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Abstract

We consider stratified sampling and the task of applying subjective knowledge in predicting the number of trawl
samples per stratum that minimises the cv of the abundance estimator. The constraint is a given vessel time
available. It is assumed that the strata biomass means, arbitrarily scaled, are the only unknown parameters
needed to find the optimal solution. The concept of a subjective prediction distribution of the unknown stratum
means is introduced. The distribution is person-dependent and is determined based on intervals [L,U] for the
minimum and maximum subjectively predicted biomass values compared with the true measured values found
after the predictions. The approach assumes a constant subjective confidence level defined as the probability of
covering the true value in a random interval. A pilot subjective prediction experiment was conducted during the
1998 shrimp survey in the Barents Sea. Based on 62  [L,U] predictions of shrimp biomass in the next trawl haul
combined with the true biomass, the subjective prediction distribution for the cruise leader was estimated. The
distribution was applied to her stratum predictions for the next survey. 10000 random predictions of true strata
means were simulated from the distribution. For each simulation cv-values of the abundance estimator were
estimated based on relative strata means predicted from historical data as well as the subjective predictions. A
significant cv-reduction was obtained based on a combination of subjective prediction and historical data,
compared to the use of historical data alone.

Kew words: subjective prediction, optimal stratified sampling, adaptive sampling, Bayesian analysis.

Introduction

To get a most reliable stock assessment of shrimp resources in large areas, effective sampling strategies are of
vital importance due to limited vessel time. We consider the case where the study area is divided in
predetermined geographical areas (strata). The problem studied is to predict the number of samples in each
stratum that minimises the cv of the abundance estimator of biomass in the entire study area, combining
historical data and subjective prediction. In each stratum we assume that the trawl samples are independent
observations which provide unbiased estimates of the unknown sample stratum mean and variance. The terms
stratum mean and variance are here used for the expected biomass and the variance of the biomass from a
random trawl haul in the stratum.

If the cost of providing a sample is neglected, a well-known result in stratified sampling is that the optimal
number of samples in a stratum is proportional to stratum area and stratum standard deviation (Cochran 1977,
Thompson 1992). This solution is often denoted Neyman allocation, after Neyman (1934). For trawl surveys in
large areas, the stratum-dependent sailing time between trawl stations is the main cost. In this case the optimal
solution must be found numerically, as shown in Harbitz et al. (1998). It turns out, however, that the optimal
solution in this case deviates negligibly from the Neyman allocation unless there are extreme relative differences
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between strata areas and/or between stratum standard deviations (ibid). As a reaonsable approach we apply the
Neyman allocation as the optimal solution in this paper.

Supported by data (Fig. 2) we assume that the stratum standard deviations are proportional to the strata means
with a proportionality constant independent of strata and time (survey). In this case the sufficient, but unknown,
parameters needed to determine the Neyman allocation are the relative strata means defined as the stratum mean
in each stratum divided by the sum of strata means in all strata.

If the estimated relative stratum means appear to be quite similar from survey to survey, this is an indication that
it is wise to predict the relative stratum means in a future survey from historical data. Note that this might be the
case even if the abundance varies from survey to survey.

If scientists or others have qualified reasons to doubt that we can predict the relative strata means from past data,
due to environmental changes or other reasons, the challenge faced is how to utilise such subjective knowledge
to improve these predictions. A major goal of this paper is to outline a method to quantify the person-dependent
ability of subjective prediction in statistical terms.

A core in our approach is to establish a link between subjective data and real measurements of biomass, based on
subjective prediction experiments. Each subjective observation simply consists of a minimum, a most likely and
a maximum predicted biomass value for a future parameter, e.g. the shrimp biomass in the next trawl haul or the
stratum mean. A major assumption is that the subjective confidence level, i.e. the expected relative proportion of
the data where the true parameter value falls within the interval limits, is a person-dependent constant
independent of stratum and survey. The better subjective knowledge, the smaller interval width is assumed,
maintaining the subjective confidence level.

Based on data from experiments as described above, the concept of a subjective prediction distribution of the
unknown parameter is introduced, which has a frequentistic interpretation. Based on subjective predictions for
the strata means in the next survey, along with historical trawl data, a combined prediction for the unknown
relative strata means is constructed. The weights balancing historical data versus subjective prediction are a
linear combination of the inverse variances involved. When the combined predictions are established, the
corresponding predicted optimal number of trawl stations in each stratum are calculated.

In order to assess the effect of applying subjective prediction, simulations based on a case study with real
historical trawl data and subjective prediction data from shrimp surveys in the Barents Sea are performed. Based
on subjective predictions for a future survey, along with an established subjective distribution, the future values
of true relative strata means are simulated. For each simulation, the cv of the abundance estimator is calculated
based on: 1) proportional allocation (non-stratified sampling), 2) optimal sampling based on historical data, 3)
optimal sampling based on historical data and subjective prediction, and 4) optimal allocation based on the true
relative strata means. A comparison of the different cv-distributions from the simulations are used in order to
study the effect of the 3 first approaches, which are all applicable in practice. Then they are compared to the cv-
distribution obtained from optimal allocation based on true strata means.

The main focus of the paper is optimal allocation, but the concepts developed can easily be extended to a
Bayesian framework for inference about the unknown abundance, by applying the subjective prediction
distribution as a prior. After the data from the survey are available, we can construct the aposteriori distribution
of abundance conditional on trawl data, and e.g. calculate a credibility interval of specified level for the
unknown abundance. Because the prior now has a frequentistic interpretation, it is meaningful to define the bias
of the predicted parameter with respect to the prior. If it is unbiased, the posterior mean will be unbiased as well.
Bayesian inference (Carlin and Louis 1996) is getting increased popularity within fisheries science (McAllister
and Kirkwood 1998), not least due to the accelerating development of e.g. computer-efficient Markov chain
Monte Carlo techniques (Gilks 1996). This enables our approach to be attractive also in case the subjective
prediction distribution is used as a non-conjugate prior.

The subjective prediction approach can also be applied in an adaptive setting (Thompson and Seber 1996),
where new subjective predictions are made before each new stratum is reached, and an optimal reallocation of
effort within the remaining strata are performed.
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Material and Methods

Notations
i = subscript for stratum
m = number of strata
j = subscript for survey
nyr = number of surveys
l = summation index over strata
Y = biomass in kg from trawl haul

Y = stratum mean of Y-values

µ = stratum mean, EY
σ = stratum standard deviation, std(Y)
s = 1) empirical standard deviation, 2) subscript for subjective
[L,U] = subjective biomass prediction interval
M = modal subjective predicted value
α = lower fractile of fs corresponding to L
β = upper fractile of fs corresponding to U
ε = interval factor in the relationship (U−L) = ε⋅(U+L)/2
r = subscript for relative
k = proportionality factor in relation σ = kµ
γ(b,c) = gamma distribution (pdf) with scale parameter b and shape parameter c
Q = chi-square sum
Z = standardised subjective prediction variable
fs0 = standardised subjective distribution
fs = subjective prediction distribution
N = number of samples in a stratum
Ai = area of stratum i
A = ΣAi = total area of all strata
A0 = area covered by one trawl haul
µA = true abundance in total area
h = subscript for historical
* = superscript for estimator

The survey data

The shrimp biomass data to be used are from annual trawl surveys in the Barents Sea in the period 1992-1999.
The area is divided in m = 6 fixed geographical areas, or strata, see Fig. 1 and lower row of Tab. 1. The total
number of trawl stations (biomass observations) varies between a minimum of 92 (1999) to a maximum of 139
(1996). The minimum number of observations at one single stratum is 7, while the maximum is 59, see Tab. 1.
The estimated stratum means and standard deviations are given in Tab. 2. Aschan and Sunnanå (MS 1997) give
a description of survey design and trawl technology.

In 1998 a pilot subjective prediction experiment was conducted where each of 4 persons reported a minimum
value, L, a most probable (modal) value, M, and a maximum value, U, for the biomass they predicted in the next
trawl haul. The 4 persons included two scientists (the cruise leader and another biologist), the captain and the
chief mate. All persons predicted independent of each other. As a basis for their prediction the biomasses from
the previous haul and the previous year were easily available. Of particular interest was the cruise leader data,
because this person has the authority to determine the effort allocation. A sample size of ns = 62 (L,M,U)-data
was reported by the cruise leader, and a similar number for the other persons.
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Statistical population model

The statistical population model is a major basis for most of the statistical analysis. A population in statistical
sense must not be confused with the biological meaning of population. We therefore find a precise definition of
statistical population model appropriate here.

Let Y denote the biomass found from a trawl haul covering a standardised area, dA, synonymous with a fixed
trawled distance. We define a population as the set of all Ny possible y-values under specified conditions. The
conditions considered here are location and time, i.e. stratum and time period of survey. As a consequence there
will be different populations for different strata and surveys. The population distribution is then defined as the
relative frequency histogram of the Ny possible y-values. Here Ny is so large that it is reasonable to model the
population distribution as a continuous probability density function, pdf.

We assume that the actual sample consisting of N biomass values, one from each trawl station, is a random
sample of independent observations from the population distribution. It is further assumed that the shape of the
population distribution is identical to the one we would have found if the y-values could have been replaced by
the corresponding true biomass of shrimp in the whole water column. These two distributions will then deviate
from each other essentially through a scaling factor taking account of e.g. vertical diurnal migration and trawl
catchability. The factor is assumed to be independent of stratum and survey period.

Let f(y) denote the population distribution with mean µ and standard deviation σ. Supported by our data (Fig. 2)
it is reasonable to assume that f belongs to the class of scale-parameter distributions, i.e.

)/()/1()( 0 byfbyf ⋅= . Here f0(⋅) is a fixed function independent of b and independent of stratum and time.

If all our y-values from different strata and surveys were divided by their respective stratum means, µ, the
resulting values would then follow the same distribution. We therefore divide the y-values from all surveys and
strata with their empirical stratum means and use this rich database in order to determine an appropriate choice
of  f0 among known distributions. We also assign equal probability to each of the standardised y-values, y0, to
provide a parameter-free approximation to f0 with application to e.g. simulation experiments.

The population model is further simplified by assuming that the population standard deviation is proportional to
the population mean, σ = kµ, where the proportionality factor k is independent of stratum and time. Our data

(Fig. 2) support this assumption. We estimate k based on ( , )y s -values where y denotes empirical stratum mean
and s denotes empirical stratum standard deviation. Two different least square estimators for k are considered.
The first estimator is
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The properties of the estimators for k are completely determined by the population distribution. We limit our

attention to study bias(k*) = Ek*−k, and the standard deviation of k*. Note that though S 2  is an unbiased

estimator for σ2, S is in general not an unbiased estimator for σ.
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The study of standard deviation is based on bootstrapping (Efron and Tibshirani 1993) from the standardised y-
value database as well as simulations from the parametric pdf fit to these y-values, while we use the latter

approach to study bias. In both cases we choose the nyr⋅m estimated ijy -values as “true” values of mij . The

procedure for bootstrapping nboot resamples of the nyr⋅m ),( ijij sy -data then goes as follows:

1. Draw Nij random y0-values (with replacement) from the y0 database.

2. Scale the y0-values by multiplying with ijy .

3. Calculate the bootstrapped mean value,
B

ijy , and standard deviation, B
ijs , of the Nij values provided in 2.

4. Repeat 1-3 for each value of i (stratum) and j (survey) providing a random sample of the nyr⋅m
),( ijij sy -data.

5. Repeat 1-4 nboot times.
6. 

Based on each of the nboot samples we calculate the corresponding bootstrapped values  Bk *
1  and Bk *

2 for *
1k

and *
2k , respectively, and then estimate std(k*) for both estimators.

For the study of bias we apply the gamma distribution γ(1/c,c) with scale parameter 1/c and shape parameter c =
1/k2, for the standardised biomasses Y/µ, which corresponds to a γ(µ/c,c) population distribution. In this case the
strata means become gamma-distributed as well:

(3) Y ~ Ycc ⇒),/(µγ  ~ )),/(( cncnµγ ,

which mathematically is a very convenient result for simulations. We use an estimator k* for k based on data in
order to estimate the value for c to be used in the simulations. This time we do not need to sample from the

population distribution, but we sample random ijY -values directly from the distribution above. Based on the
known k-value in the simulations, we estimate the bias based on e.g. nMC = 1000 Monte Carlo simulations of k.
We also, as before, estimate the standard deviation of k*. If both estimators appear to be approximately unbiased,
the one with the lowest estimated standard deviation is preferred.

The optimal number, Ni, of trawl stations per stratum

We apply the results in Harbitz et al. (1998) in order to determine the number, Ni, of trawl stations in each of m
predetermined strata that minimise the cv of the abundance estimator for the entire area under the constraint of a
given vessel time, t, available. This is synonymous with minimising the variance:
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where 2
iσ is the variance of biomass of a random trawl haus in stratum i (stratum variance), Ai is the

corresponding area, and A0 is the area covered by a trawl station. The general problem in stratified sampling is
that the stratum variances, σi

2, are not known. We assume (ibid) that the optimal solution deviate negligibly
(ibid) from the Neyman-allocation Ni ∝ Aiσi. Applying the model σ = kµ, the optimal solution then depends on

the relative stratum means, miliri ,,1,/ Κ=∑= µµµ , as the only unknown parameters:
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where the sums are over strata, v is the sailing speed between successive trawl stations and t0 is the trawl and
handling time at each station. v and t0 are assumed to be constants independent of strata, and the trawl stations
within each stratum are assumed to be located at the points of intersection in a square grid. As a measure of
precision we apply the coefficient of variation, cv(µA

*):

(6) ( ) ( )
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where µA = Σµi⋅(Ai/A0). We use the equation above combined with simulations to study the effect of different
approaches to predict the µri-values, to be compared with the minimum cv-value obtained by using true values
for the µri’s.

The relative stratum mean vector, µµr == [µµ1,Κ ,µµm]/ΣµΣµl.

As noted previously we assume that it is sufficient to know the relative proportion of strata means pr. stratum, µri

= µi/Σµl, in order to determine an optimal number of trawl stations within each stratum. Let µr = ],,[ 1 rmr µµ Κ

denote what we call the relative stratum mean vector, with estimator µr
*. The main focus in this paper is to

outline how we may construct reasonable predictors, µr
*, for µr based on a combination of historical data and

subjective prediction.

It is generally complicated to determine the multivariate distribution of µr
*, even in the mathematical convenient

case of the gamma distribution as a population distribution. An exception occurs when all strata have the same

area, mAA == Λ1 , and Ni is proportional to µi. In this case µr
* follows a Dirichlet distribution (Aitchison

1986).

We do not aim at finding an appropriate µr
*-distribution here, but restrict our attention to estimate )var( *

riµ ,

i m=1, ,Κ . The following approximate expression is applied:
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where the sums are over strata. Based on the gamma population distribution the variance above is estimated by
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where the sums are over strata. We now face the question of utilising historical data to predict µr in a future
survey. Let us first assume as a working hypothesis that µr has not changed during the period for which we have
data:

(9) H0: yrrhrj
nj ,,1, Κ== µµ ,

where µrh is constant with subscript h denoting “historical”. We assume that the number of observations is so
large that
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is approximately chi-square distributed with about m degrees of freedom. It is not straightforward to determine

the appropriate number of degrees of freedom in this distribution, because the *
riµ -values are negatively

correlated due to the restriction 1* =∑ riµ . We simulate the chi-square approximation based on our assumption

of a gamma population distribution, analogous to the simulation of the k*-distribution.
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In order to test H0 we first use an “ad hoc” procedure in order to estimate µrh, which weights each stratum mean
inversely proportional to the total number, Nj, of observations from survey j:

(11)
( )
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* Κ=

∑

⋅
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µ
µ ,

where the sums are over surveys. To test for possible differences between years we apply the test statistic Q in

eq.(10) replacing rihµ  with *
rihµ  and perform one test per survey. H0 is rejected if Q is larger than e.g. the upper

.05/m fractile in the chi2(m)-distribution with for any of the years. If H0 is rejected a more detailed analysis is
required providing another predictor for µr, e.g. µr

* from the last survey(s).

The subjective prediction distribution for µ, µ, fs(µµ)

In order to illustrate concepts and terminology, we restrict the attention to an unknown stratum expectation value
µ to be predicted based on subjective prediction. In order to quantify the prediction ability of a given person, the
following simple and practical measures (data) are used: the minimum, L, the most probable (modal), M, and the
maximum, U, predicted values for µ are reported. A basic assumption for the subjective prediction distribution
to be defined, fs(µ), is that L and U correspond to specific, person-dependent, fractiles in the distribution. These
fractiles are denoted αL = α and αU = 1 − β and are estimated based on subjective prediction experiments to be
described below. We define αU −€αL = 1 − α − β  to be the corresponding subjective confidence level, which is
assumed to be rather constant for one and the same person.

Imagine now that we have a large number of historical (L,M,U)-values (data) for µ with corresponding unbiased
estimates µ* based on trawl data. We let the proportion of cases where µ*< L and µ* > U be the estimators for α
and β, respectively. Let Z be a standardised variable defined as follows:

(12)
)(

2/)(*
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UL
Z

−
+−

=
µ

,

i.e., the difference between the unbiased estimator based on data, µ*, and the mid point in the subjective
prediction interval for µ. We assume that Z will follow a standardised subjective distribution, fs0(z), dependent on
person, but independent of strata and survey (time).

The reason for choosing the mid value before the modal value, M, in the definition of Z is that the mid value is
believed to be a more reasonable estimate for the mean value than M. When fs0 is established we may in
principle calculate the mean, E(Z), and the variance, var(Z). If α = β, a positive mean indicates that the mid
value of the subjective prediction interval tends to underestimate the true µ-value and vice versa. The bias is
considered negligible if the magnitude | E(Z) | is small compared to std(Z).

In practical life it will take a long time before sufficient data are available to determine an appropriate fs0(z)-
distribution. To overcome this, we may perform experiments providing subjective prediction values (L,M,U) for
each single observation, y, i.e. the true biomass in the next trawl haul. The assumption is then that the fs0(y) -
distribution established this way is approximately equal to the fs0-distribution for prediction of µ.

Note that there is in general no one-to-one correspondence between Z and a given [L,U]-interval, in principal
many different [L,U]-values may correspond to the same z-value. Motivated by data, however, we assume that
there is a proportional relationship between the mid value (L+U)/2 and interval width, U−L.

(13) 2/)( ULLU +⋅=− ε
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where ε is the interval factor. Also motivated by data we assume that α = β and that fs0 equals a normal
distribution N(0,σz). In this case the subjective distribution for µ, fs(µ), which is deduced directly from the
definition of Z and fs0(z), is normal with expectation value (L+U)/2 and variance

(14)
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where an appropriate estimator *2
sσ for 2

sσ is found by replacing ε and β by estimators based on experimental

data. Note that for a given interval [L,U] it is now meaningful to consider fs(µ) as a probability density function
of µ in a classical frequentistic sense. We may imagine a long series of predictions for which [L,U] is constant,
where the unknown µ-values behave as independent stochastic variables, following the subjective prediction
distribution conditional on [L,U].

The subjective relative prediction vector is

(15) µrs = ],,[ 1 rsmrs µµ Κ  = slsms µµµ ∑/],,[ 1 Κ ,

where µsi is the mid value of the subjective prediction interval [Li,Ui] for µi. We assume that the subjective
prediction intervals for different strata are uncorrelated. Analogous to eq.(7) we apply the following approximate
expression in order to estimate var(µris):
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where the sums are over strata.

The predicted optimal number of trawl stations in each stratum

We now outline how we predict µr by a combination of historical data (index h, henceforth) and subjective
prediction (index s, henceforth). The elements in the combined relative prediction vector

***
1 /],,[ riCrmCCr µµµ ∑Κ  are determined as a linear combination of µris

* and µrih
*, mi ,,1 Κ= . The weights

are  based on the involved variance estimates, i.e.
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where K is a normalising constant to ensure that 1* =∑ riCµ  and the other elements are defined previously.

Once the elements of the combined relative prediction vector are determined, eq.(5) is applied with µri replaced
by µriC in order to estimate the optimal number of stations within each stratum.

Simulation of the variance-reducing effect of subjective prediction

The goal of introducing subjective prediction in the context that we have outlined is to reduce the cv of the
abundance estimate, cv(µA

*). In order to study the effect of µrC we may perform some simulations based on case
studies. We limit the situation to the case where µr has changed from µrh in the past to µr0 in the future situation
where the survey is conducted. We assume that the subjective prediction distribution is normal with true mean.
Further, we assume that the gamma distribution is a reasonable approach to the population distribution. We also
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include the unstratified situation (proportional allocation), Ni ∝ Ai, corresponding to a relative stratum mean
vector µrA = ]/1,,/1[ mm Κ . The simulation process then goes as follows:

1. Choose an appropriate stratum relative mean vector µrh = ],,[ 1 rmhhr µµ Κ  based on historical data.

2. Establish [Li,Ui]-data based on subjective prediction, and calculate the subjective prediction vector µrs =

],,[ 1 rmssr µµ Κ . Determine the corresponding normal subjective prediction distributions fsi(µi) for

each stratum i.
3. Determine the combined relative vector µrC based on 1 and 2 and determine the predicted optimal

number of stations in each stratum.
4. Simulate a random true stratum relative mean vector µr0 from the subjective prediction distributions in

2.
5. Repeat step 4 nboot = 10 000 times, say, and compare the distributions of cv(µA

*) based on µrA, µrh, µrC

and µr0.

Results

The relationship between the empirical strata means and strata standard deviations are shown in Fig. 2, along

with the fitted line σ = kµ = 2/µ . As is clearly seen, the log-log plot results in a more constant variance of S

for a given value of y . We also see that both estimates appear to be rather unbiased, and that k2
* should be

preferred before k1
* due to the lower standard deviation of the former. The difference between the bootstrap and

gamma distribution approaches is negligible, indicating that the gamma distribution is a reasonable population

distribution model. The value k* = 2/1  is chosen for mathematical convenience, because it appeared to be
close to the estimated values for k, see Tab. 1. This corresponds to a gamma population distribution γ(µ/2,2) and
a γ(1/2,2) distribution for the standardised biomass-values Y/µ. The latter is shown in Fig. 3 as a fit to a

histogram based on 861 standardised observations ijij yy /  from the surveys. As is seen, a reasonably good fit is

obtained, though the large histogram peak at the leftmost bin is noteworthy.

The histogram of 10 000 simulations of Q (see eq.(10)) based on the gamma population distribution γ(µ/2,2) is
shown in Fig. 2 with a fitted chi-square distribution with 6 degrees of freedom. As is seen, an apparently good fit
is obtained. The fixed number of strata observations and strata means used in each simulation are representative
for one survey, see Tab. 1 and 2. The empirical estimates of the 95, 99 and 99.5 percentiles in the q-distribution,
along with the corresponding percentiles in the chi2(6)-distribution (in parenthesis) were: 13.2 (12.6), 18.3
(16.8) and 20.5 (18.5). The q-distribution thus seems to have a somewhat  “heavier” tail than accounted for by
the chi2(6)-distribution.

The hypothesis of a constant µrh-value in the period 1992-1999 estimated by applying eq.(11) was rejected for
the years 1993 and 1996. Therefore the three last years were used to estimate µrh, providing the vector

(18) µrh = [0.073, 0.175, 0.190, 0.109, 0.305, 0.148]

The chi-square sums Q then were 3.9, 5.2 and 5.4 for 1997, 1998 and 1999, respectively, i.e. reasonably close to
the mean value 6 in the chi-square distribution with 6 degrees of freedom.

All 4 persons who participated in the subjective prediction experiment appeared to provide intervals which
tended to have widths (U − L) proportional to the mid value (L + U)/2. The cruise leader appeared to have the
best result in terms of lowest interval factor (ε* = 0.74) combined with the lowest subjective confidence level (66
%). When translating her [Li , Ui] intervals by replacing the Mi-values with the previous haul value, Yi−1, or the
last year value, Yi,97, the subjective confidence level war reduced to 44 % and 52 %, respectively. This is a
promising indication of the potential in applying subjective prediction in this case.
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We now restrict the attention to the cruise leader results and the application of these. Based on her 62 (L, M, U)-
values the following results were found:

1. α* = 0.19, β* = 0.15
2. 2/)(74.0 ULLU +⋅≈−
3. 75.0,004.0 =−= zsz
4. Negligible deviation between M-values and interval mid values.

As is seen in from point 3 above, there is a negligible bias in the z-distribution. The intervals as a function of the
modal values, M, are shown in the left part of Fig. 5, along with the true y-values. In the right part of Fig. 5 the
estimated standardised subjective distribution fs0(z) with a fitted normal distribution is shown. Because α* is
close to β*, we let α = β = .17 in the simulation of the effect of applying a normal subjective prediction
distribution in a new survey. The standard deviations σis to be used are then

(19) miLU
LU

iii
iii

is ,,1),(262.0
)83.0(2

2/)(
1

Κ=+⋅=
Φ

+
=

−
ε

ε
σ ,

where Li and Ui are the subjective lower and upper borders of the predicted stratum means. Based on subjective
predictions by the cruise leader the following relative mean vector was used:

(20) µrs = [0.093,    0.155,    0.207,    0.078,    0.363,    0.104]

with corresponding ε-values     0.181, 0.208, 0.250, 0.250, 0.179 and 0.488.

 Random values for the future µ-value in each stratum are simulated from the appropriate normal distribution
with expectation value (L+U)/2 and standard deviation given by eq.(19). For each simulation the cv-values are
calculated based on proportional allocation (µrA), predicted optimal allocation based on µrh, predicted optimal
allocation based on a combination of historical data and subjective prediction (µrC) and optimal allocation based
on true values (µr0). The results of 10 000 simulations are shown in Fig. 6. The time available for the survey was
chosen to be 250 hr, the vessel speed between stations to be 12 nm/hr and the trawling and handling time at each
station was set to t0 = 1 hr. As we see, a considerable improvement is obtained by applying subjective prediction,
despite the rather small difference between µrh and µrs.

Discussion

A major basis for our approach to quantify the statistical properties of subjective prediction is the assumption of
a relatively constant subjective confidence level. This means that a person who becomes more skilled with
experience will tend to provide more narrow prediction intervals, maintaining the same subjective confidence
level. Only experience over time can assess the assumption of a constant subjective confidence level.

Another basic assumption is the transferability of the standardised subjective distribution fs0(z) from the simple
single-value prediction of Y to the prediction of the stratum mean, µ. An intuitive feeling is that if a normal
subjective prediction distribution is appropriate in the single value case, the assumption of a normal distribution
is also reasonable for the µ-predictions. Again, this assumption can be assessed by experiments, but a quite long
time period is required. The more persons who seriously perform such experiments, however, the shorter time is
needed to make this assessment.

We have for simplicity assumed independent subjective predictions between strata. If the basis for the
predictions is related to e.g. migration between strata, this independence assumption is dubious. An overestimate
of the emigration effect from one stratum to another will correspond to an overestimate of the immigration effect
into the other. As a result, the variances based on independence become too small, overemphasising the
subjective prediction ability.
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At least at an early stage many will hesitate in trusting subjective prediction too much. A general approach is
then to determine some limitations on maximum influence. As an example one may limit the influence so that
the combined vector µrC is not dominated by the subjective vector µrs. One way to obtain this is to scale the
relative variances σris

2 by a common factor so that none of them become smaller than the corresponding
historical variances, σrih

2. In this way the relative subjective variances between strata are maintained.

It is possible to extend the use of subjective prediction as outlined here to adaptive sampling designs. One
approach would be to make new subjective predictions before the first trawl haul in each new stratum, to be used
in order to determine the optimal number of trawl stations in the next strata. As more strata are finished, the new
biomass values can be implemented in the estimate of the historical predictor µrh. Note that this approach is not
in conflict with obtaining unbiased estimates of abundance.

The concept of a subjective prediction distribution can also be extended to inference of the abundance, µA. Let
[LA , UA] be an unbiased subjective prediction interval for µA consistent with corresponding intervals for each
stratum. The subjective prediction distribution fs(µA) can then be used as a prior in Bayesian sense, and we may
use e.g. a 95 % posterior credibility interval for µA as an inference measure for µA. Because it is reasonable to
assume that the distribution of µA

* based on data is normal, a normal prior will be a conjugate prior. The
construction of a credibility interval is then straight forward. Due to the frequentistic interpretation of fs(µA) it is
now meaningful to say that the posterior expectation value is an unbiased estimator of µA.
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Table 1.   Number of samples in each stratum. Barents Sea shrimp surveys 1992-1999. Strata area in  1000 nm2 in last row.

Stratum
Year A B C D E F
1992 16 12 10 24 33 37
1993 22 11 12 26 23 33
1994 11 10 12 22 24 22
1995 14 8 8 22 29 22
1996 11 9 8 29 59 22
1997 14 7 9 10 40 15
1998 16 8 10 17 29 29
1999 8 11 14 14 30 15

Area [1000 nm2] 6.73 4.71 4.00 9.34 11.48 9.58

Table 2.   Estimated strata means and standard deviations in kg per trawl haul. Barents Sea shrimp surveys 1992-1999.

Stratum
Year A B C D E F

µ* 21.8 37.1 56.8 28.6 65.7 28.71992
σ* 15.9 23.0 33.5 24.4 28.9 20.0
µ* 14.5 26.2 45.2 17.0 47.7 10.81993
σ* 12.9 13.1 33.3 12.4 26.3  6.8
µ* 19.9 11.0 13.3  8.8 30.4 13.11994
σ* 16.6  6.5  8.5  7.8 22.0 13.5
µ*  9.7 11.5 18.0 17.6 40.8 15.11995
σ*  6.5  9.5 20.1 19.9 29.7 14.6
µ* 23.0 10.8 32.5 24.3 68.6 28.11996
σ* 22.7  6.3 17.8 21.9 37.0 19.2
µ* 12.5 41.0 25.4 27.4 50.7 21.31997
σ* 12.5 36.7 10.5 26.1 47.4 14.3
µ* 16.9 39.4 53.7 23.3 81.4 58.11998
σ* 14.7 28.9 37.0 24.0 51.5 32.9
µ* 16.0 27.4 41.1 16.2 59.3 18.01999
σ* 10.5 21.0 26.0 15.4 41.8 13.9

Table 3. Properties of the k* estimators for proportional constant k in the relationship σ = kµ based on 1000 simulations
from parameter free population model (bootstrap) and from gamma distribution population model.

Method k1
* k2

* std*(k1
*) std*(k2

*) bias*(k1
*) bias*(k2

*)
Eqs. (1) and (2) 0.692 0.725

Bootstrap-simulation 0.0247 0.0217
Gamma-simulation 0.0252 0.0220 0.0074 −0.0021
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Fig. 1. The strata for the shrimp surveys in the Barents Sea 1992-1999.
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Fig. 2. The relation between empirical stratum means and standard deviations with the fitted curve

s m= / 2  from the shrimp surveys in the Barents Sea 1992-1999.
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Fig. 3. Histogram of 861 standardised biomass values, Y Yij ij/ , with fitted γ(0.2, 2)-distribution from the

shrimp surveys in the Barents Sea 1992-1999.
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Fig. 4. Simulated distribution of chi-square sum, Q, of squared “normalised” relative stratum means, based
on γ(µ/2, 2) as a population distribution with characteristic values for µ and sample sizes from one
survey in the Barents Sea, see Tab. 1 and 2.
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Fig. 5. Left: 62 subjective prediction intervals [L,U] for biomass in next trawl haul as a function of
corresponding modal predicted value, M, for cruise leader in the 1998 subjective prediction
experiment. The corresponding true biomasses are plotted as dots. Right: Histogram of standardised
variable z based on data in left part, with fitted normal standardised subjective prediction distribution,
fs0(z). See text.



18

Fig. 6. Simulations of cv(µA
*)-distributions based on different predictions of relative strata mean vector µr,

based on 10000 simulations of true strata means from cruise leader’s subjective prediction
distribution. See text.


