0	630,030	162	22.20	699,333	221
	916	20084	2	65.0	1,305,455	3200	54.35	1,091,561	2204
		-	27	-	24,612,277		•	4,511,402	

					Number		_	Weight (kg)	
Depth	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
<=200	930	141413	5	2.6	367,673	18	0.69	97,009	2
	954	133572	5	2.0	267,144	8	0.25	33,660	0.2
	956	144577	5	10.2	1,474,682	253	0.70	101,782	0.8
	957	188596	7	1.2	219,387	3	0.15	28,674	0.02
201 - 300	931	37967	2	27.1	1,029,324	730	4.49	170,534	21
	943	48697	2	36.5	1,777,427	61	9.08	441,922	12
	953	40030	2	74.0	2,962,240	2738	14.85	594,249	48
	955	53511	2	25.4	1,356,893	27	6.79	363,303	4
	958	40443	2	78.0	3,154,551	800	6.68	269,957	0.2
301 - 400	932	7566	2	106.3	804,083	6561	12.86	97,305	2
	944	118303	4	85.8	10,151,015	4500	19.24	2,275,845	228
	952	24348	2	613.5	14,937,690	535613	106.63	2,596,139	16390
	959	24486	2	90.0	2,203,729	1352	27.13	664,179	93
401 - 500	933	6878	2	68.9	474,204	33	15.19	104,451	4
	.942	7566	2	57.0	431,254	1922	13.78	104,220	56
	945	63416	2	86.0	5,453,747	288	20.65	1,309,533	105
	948	33840	2	1678.8	56,809,886	766872	296.52	10,034,320	38352
	951	32189	2	218.5	7,033,361	24421	43.38	1,396,211	632
	960	14719	2	80.7	1,188,153	1537	25.46	374,681	236
501 - 750	934	10730	2	53.0	568,678	1458	15.52	166,484	40
	941	12243	2	38.0	465,232	512	14.55	178,135	108
	946	99182	4	324.5	32,181,656	36577	78.77	7,812,888	3276
	947	31226	2	492.5	15,378,986	78805	128.05	3,998,536	5284
	961	29025	2	26.0	754,660	98	9.30	269,936	30
751 -1000	935	13206	2	97.0	1,280,969	0	39.30	518,990	0.3
	940	13343	2	79.5	1,060,802	41	36.90	492,372	10
	962	33290	2	48.0	1,597,910	648	33.63	1,119,369	339
1001 -1250	936	10730	2	87.5	938,854	481	82.30	883,060	348
	963	36454	2	17.4	634,626	26	14.84	540,923	56
1251 -1500	937	12931	2	11.5	148,704	265	15.10	195,254	456
	938	26274	2	13.5	354,701	181	23.75	624,011	229
	964	47046	2	25.2	1,185,556	438	24.03	1,130,513	385
		•	82	•	168,647,773		•	38,988,448	

Table 9. Summary of survey results for G.halibut, fall 1998, Div. 2H.

					Number			Weight (kg)	
Depth	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
101 - 200	201	87076	2	8.5	740,147	41	1.05	91,430	0.8
	205	219272	6	18.7	4,105,266	197	2.29	502,256	4
	206	257239	7	16.9	4,336,318	450	1.36	349,478	2
	207	311438	9	2.3	726,689	6	0.24	74,399	0.05
	237	100832	3	2.0	201,665	7	0.19	18,822	0.1
	238	107023	3	5.6	602,497	53	0.74	78,800	0.8
201 - 300	202	85425	2	47.4	4,045,505	5	6.94	593,097	0.04
	209	93542	3	17.8	1,666,425	534	3.01	281,906	13
	210	142376	4	70.0	9,966,301	12039	7.35	1,046,462	107
	213	217759	6	74.5	16,223,060	5901	9.01	1,961,647	47
	214	184469	5	52.6	9,703,091	642	8.14	1,501,991	22
	215	179105	5	72. 9	13,050,750	1681	10.55	1,888,956	6
	228	302084	8	113.6	34,324,311	5693	14.42	4,355,676	76
	234	72907	2	24.5	1,786,231	685	4.83	351,778	29
301 - 400	203	66992	2	417.5	27,969,264	125501	49.31	3,303,053	1053
	208	80886	2	396.0	32,030,824	200	80.10	6,478,962	91
	211	34528	2	113.8	3,930,418	3068	25.21	870,293	237
	216	49522	2	109.1	5,400,648	4222	32.93	1,630,649	402
	222	61902	2	29.1	1,802,050	2	6.17	381,904	0.2
	229	73733	2	189.5	13,972,355	27145	34.10	2,514,287	1021.5
401 - 500	204	39618	2	1290.0	51,106,695	860672	155.78	6,171,431	3815.0
	217	33152	2	58.4	1,935,721	552	18.74	621,420	0.9
	223	21735	2	79.1	1,719,452	6473	27.53	598,427	809
	227	82262	2	91.0	7,485,799	1352	21.80	1,793,301	41
	235	56950	2	241.5	13,753,495	19013	57.18	3,256,133	133 9
	240	18296	2	36.7	671,948	254	13.73	251,191	55
501 - 750	212	76622	2	155.5	11,914,647	4705	57.10	4,375,089	198
	218	49797	3	64.9	3,231,279	3032	26.49	1,318,886	359
	224	31364	2	29.8	933,948	143	12.80	401,458	17
	230	25449	2	55.0	1,399,684	1250	21.48	546,513	193
	239	16507	2	2199.3	36,305,122	5548	294.81	4,866,499	981
751 -1000	219	38930	2	9 0.5	3,523,146	1985	57.78	2,249,168	1006
	231	25586	2	133.9	3,425,161	10522	63.90	1,634,969	1647
	236	26549	2	39.3	1,042,797	37	27.31	725,091	48
1001 -1250	220	41681	2	24.1	1,004,975	7	28.70	1,196,129	97
	225	26824	2	22.0	590,137	32	24.43	655,186	83
	232	31364	2	23.8	747,507	235	19.98	626,582	20
1251 -1500	221	45395	2	8.9	402,366	0.04	15.25	692,483	27
	226	27650	2	39.0	1,077,916	135	47.48	1,312,854	781
	233	32602	2	17.2	559,987	168	16.63	542,173	117
		-	118	-	329,415,600		_	62,110,827	

Table 10. Summary of survey results for G.halibut, fall 1998, Div. 2J.

					Number			Weight (kg)	
Depth	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
101 - 200	608	109774	3	1.0	109,774	3	0.33	36,591	0.3
	612	61215	2	0.0	-	0	0.00	-	0
	616	34390	2	3.5	120,366	5	0.66	22,526	0.8
	618	185295	4	0.8	138,971	0.9	0.08	14,824	0.0
	619	241145	6	0.0	-	0	0.00	-	0
201 - 300	609	47046	2	12.8	601,515	121	4.30	202,297	17
	611	78823	2	7.4	585,539	0.7	2.05	161,868	0
	615	34528	2	22.7	783,782	37	5.10	175,919	3
	620	350093	11	23.9	8,370,405	1662	3.35	1,171,220	29
	621	348992	11	42.3	14,777,540	3223	7.23	2,524,132	91
	624	152005	5	118.2	17,966,991	6414	11.52	1,751,706	41
	634	213907	7	56.0	11,978,819	775	6.18	1,321,337	6
	635	175253	5	66.2	11,601,737	638	7.22	1,266,026	0.9
	636	200151	6	27.5	5,504,163	224	5.27	1,053,797	12
	637	155719	5	68.8	10,713,477	2332	12.89	2,007,531	52
301 - 400	610	35216	2	208.5	7,342,461	2381	46.50	1,637,527	346
	614	36179	2	25.5	922,553	113	5.08	183,606	7
	617	81574	3	271.1	22,112,522	35460	47.38	3,864,631	2502
	623	67955	2	472.4	32,102,025	26727	90.76	6,167,272	1393
	625	122154	4	307.3	37,542,071	65544	32.28	3,943,716	502
	626	153105	5	423.2	64,794,243	51473	62.73	9,604,307	1485
	628	149254	5	86.8	12,955,228	870	20.88	3,116,087	39
	629	68093	2	543.5	37,008,403	225121	91.25	6,213,462	7589
	630	45670	2	268.0	12,239,635	18432	34.18	1,560,782	476
	633	284339	9	58.1	16,523,242	1606	14.69	4,178,200	45
	638	283238	9	137.1	38,835,115	15984	28.65	8,114,777	541
	639	201252	6	22.8	4,595,251	135	6.29	1,266,210	8
401 - 500	613	4127	2	133.0	548,869	2888	22.35	92,235	141
	622	95055	3	676.3	64,288,669	13920	109.03	10,364,132	384
	627	172639	5	916.2	158,172,001	294656	148.10	25,568,205	6639
	631	181718	6	360.0	65,418,550	15838	75.30	13,683,380	428
	640	9492	2	11.0	104,409	98	3.85	36,543	11
	645	29713	2	7.1	211,294	2	2.52	74,778	0
	650	18433	2	26.0	479,263	98	12.13	223,502	41
501 - 750	641	31639	2	28.5	901,713	685	11.68	369,386	132
	646	44707	2	7.5	335,305	0.5	3.53	157,593	2
	651	49384	2	54.5	2,691,451	221	20.58	1,016,085	0.3
751 -1000	642	57501	2	74.5	4,283,790	313	43.70	2,512,773	110
	647	49522	2	111.0	5,496,941	800	59.80	2,961,415	323
	652	70982	2	147.5	10,469,774	2965	68.23	4,842,714	530
1001 -1250	643	100832	3	84.0	8,469,911	3073	54.08	5,453,346	1054
	648	31364	2	75.5	2,367,977	685	53.78	1,686,595	5 9
	653	73045	2	83.0	6,062,730	722	50.10	3,659,551	99
1251 -1500	644	65204	2	41.5	2,705,964	61	43.63	2,844,523	261
	649	29163	2	7.0	204,141	0	9.68	282,152	17
	654	65892	2	92.7	6,109,107	598	72.96	4,807,745	45
		-	171	-	709,547,686		•	142,197,005	

Table 11. Summary of survey results for G.halibut, fall 1998, Div. 3K.

Table	12.	Summary	of	survey	results for	G	i.halibut,	fall	1998,	Div. 3	BL.
-------	-----	---------	----	--------	-------------	---	------------	------	-------	--------	-----

					Number			Weight (kg)	
Depth(m)	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
30 - 56 57 - 92	784	36866	2	0.0		0	0.00	•	0
0, 02	363	244859	6	0.0	-	ŏ	0.00		.0
	371	154206	4	0.0	-	ō	0.00	-	Ō
	372	338400	8	0.0	-	0	0.00		0
	384	154068	4	0.0	-	0	0.00	-	0
	785	63966	2	0.0	-	0	0.00	•	0
93 - 183	328	208955	5	0.2	41,791	0.2	0.00	836	0
	341	210021	2	3.0	649,563 80 473	32	0.85	183,610	2
	343	72220	2	1.8	132,403	1	0.62	44 696	0.1
	348	291630	6	2.1	622,143	19	0.61	176,922	1
	349	290804	7	2.4	685,928	3	0.87	251,661	0.4
	364	387510	9	3.3	1,286,915	66	1.07	413,583	6.7
	365	143201	3	2.7	381,870	8	0.98	139,860	1.5
	370	181581	4	14.4	2,622,831	460	4.79	870,578	46.5
	300	324094	8	3.3	1,057,807	11	1.03	333,772	1.2
	786	11555	2	1.0	11,555	2	0.38	4 333	0.3
	787	84325	2	0.0	-	ō	0.00	-,000	0.0
	788	35903	2	2.5	89,759	13	0.85	30,518	1
	790	12243	2	1.5	18,364	-5	0.53	6,428	0.6
	793	9904	2	1.0	9,904	2	0.45	4,457	0.4
	794	29713	2	0.5	14,857	0.5	0.14	4,011	0.04
	797	0004	2	2.5	33,702	4.5	1.06	14,222	1
184 - 274	344	217622	5	14.2	3 096 445	607	4.07	885.098	38
	347	135223	3	23.7	3,200,267	224	7.55	1,020,930	14
	366	191760	5	38.0	7,278,363	459	11.33	2,171,790	27
	369	132196	3	54.4	7,192,453	234	17.76	2,347,217	15
	386	135223	3	44.2	5,979,842	181	12.45	1,683,270	19
	389	112938	3	19.0	2,145,815	175	4.20	473,920	12
	795	22560	-2	25.0	22 560	13	0.04	257,494	ь 01
184 - 366	789	9904	2	2.5	24,761	13	0.98	9,657	2
	791	31226	2	12.0	374,716	242	4.85	151,448	41
	798	13756	2	34.0	467,708	2048	11.04	151,867	213
275 - 366	345	196987	5	112.9	22,231,444	5289	22.13	4,359,051	123
	346	118990	2	66.5	7,912,858	145	17.33	2,061,508	52
	308	45945	2	159.0	7,305,319	242	49.45	2,272,000	116
	388	49660	2	18.0	893.872	2	7.65	379,896	2
	392	19946	2	28.5	568,471	613	10.78	214,922	69
	796	24073	2	40.5	974,964	925	12.03	289,480	96
	800	11142	2	163.4	1,820,994	16718	46.41	517,129	1091
367 - 549	729	25586	2	18.0	460,555	338	9.48	242,431	93
	731	29713	2	17.4	516,679	141	10.26	304,725	33
	735	37417	2	93.1	5,990,785 4,808,035	202	39.38	2,534,907	78 2596
	792	6878	2	270.5	1.860.514	18241	88.40	608.020	1458
550 - 731	730	23385	2	2.2	51,873	4	1.87	43,624	3
	732	31777	2	37:0	1,175,735	200	22.20	705,441	97
	734	31364	2	29.6	928,721	0.8	16.43	515,414	2
	736	24073	2	126.5	3,045,259	6613	53.38	1,284,907	1504
/32 - 914	737	31226	2	298.0	9,305,457	123008	152.60	4,765,144	26221
	741	30676	2	333.8	10,239,251	1/969	164.91	5,058,712	2205
	748	21872	2	12.1	263.855	0.5	7.59	165,951	-01
915 -1097	738	30401	2	38.7	1,175,505	174	25.31	769,314	18
	742	28338	2	42.5	1,204,347	265	32.40	918,138	212
	746	53924	2	12.5	674,049	221	9.85	531,151	97
	749	17333	2	10.7	185,845	6	7.78	134,810	29
1098 -1280	739	34941	2	73.5	2,568,128	3121	51.05	1,783,713	1004
	743	29025	2	17.0	493,432	72	16.25	471,663	105
	750	33094 76484	2	24 5	1.873.857	2 761	22.88	1.749 571	646
1281 -1463	740	36316	2	33.5	1,216.590	85	27.90	1,013.220	167
	744	38517	2	55.6	2,139,839	2592	45.33	1,746,109	1679
	751	31501	2	98.5	3,102,897	5305	83.58	2,632,737	2824
		-	204	-	142,871,547		_	55,926,849	

			_		Number			Weight (kg)	
Depth	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./se	t Total Wgt.	Variance
732 - 914	528	72907	3	45.2	3,297,034	1276	31.5	0 2,296,690	558
	533	13481	2	8.9	119,981	0.02	5.7	5 77,448	2
915 -1097	529	67130	3	9.2	614,113	10	9.9	4 667,444	2
	532	32740	2	21.0	687,530	242	16.0	2 524,378	85
	534	66855	3	26.8	1,790,220	529	21.9	3 1,466,222	280
1098 -1280	530	155994	7	10.2	1,594,608	16	9.6	5 1,505,964	23
	535	12656	2	29.5	373,341	85	34.3	1 434,214	253
1281 -1463	531	27925	2	18.5	516,611	85	18.18	3 507,535	64
	536	15407	2	17.2	264,998	348	19.24	1 296,351	443
			26	-	9,258,435	•	•	7,776,247	

Table 13. Summary of survey results for G.halibut, fall 1998, Div. 3M

Table 14. Summary of survey results for G.halibut, fall 1998, Div. 3N.

Dauth	<u>.</u>		-		Number			Weight (kg)	
Depth	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
<=>0	375	219135	10	0.0	-	0	0.00	-	0
F7 00	3/6	206204	10	0.0	-	0	0.00	-	0
57 - 92	360	411583	18	8.0	3,292,662	334	2.37	974,079	29
	361	254901	12	0.0	-	0	0.00	-	0
	362	346654	7	0.0	-	0	0.00	-	0
	373	346654	7	0.0	-	0	0.00	-	0
	3/4	128069	3	0.0	-	0	0.00	-	0
03 - 192	383	92/16	2	0.0	-	0	0.00	-	0
33 - 163	359	57913	2	32.0	1,853,223	722	12.50	723,915	99
	3//	13756	2	5.5	75,659	5	2.20	30,263	1.0
194 074	362	89002	2	2.5	222,505	13	1.25	111,253	3
104 - 274	358	30951	2	7.5	232,134	41	1.35	41,784	1
	3/8	19121	2	380.5	7,275,537	273061	114.95	2,197,958	25742
275 266	381	25036	2	261.0	6,534,427	66248	64.80	1,622,340	5111
275-300	357	22560	2	2.0	45,120	8	0.30	6,768	0.2
	379	14581	2	11.6	168,497	40	2.15	31,310	3
367 540	380	15957	2	142.8	2,278,317	20312	49.77	794,220	2188
507 - 549	723	21322	2	47.0	1,002,133	3362	15.76	335,999	313
	720	14444	2	16.0	231,103	0	4.48	64,637	0
550 - 731	727	22010	2	84.9	1,868,385	5225	23.13	509,098	234
000-701	724	17058	2	83.3	1,420,517	0.2	21.91	373,750	7
	720	9904	2	269.1	2,665,384	61172	77.23	764,895	5591
732 014	728	21460	2	96.0	2,060,115	10658	31.48	675,439	905
/32 - 914	752	18433	2	54.0	995,392	1352	30.52	562,591	479
	700	14581	2	36.0	524,933	0	16.58	241,688	6
915 1007	760	21184	2	38.8	821,484	21	16.62	352,073	34
313-1097	703	18983	2	18.5	351,193	13	11.78	223,530	41
	757	14031	2	81.4	1,142,766	146	45.82	642,864	33
1098 -1290	701	23523	2	40.7	957,907	275	29.23	687,458	26
1030-1200	754	24/01	2	96.6	2,392,187	14659	62.75	1,553,684	5767
1281 -1462	100	13619	2	39.3	535,663	44	32.55	443,246	60
1201-1400	750	52961	2	16.4	870,915	67	12.42	657,894	69
	109	1/4/0	2	10.5	183,438	25	9.45	165,094	35
			119		40,001,595			14,787,829	

					Number			Weight (kg)	
Depth	Stratum	Units	Sets	Ave./Set	Total No.	Variance	Ave./set	Total Wgt.	Variance
57 - 92	330	287365	6	0.0	-	0	0.00	-	0
	331	62728	2	1.0	62,728	0	0.17	10,664	0
	338	261091	5	1.0	261,091	3	0.14	37,597	0.1
	340	236055	5	0.0	-	0	0.00	-	0
	351	346654	7	0.0	-	0	0.00	-	0
	352	354908	16	0.3	1 10,909	1	0.08	27,949	0.1
	353	176353	4	13.0	2,292,593	49	3.09	544,491	1
93 - 183	329	236743	5	0.2	47,349	0.2	0.05	11,364	0.01
	332	144026	3	4.3	624,115	8	0.52	74,414	0.1
	337	130408	3	1.3	169,047	2	0.16	21,203	0.02
	339	80473	2	1.7	137,954	6	0.10	8,277	0.02
	354	65204	2	1.0	65,204	2	0.23	14,671	0.1
184 - 274	333	20221	2	0.0	-	0	0.00	-	0
	336	16645	2	1.8	30,516	1	0.28	4,735	0.1
	355	14169	2	1.5	21,253	0.5	0.19	2,621	0.01
275 - 366	334	13206	2	2.5	33,015	13	0.45	5;943	0.4
	335	7979	2	0.0		0	0.00	-	0
	356	8391	2	1.0	8,391	2	1.00	8,391	2
367 - 549	717	22835	2	2.5	57,088	13	1.18	26,831	3
	719	10455	2	3.0	31,364	2	1.38	14,375	0.1
	721	10455	2	12.0	125,456	200	4.53	47,307	30
550 - 731	718	18433	2	30.0	552,996	578	8.55	157,604	33
	720	14444	2	19.0	274,434	392	6.40	92,441	38
	722	12793	2	30.1	385,217	1163	9.71	124,200	108
732 - 914	764	14444	2	121.9	1,760,094	789	42.90	619,696	183
	768	13619	2	220.1	2,996,837	1464	78.55	1,069,699	15
	772	18571	2	200.0	3,714,149	968	71.81	1,333,565	66
915 -1097	765	17058	2	12.3	210,377	6	10.25	174,840	0.6
	769	18983	2	45.0	854,254	50	21.55	409,093	21
	773	17608	2	44.2	777,679	1701	31.83	560,369	1188
		-	96	-	15,604,108		• –	5.402.340	

Table	15.	Summan	/ of	survey	results	for	G.halibut,	fall	1998,	Div.	30	١.
-------	-----	--------	------	--------	---------	-----	------------	------	-------	------	----	----

 Table 16. Estimated biomass (tons) per stratum of G. halibut from the autumn survey of the Teleost in fall-winter, 1995/96, fall 1996, fall 1997, and fall 1998 in Div. 2J.

 All surveys done with Campelen trawl. Based on the latest stratification update.

Depth	Stratum	Area	Trawlable	1005/06	1000	1007	1009
Hange (m)	Stratum	(sq. nin)	·Units (000)	1990/90	1990	1997	1996
101-200	201	633	87.1	-	82	26	91
	205	1594	219.3	•	514	35	502
	206	1870	257.2	399	1120	403	349
	207	2204	100.8	0		51	10
	238	778	107.0	-	15	ŏ	79
Total				400	1788	519	1115
201-300	202	621	85.4	95	89	157	593
	209	1035	93.5 142.4	2708	3004	424	1046
	213	1583	217.8	236	1338	1145	1962
	214	1341	184.5	327	4056	1258	1502
	215	1302	179.1	1370	1247	1448	1889
	228	2196	302.1	2219	5478	3666	4356
	234	530	72.9	-	163	753	352
Total				7315	17334	9744	11982
301-400	203	487	67.0	387	946	2233	3303
	208	588	80.9	4799	3707	12593	6479
	211	251	34.5	1400	1343	1875	870
	216	360	49.5	-64	506	1089	1631
	222	450	61.9	122	1672	930	382
Total	229	536	73.7	1/99	3900	1940	2514
i olai				6371	12074	20001	15179
401-500	204	288	39.6	1437	3823	7941	6171
	217	241	33.2	131	932	676	621
	223	158	21.7	162	438	425	598
	227	598	82.3	909	5850	9244	1793
	235	414	57.0	3895	43/3	8365	3256
Total	240	133	10.3	7165	037 15053	27152	12602
, olur				7700	10000	LIIUL	TEODE
501-750	212	557	76.6	5499	4940	10735	4375
	218	362	49.8	693	1783	1207	1319
	224	228	31.4	214	702	625	401
	230	185	25.4	1675	1340	1589	547
Total	239	120	16.5	8733	2000	16881	4000
10141				0700	11001	10001	11500
751-1000	219	.283	38.9	2021	405	1727	2249
	231	186	25.6	376	1013	651	1635
	236	193	26.5	1007	698	381	725
lotal				3404	2116	2758	4609
1001-1250	220	303	41.7	-	1296	503	1196
	225	195	26.8	•	834	693	655
	232	228	31.4	•	717	935	627
Total				•	2847	2132	2478
1251-1500	221	330	45.4	-	131	1246	692
	226	201	27.6	-	277	407	1313
	233	237	32.6	-	889	596	542
Total				-	1297	2249	2548
Biomass (t)				35591	64760	82095	62111
95% Lower				28260	48126	-24180	52887
95% Upper				42922	86821	188371	71335

Table 17. Estimate	d biomass (tons) per stratum of G, halibut from the autumn survey of the
W.Templer	nan and Teleost in fall-winter, 1995/96, fall 1996, fall 1997, and fall 1998 in Div. 3K.
All surveys	done with Campelen trawl. Based on the latest stratification update.
All Surveys	sone with Campelen flaw. Dased on the latest stratification update.
D	· - · · · ·

Depth		Area	Trawlable				
Range(m)	Stratum	(sq. nm.)	Units (000)	1995/96	1996	1997	1998
101-200	608	798	109.8	-	0	44	37
	612	445	61.2	-	0	135	0
	616	250	34.4	-	0	4	23
	618	1347	185.3	286	19	11	15
	619	1753	241.1	18	29	57	0
Total				304	48	250	74
201-300	609	342	47.0	-	117	386	202
	611	600	78.8	-	113	265	162
	615	251	34.5	-	39	67	176
	620	2545	350.1	790	4213	1275	1171
	621	2736	349.0	1067	3967	1320	2524
	624	1105	152.0	507	2516	1610	1752
	634	1555	213.9	727	2370	2144	1321
	635	1274	175.3	128	1344	1545	1266
	636	1455	200.2	1393	2336	11/1	1054
	637	1132	155.7	179	1722	869	2008
Total				4791	18737	10651	11636
301-400	610	256	35.2	-	344	630	1638
	614	263	36.2		154	399	184
	617	593	81.6	3844	2464	4941	3865
	623	494	68.0	307	3588	1938	6167
	625	888	122.2	1437	4381	3075	3944
	626	1113	153.1	1962	5453	10283	9604
	628	1085	149.3	529	1799	2685	3116
	629	495	68.1	2682	6569	2179	6213
	630	332	45.7	858	4800	3261	1561
	633	2067	284.3	4649	3487	6739	4178
	638	2059	283.2	1750	3952	7031	8115
	639	1463	201.3	1520	1381	1556	1266
i otai				19538	38372	44/17	49851
101 500	040					100	
401-500	613	30	4.1	-	51	192	92
	622	691	95.1	2638	6896	11901	10364
	627	1255	172.6	18946	15576	22176	25568
	631	1321	181.7	10094	25499	14500	13683
	640	69	9.5	179	105	59	37
	645	216	29.7	357	192	162	75
	650	134	18.4	252	147	242	224
Total				32466	48466	49232	50043
501-750	641	230	31.6	227	394	197	369
	646	325	44.7	327	564	1180	158
	651	359	49.4	1222	321	1361	1016
lotal				1776	1279	2739	1543
754 4000	0.10				====		0540
751-1000	642	418	57.5	1/41	760	2036	2513
	647	360	49.5	1087	749	2025	2961
-	652	516	/1.0	2365	3585	25/5	4843
iotai				5193	5094	6636	10317
1001-1250	643	733	100.8	1487	2121	6830	5453
	648	228	31.4		1641	1118	1687
	653	531	73.0	1583	2306	1643	3660
i otai				3070	6068	9590	10799
1054 1505				000			00.47
1251-1500	644	474	65.2	688	870	2036	2845
	649	212	29.2		387	1083	282
T	654	479	65.9	1375	1016	3612	4808
iotai				2063	2273	6731	7934
B 1 /					400000	400000	4404
Biomass (t)				69206	120337	130546	142197
95% Lower				55864	106961	112147	120983
95% Upper				82547	150486	148945	163411

Depth Range (m) 5	Stratum	Area (sq. nm.)	Trawlable Units (000)	1995/96	1996	1997	1998
30-56 Total	784	268	36.9		-	0 0	0 0
57-91	350	2071	284.9	1	٥	0	0
	363	1780	244.9	0	0	0	0
	371	2460	154.2 338.4	0	3	0.4	0
	384	1120	154.1	1	0	0	0
Total	785	465	64.0	2	3	0.4	0
93-183	328	1519	209.0		1	6	1
	341	1574	216.5	-	2	249	184
	343	525	72.2	-	ò	34	45
	348	2120	291.6	0	2	129	177
	364	2817	387.5	1	ō	103	414
	365	1041	143.2	17	0	169	140
	385	2356	324.1	73	64	502	334
	390 786	1481	203.7	43	67 67	200	625
	787	613	84.3	-	1	86	ō
	788 790	252 89	35.9 12.2	:	0	45 6	31
	793	72	9.9	-	ŏ	4	4
	794 797	216 98	29.7 13.5		0	15	4
-	799	72	9.9	-	õ	0	4
lotal				139	221	1745	3125
184-274	344	1582	217.6	16	11	96 27	885
	366	1394	191.8	204	338	878	2172
	369	961	132.2	72	108	888	2347
	389	821	112.9	71	900	875	474
	391 795	282	38.8	177	344	892	257
Total	/30	104	22.0	668	2153	4711	8845
184-366	789	81	9.9	-	0	14	10
	791 798	308	31.2	-	66 76	193	151
Total		100	10.0		142	315	313
275-366	345	1432	197.0	937	3747	1775	4359
	346	865	119.0	2237	5483	2378	2062
	387	718	98.8	1546	1764	1613	1609
	388	361	49.7	310	711	814	380
	796	175	24.1	- 69	37	355	215
Total	800	81	11.1	- 5484	6042	313 <i>8203</i>	517 11703
367-549	720	196	25.6	215	649	406	040
007-040	731	216	29.7	242	-	713	305
	733	468	64.4 97.4	501 526	706	752	2535
	792	50	6.9	-	186	349	608
Total				1484	2651	3247	5783
550-731	730	170	23.4	140	37	330	44
	734	228	31.8	280	642	604	515
Total	736	175	24.1	271 774	1116 2258	951 2476	1285 2549
700.014	707	007		1044		4004	4705
732-914	737	227	31.2 30.7	1244	2198	1981 3224	4765
	745	348	47.9	-	1075	1722	1299
Total	/48	128	21.9	1244	429 4569	7214	11288
915-1097	738	221	30.4	1490	1906	1439	769
	742	206	28.3	-	567	901	918
	746 749	392 126	53.9 17.3	:	783	992 377	531 135
Total			-	1490	3381	3710	2353
1098-1280	739	254	34.9	-	1227	2248	1784
	743 747	211 724	29.0 99.6	-	931 438	2820 1446	472 570
-	750	556	76.5	-	586	3947	1750
i otai				-	3182	10460	4575
1281-1463	740	264	36.3	-	981	2604	1013
	744 751	280 229	38.5 31.5	•	2961 1207	2810	2633
Total				•	5149	6515	5392
Biomass (tons))			11285	29675	48596	55927
95% Lower 95% Upper				8012 14552	30961 46170	-10736 107928	39718 72136

Table 18. Estimated biomass (tons) per stratum of G. hallbut from the autumn survey of the W.Templeman and Teleost in fail-winter, 1995/96, fail 1996, fail 1997, and fail 1998, in Div. 3L. All surveys done with Campelen trawl. Based on the latest stratification update.

20	Total	Upper	Lower		Mean	Upper	Lower
Abundance	24,612,277	1 38,948,63 6	-89,724,083	No/Tow	23.76	134.16	-86.63
Biomass (kg)	4,511,402	8,364,553	658,252	Kg/⊤ow	4.36	8.08	0.64
2H	100 017 770	007 444 500	40,000,070	N - 77	100.07	(00.00	00.44
Abundance	168,647,773	287,411,568	49,883,979	NO/TOW	109.67	486.90	32.44
Biomass (kg)	38,988,448	66,113,986	11,862,911	Kg/Tow	25.35	42.99	7.71
2J	200 415 000	440.054.007	014 000 040	Notterry	04.70	107 71	
Abunuance	329,415,000	443,904,307	214,000,012	NO/TOW	94.76	127.71	0.1.01
Biomass (kg)	62,110,827	71,334,647	52,887,006	Kg/Tow	17.87	20.52	15.21
3K Abundance	709 547 686	838 415 727	580 679 645	No/Tow	139.22	164.50	113.93
	140 407 005	100,110,000	100 000 010	К. Т .	07.00		00.74
biomass (kg)	142,197,005	163,410,968	120,983,042	Kg/Tow	27.90	32.06	23.74
3L Abundance	142 871 547	175 010 559	110 733 535	No/Tour	22.41	27.46	17.27
	55 000 040	70,010,000	110,702,000	140/1044	22.71	27.40	17.57
biomass (kg)	55,926,849	72,135,874	39,717,824	Kg/ LOW	8.77	11.32	6.23
3M Abundance	9.258.435	15.066.024	3,450,847	Νο/Τρω	19.91	32 39	7 42
Biomass (kg)	7,776,247	11.322.832	4,229,663	Ka/Tow	16.72	24.35	9.09
,			. ,	Ŭ			
3N Abundance	40,001,595	80,845,209	-842,019	No/Tow	15.26	30.85	-0.32
Biomass (kg)	14,787,829	24,664,228	4,911,430	Kg/Tow	5.64	9.41	1.87
30							
Abundance	15,604,108	18,270,563	12,937,654	No/Tow	5.88	6.89	4.88
Biomass (kg)	5,402,340	11,765,376	-960,696	Kg/Tow	2.04	4.44	-0.36
2+3KLMNO Abundance	1,438,299,326	1,598,080,158	1,278,518,494	No/Tow	61.83	68.70	54.96
Biomass (kg)	331,245,641	359,575,082	302,916,200	Kg/Tow	14.24	15.46	13.02

Table 19. Abundance and biomass estimates of G.halibut, by Division, from fall 1998 survey. Upper and lower indicate approximate 95% confidence limits.

Table 20. Biomass estimate (000 t), by division, from fall surveys in 1995-98.

	Division													
1	Year	2G	2Ħ	2J	ЗK	3L	2J3KL	ЗM	3N	30	TOTAL			
	1995			35.6	69.2	11.3	116.1							
	1996	22.3	26.1	64.8	120.3	36.6	221.7	10.2	5.1	1.0	286.4			
	1997	15.5	38.6	82.1	130.5	48.6	261.2	7.0	6.4	2.1	330.8			
	1998	4.5	39.0	62.1	142.2	55.9	260.2	7.8	14.8	5.4	331.2			

Table 21 . Abundance at age, by division, from 1996 -1998 fall surveys. Values are in millions of fish.

				1996									
Age	2G	2H	2J	зк	ЗL	ЗМ	ЗN	30	Total				
0	1.732	0.582	36.508	5.488	0.720	0.039	0.607	1.887	47.56				
1	38.280	92.106	349.250	444.197	29.710	0.396	22.262	1.362	977.56				
2	18.467	69.304	155.915	296.627	32.406	1.624	14.040	3.1/6	591.56				
3	9.240	25.096	34 589	61 979	35.042 17 723	1.427	3.071	0.749	346.33 141.42				
5	8.623	8.840	22.836	32.775	14.735	2.683	1.949	0.383	92.82				
6	5.087	4.712	9.883	12.422	9.848	3.913	0.750	0.119	46.73				
7	2.079	1.872	2.966	4.456	4.825	2.515	0.096	0.012	18.82				
8	1.107	0.853	0.782	1.138	0.671	0.826	0.007	0.002	3.06				
10	0.210	0.156	0.138	0.239	0.221	0:050	0.000	0.004	1.02				
11	0.251	0.048	0.072	0.106	0.071	0.031	0.000	0.000 0.5					
12	0.119	0.049	0.066	0.049	0.050	0.046	0.000	0.000	0.38				
13	0.000	0.027	0.085	0.033	0.028	0.085	0.000	0.000	0.26				
15	0.000	0.000	0.000	0.010	0.000	0.038	0.000	0.000	0.09				
Unk	0.159	0.081	0.134	0.000	0.037	0.000	0.041	0.021	0.47				
Total	97.70	217.00	677.99	1063.42	147.56	15.83	48.96	9.30	2277.77				
5+ 9+	18.57	0.92	37.59	51.65 0.86	31.92 1.06	10.60	2.81	0.53	170.86 6.32				
				1997									
Age	2G	2H	2J	зк	ЗL	зм	ЗN	30	Total				
0	0.821	5.799	11.897	7.649	2.152	0.000	0.111	0.067	28.50				
1	8.348	34.687	172 556	166.704	11.176	0.000	0.801	2.139	279.16				
3	12.125	60.661	129.939	268.426	31.299	0.001	12.099	4.068	518.64				
4	15.335	45.591	84.511	107.534	29.139	0.070	6.596	2.835	291.61				
5	7.424	16.822	33.570	56.239	27.814	0.867	3.529	0.939	147.20				
6	4.468	9.271	19.248	20.864	14.972	2.423	1.459	0.224	72.93				
8	0.927	1.449	1.616	4.042	3.484	2.733	0.103	0.059	12.87				
9	0.263	0.448	0.598	0.949	0.914	0.292	0.013	0.017	3.49				
10	0.217	0.132	0.242	0.251	0.245	0.051	0.003	0.000	1.14				
11	0.130	0.088	0.208	0.072	0.165	0.067	0.004	0.009	0.74				
12	0.012	0.035	0.100	0.051	0.148	0.038	0.003	0.001	0.39				
14	0.000	0.058	0.028	0.026	0.117	0.020	0.000	0.000	0.25				
15	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.01				
Total	62.52	239.07	517.31	956.76	153.94	7.84	35.48	14.48	1987.39				
5+ 9+	0.63	33.06	63.09	92.43 1.38	56.18 1.69	7.75 0.53	5.61 0.03	0.03	275.54 6.35				
				1998									
Age	2G	2H	2J	ЗК	ЗL	ЗМ	3N	30	Total				
0	0.080	0.940	9.590	3.290	0.460	0.020	0.080	0.080	14.54				
1	13.820	13.890	55.450	144.160	4.190	0.000	1.620	0.270	233.40				
2	2.830	30.720	65.690	151.290	16.140	0.010	3.190	0.980	270.85				
4	1.770	35.480	58,930	129.670	29.060	0.280	8.630	4.020	267.84				
5	1.530	16.330	26.160	65.950	43.930	1.600	9.500	4.720	169.72				
6	1.220	8.280	10.920	27.430	22.660	3.040	5.800	2.120	81.47				
7	0.940	4.110	5.320	11.930	8.510	2.810	2.850	0.720	37.19				
9	0,040	0,310	0.390	0,710	2.520	0.900	0.220	0.260	2.72				
10	0.040	0.080	0.170	0.410	0.190	0.130	0.090	0.040	1.15				
11	0.010	0.040	0.140	0.100	0.120	0.100	0.070	0.050	0.63				
12	0.000	0.000	0.090	0.060	0.080	0.100	0.010	0.010	0.35				
13	0.010	0.030	0.070	0.070	0.010	0.020	0.010	0.000	0.22				
15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00				
16	0.000	0.000	0.000	0.020	0.000	0.000	0.000	0.000	0.02				
Unk	0.120	0.000	0.250	0.290	0.000	0.000	0.050	0.000	0.71				
Iotal	24.60	168.62	329.44 44 OF	109.63	142.86	9.29 8 06	39.99	15.60	305.01				
9+	0.11	0.46	0.88	1.37	1.20	0.61	0.42	0.17	5.22				

1998	12880	199610	216980	265730	188600	92110	38350	17250	4770	1100	580	240	150	140	20	0	20	Q	0	0	0	540	1039070	1026190	416590	546440	61470	1690
1997	19546	222012	486571	398365	192045	89809	40112	17321	5658	1547	493	280	151	100	54	0	0	0	0	0	0	0	1474064	1454518	708583	680219	64638	1078
1996	41996	793447	452542	267483	96568	55611	22305	7422	1920	1141	377	178	115	118	4	9	0	0	0	0	0	134	1741409	1699413	1245989	419662	32788	974
1995	80159	342056	397121	122856	39605	50370	15863	3513	920	266	104	49	0	ò	0	0	0	0	0	0	0	0	1052882	972723	739177	212831	20562	153
1994		359982	189873	171493	112859	51870	9696	4478	1347	172	69	13	17	6	0	0	0	0	0	•	0	0		902080	549855	336222	15895	108
1993		62241	281182	497522	182333	42962	13677	5905	1967	232	32	22	94	41	24	0	0	ö	0	0	0	758		1088993	343422	722818	21782	972
1992		52907	188121	148380	95263	38552	22088	10472	1067	140	68	12	0	0	15	0	0	0	0	0	0	2484		559589	241027	282195	33767	2600
1991		84583	59211	44644	103158	65701	40331	12485	2383	635	310	181	104	22	8	0	4	0	0	0	0	0		413761	143794	213503	55833	630
1990		9858	39744	70539	177413	115858	70699	36649	6200	1500	746	640	389	223	155	6	21	0	0	0	ō	0		530726	49602	363811	115048	2264
1989		52954	95755	174201	174689	108472	87210	38560	9604	2847	747	568	151	35	81	103	31	0	0	•	0	4744		750752	148709	457363	138221	6459
1988		74055	71555	109246	114836	119818	59218	41431	12233	3134	1105	781	463	361	327	236	149	20	16	0	29	1647		610710	145609	343900	116016	5185
1987		36234	81046	212676	99109	75271	53188	47138	25791	9434	2833	1481	1454	754	583	385	204	150	14	0	0	0		647746	117280	387056	135551	7859
1986		125257	106161	1125555	104606	72301	81840	71749	22142	6546	2380	1856	1668	879	542	555	318	96	0	0	0	4374		715824	231418	289461	182277	12668
1985		192902	113558	65428	54235	66317	69541	42805	17028	7982	5296	2257	1997	874	1002	606	302	311	10	18	0	0		642558	306460	185979	137355	12763
1984		31845	50917	70143	74837	103171	61334	42301	27028	13058	6306	2602	1812	1480	1285	677	461	226	0	0	0	0		489484	82762	248151	143721	14849
1983		12131	34727	71282	75711	71101	51583	50698	39418	15223	4414	3180	2291	1664	1109	495	131	0	81	0	0	0		435238	46859	218093	156921	13364
1982		33748	39589	88918	75651	57104	41105	43097	41244	16566	6765	4129	2714	1929	1975	1257	589	67	43	0	0	2831		459351	73337	221673	142012	22329
1981		141166	158149	109462	41433	47202	49991	35482	15613	7017	4213	3349	1559	857	446	268	43	0	0	0	0	35062		651312	299315	198097	108103	45797
1980		47941	46187	43767	39304	49738	52627	32283	11102	4960	3891	4461	2882	1874	1070	411	231	71	0	0	0	4205		347004	94128	132809	100972	19096
1979		76275	128771	95883	50861	53099	50976	24408	9977	4777	4572	3000	2638	2193	1079	669	624	234	128	65	0	1122		511381	205046	199843	90137	16355
1978		67133	315362	243378	146864	90817	68495	40908	19170	9940	7366	6469	4117	2683	992	560	365	213	0	0	25	3706		1028562	382496	481058	138513	26495
AGE	0	F	2	e	4	2	9	2	8	6	10	Ξ	12	5	14	15	16	17	18	19	20	Unk	Ages 0+	Ages 1+	Ages 1-2	Ages 3-5	Ages 6-9	Ages 10+

Table 22. Abundance (000s) of G. halibut at age from Canadian fall surveys in Div. 2J3K combined during 1978-98. Data prior to 1995 are in Campelen equivalents. Age 0 not estimated prior to 1995.

Fig. 2. Standardized CPUE (mean +/- 2 standard errors) for Greenland halibut in SA2 + Div. 3KLMNO from 1975-1998.

Fig.3. Stratification scheme used in Canadian surveys in Div. 2G.

Fig.4. Stratification scheme used in Canadian surveys in Div. 2H.

Fig 8 Distribution of Greenland Halibut catches (number) from 1995 to 1998 Canadian fall surveys to NAFO Divisions 2GHJ3KLMNO using a Campelen 1800 survey trawl. (All set standardized to 15 min. (.8 nm.) tows).

Fig. ⁹ Distribution of Greenland Halibut catches (kg) from 1995 to 1998 Canadian fall surveys to NAFO Divisions 2GHJ3KLMNO using a Campelen 1800 survey trawl. (All set standardized to 15 min. (.8 nm.) tows).

Fig 10 Distribution of Greenland Halibut catches of fish less than or equal to 35cm in length from 1998 Canadian fall surveys from NAFO Divisions 2GHJ3KLMNO using a Campelen 1800 survey trawl. All sets standardized to 15 min. (.8 nm.) tows.

Fig ¹¹ Distribution of Greenland Halibut catches of fish greater than 35cm in length from 1998 Canadian fall surveys from NAFO Divisions 2GHJ3KLMNO using a Campelen 1800 survey trawl. All sets standardized to 15 min. (.8 nm.) tows.

