

NOT TO CITED WITHOUT PRIOR REFERENCE TO THE SECRETARIAT

Fisheries Organization

NAFO SCS Doc. 99/5

SCIENTIFIC COUNCIL MEETING - JUNE 1999

RUSSIAN RESEARCH REPORT FOR 1998

PART I. Researches Carried out by AtlantNIRO in NAFO Subarea 4 in 1998 **PART II.** Report of PINRO Research in the NAFO Area in 1998

PART I. Researches Carried out by AtlantNIRO in NAFO Subarea 4 in 1998

by

I. K. Sigaev and V. A. Rikhter

Atlantic Scientific Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), 5 Dm. Donskoy St., Kaliningrad, 236000, Russia

STATE OF FISHERY

In 1998 Russian fishermen also were absent at the Scotian Shelf. As regards the prospects of silver hake fishery for 2000 it will considerably depend on 1997 year-class abundance which is still unclear. In any case the results of oceanographic researches carries out in AtlantNIRO (see below) provide no basis to assume environmental conditions unfavourable to the above said year-class formation. The researches scheduled for 1999 by Canadian scientists are likely to eliminate existing uncertainty. The results of Canadian fishery carried out this year in Emerald and La Have basins where according to the data by scientists of AtlantNIRO the bulk of 2 year old biomass is concentrated, also may be useful.

SPECIAL RESEARCHES

Environmental Researches

Materials and methods

Average monthly SST in cross-points of 5-degree trapeziax in Labrador, Newfoundland and Scotian areas and indices of three water masses location cool shelf water (CSH), warm slope water (SL) and northern edge of Gulf Stream front (ST) in the Scotian area and open ocean were used as previously to assess hydrological conditions in NWA. The data for 1997-1998 were analyzed. The table grams of SST issued by hydrometcenter of Russia with average monthly SST in cross-points of 2-degree grid and "Ocean feature analysis" map issued by Canadian Forces Metoc Center of Halifax (Canada) were used as the data source. The data processing included estimation of SST deviations in 1997 and 1998 as compared to the mean value in 1997-1996 and deviations of water masses boundaries location from average ones for 1961-1995.

Analysis Results

In Labrador area the fixed points used to monitor SST are located in Labrador current and in off-shore part of the Labrador Sea (55°N, 55°W, 52°30W, 55°N, 45°W, 50°W, 45°W). In 1997 essential positive SST deviations up to 1-2.5°C

Serial No. N4054

were observed in the Labrador area, except SST in winter period in the southern area when either small negative anomaly of SST or values close to average were observed. In 1998 mostly strong positive anomalies up to 2.2°C predominated SST increase in the Labrador current system and adjacent waters of eastern Labrador Sea commenced in 1994-1995, approached maximum in 1997 and continued in 1998.

In the Grand Newfoundland Bank area the fixed points were located over the Bank itself and in the western flow of Labrador current surrounding the eastern slope of the bank ($45^{\circ}N$, $50^{\circ}W$ and $47^{\circ}30N$, $47^{\circ}30W$). After the period of low SST in 1992-1995 a sharp increase of temperature occurred in 1996. The negative anomaly of -0.5-2.6°C was sharply replaced by the positive anomaly of the same value. During 1997 again negative SST anomalies (up to $-1.5^{\circ}C$) predominated, and in 1998 the latter were replaced by positive ones approaching 2.3°C. It is evident that after 1995 being the coldest one for the period from 1992 to 1998, the period of irregular SST fluctuations had been started in the area. The reason of those variations is probably related to peculiarities of interaction of major atmospheric circulation centers in the North Atlantic Ocean, i.e. to the North Atlantic Oscillation.

In the Scotian Shelf area average monthly SST were monitored by us at 4 points, one of which was located in the eastern shelf area (45°N, 60°W), the second was near the slope (42°30N, 62°30W) and two points were in the open ocean within the slope water mass (40°N, 65°W; 40°N, 60°W). At the shelf slope, noticeable decrease of SST occurred in 1996 after predominance SST positive anomalies in 1994-1995, and surface water temperature approached the long-term average value for the period 1977-1996. In 1997 weak positive anomalies were observed in winter, weak negative ones were in spring and positive anomalies predominated generally in summer, while in autumn the temperature the temperature decrease again below the normal one (from -0.4° to -1.7° C). In the eastern shelf where silver hake spawning grounds located, no definite trends were observed during the latest years. During several years both positive and negative anomalies predominated in some seasons. For example, in winter 1994 and 1995 negative anomalies predominated while in 1996-1998 SST were close to the long-term average one. In spring 1994 SST were also close to the long-term average, while in spring 1995 noticeable decrease was observed which retained till 1997. In 1998 the process of decrease was replaced by the opposite one when SST anomalies exceeded long-term values by 0.5°-0.9°C. After 1993 decrease of temperature occurred in autumn, and in 1996 that process became sustainable one. In general SST increase was observed in the eastern part in 1998 as compared to 1997. It should be mentioned than in 1997 during silver hake spawning period July-September SST exceeded the normal values by 0.4-1.2°C which was confirmed by Canadian survey data (Drinkwater, Pettipas and Petrie, 1997). During other months SST were either close to the long-term values or by 0.3-1.1°C below. Probably SST increase in summer became one of the reasons of anomalously strong silver hake year-class, appeared in 1997. In 1998 during the same summer months SST positive deviations amounted to 1.4-2.6°C, which allowed to assume that the conditions of silver hake spawning at the main spawning grounds off Sable at Misaine Bank were much more favourable as compared to 1997. In the off-shore area adjacent to the shelf from the south, the fixed points were located directly in the slope water northwards Gulf Stream front. There the trends to the slope water SST decrease was observed during the latest 5 years (1994-1998). The year of 1997 was the coldest one. Thus, since 1994 the process of gradual SST decrease from positive deviations to the values close to long-term average or below the latter is likely to occur. As regards the trends of temperature variations in the deeper layers, we are able only to refer to the above mentioned authors' analysis (Drinkwater et al., 1997) which stated that the temperature of a cool intermediate layer below 50m gradually decreased in the period from middle 1980s to early 1990s. It was most evident in the coastal along-shore flow. The authors noted that the data for 1994 and 1995 evidenced the start of warming in that layer over the most part of the Scotian Shelf, which resulted in the values close to the normal ones during the latest 2 years. The authors noted also that anomalously warm slope water at the shelf and deep-water areas such as Emerald at the Scotian Shelf and George's in the Gulf of Maine formed due to the increase of advection from the south, was an important feature of hydrological conditions. They considered that the above said intrusion increased water temperature in the intermediate cool layer over the deep-water areas. That feature observed since the middle 1980s (Drinkwater et al., 1997) allows to state that conditions for young silver hake survival overwintering mostly in the warm near-bottom layer of deep-water shelf area (in deeps and partially at the slope) with high food content remained most favourable since 1995.

Analysis of water boundaries dynamics showed that in winter 1997 (January-March) the boundaries of cool shelf water (CSH) and slope water (SL) were shifted northwards as compared to the average long-term position, while fluctuations of Gulf Stream front were generally close to the long-term average location. Based on the above considerations it can be assumed that increase of warm water advection into the shelf during that period increased the latter volume at the slope and in the deeps and created more favourable conditions for hake overwintering, including food

supply (mostly euphasiids). In early spring, in April, the both boundaries still located more northwards than usually while in May they shifted southwards and were close to the normal location. In June stablization of all three boundaries occurred in the western part (60-65°W), while in eastern part the boundaries CSH and SL shifted closer to each other resulting in increase of "shelf-slope" hydrological front in that area.

In summer essential shift of cool water boundary to the North was observed in August, while in July and September its location was close to the norm. The positive anomaly of slope water boundary was observed in July while in August and September it corresponded to the long-term average location. The northern boundary of Gulf Stream front in summer was either close to the norm or shifted southwards. In general summer 1997 was characterized with the boundaries fluctuations around the long-term average location.

In October-November 1997 all boundaries shifted southwards. Thus it can be assumed that due to advective processes the winter period was relatively warm, the spring and summer periods were close to the long-term average conditions, and autumn was relatively cool.

The autumn shift of boundaries southwards continued until January 1998 while in February the sign of the boundaries location changed to the opposite one. In February all three boundaries located to the north of the middle line. In March that process became stronger at CSH and SL boundaries. In April the northward shift approached maximum, and in May the process decreased. In June CSH boundary already shifted southwards of the middle line and SL boundary approached it. In 1998 the spring northward shift of water masses resulted in SST increase in the Scotian Shelf are when positive anomalies approached 0.4-1.2°C as was noted above.

Conclusion

The analysis of environmental conditions leads to the following conclusions:

- 1. During 1997 and 1998 significant positive anomalies of SST up to 2.2°C predominated in the Labrador area. The trend to SST increase started in 1994-1995 became stronger in 1996 and continues at present.
- 2. In the Grand Bank area the period of SST decrease from 1992 to 1995 was followed by the unstable period with sharp interannual fluctuations.
- 3. At the Scotian Shelf slope the period of positive anomalies (1991-1995) was replaced by the period of gradual SST decrease to the norm. In the eastern shelf area no definite trend was observed during the latest years. In 1997 during silver hake spawning period SST of that shelf area exceeded to norm by 0.4-1.2°C, which may become one of the reasons of <u>anomalously</u> strong silver hake year-class appearance. In 1998 SST during the spawning period exceeded the norm by 1.4-2.6°C which may result in one more strong year-class appearance.
- 4. Essential interannual and seasonal fluctuations of SST caused by atmospheric processes and warm and cool water advection. Decrease of intermediate cool layer temperature since the mid-1980s to early 1990s, temperature increase in 1994-1995 to the norm, high temperature of near bottom layer below 150m, including that of deeps after 1995 are the features of interannual water column temperature variability in the Scotian Shelf area.
- 5. As regards the dynamics of cool shelf water (CSH) and warm slope water (SL) during 1997-1998, their boundaries shift to the north predominated in 1997-1998, which resulted in water temperature increase in the Scotian Shelf near-bottom water mass.
- 6. Oceanographic conditions have remained favourable for young silver hake survival since 1995.

BIOLOGICAL RESEARCHES

The plots of stock-recruitment relationship were drawn and analyzed with a view to assess the reference points of biomass of silver hake 4VWX, cod 2J+3KL, 3NO and 3Ps, yellowtail flounder 3LNO, redfish 3M and mackerel 3-6, and to find the most acceptable approaches to the above populations management according to the points scatter. The detailed description of researches performed is the report submitted to the June Meeting of Scientific Council.

REFERENCES

Drinkwater, K. F., R. Pettipas and L. Petrie, 1998. Physical Conditions on the Scotian Shelf and in the Gulf of Maine during 1997. Canadian Stock Assessment Secretariat. Research Document 98/50. Ottawa. Canada. 29p.

Drinkwater, K. 1997. State of the Ocean: Northwest Atlantic. DFO Science Stock Status Report GO-01. November 1997. 8p.

PART II. Report of PINRO Research in the NAFO Area in 1998

by

A.A.Vaskov, T.M.Igashov and V.M.Kiseleva

Polar Research Institute of Marine Fisheries and Oceanography (PINRO), 6 Knipovich Street, Murmansk, 183763, Russia

A. STATUS OF FISHERIES

<u>Greenland halibut</u>. In 1998, directed fishery for Greenland halibut was carried out by 2 vessels (TSM-type) and by 1 Spain-built trawler off the West Greenland from August to October. The fishery was mainly conducted at 1170-1240m depth. Average daily catch was 6,0 t.

According to provisional data, the Greenland halibut catch taken in this area made up 543 t in 1998. 84% of the national quota (650 t) was fished.

<u>Other species</u>. No directed fishery for other species was conducted. By-catch of grenadier and other species caught during the directed fishery for Greenland halibut did not exceed 2%.

B. SPECIAL RESEARCH STUDIES

No special environmental studies, including hydrographic and biological studies, were performed.

SUBAREAS 2 AND 3

A.STATUS OF FISHERIES

The catch taken by Russian trawlers in Divs.3LMN is given in Table 1.

<u>Greenland halibut</u>. Fishery for Greenland halibut was conducted in Divs.3LMN by 3 Spain-built trawlers of from May to December. Prevailing depths of fishing were 700-900m. Average daily catch was 6.2 t.

By provisional data the Greenland halibut catch taken in the divisions mentioned constituted 1890 t in 1998. 74% of the national quota (2500 t) was fished.

<u>Redfish</u>. No directed fishery for redfish was conducted by Russian vessels in 1998. By provisional data, by-catch of redfish taken during the directed fishery on halibut in Divs.3LMN constituted 12 t. The quota on redfish on the Flemish Cap Bank (18000 t) was not fished.

Cod. 4 hauls were done at 135-170m depth in Div.3M during August, December 1998. Catch of cod constituted 1.2 t.

The quota of cod on the Flemish Cap Bank (196 t) was not fished.

<u>Other species</u>. No directed fishery on other species was conducted. By-catch of grenadier, flatfish, wolffish, sharks and other species made up not more than 11%.

B. SPECIAL RESEARCH STUDIES

<u>Environmental studies</u>. Data on water temperature at trawling depth and on recordings from trawl attached sensor were collected onboard one of the vessels conducting directory fishery on Greenland halibut in Divs.3LMN from May to December 1998. At 600-1400m depth the temperature varied within 2.7°-40°C.

No special oceanographic observations were done.

<u>Biological studies</u>. Fisheries and biological data were collected by 2 Russian observers - specialists of PINRO from May to December 1998. The observers specified species composition of all catches. Catches taken from 334 hauls were examined. The ichthyological data collected are given in Table 2. Greenland halibut was the major object investigated.

Tables 3-6 give the length composition of ground species catches and age composition of catches is presented in Table 7.

<u>Greenland halibut</u>. In Divs.3LMN, Greenland halibut were registered in all catches. Fish length varied from 22 to 99cm, with the mean length being 44.6cm. Specimens at age 4-5 with 40-43cm length from 1993-1994 year-classes were preponderant in catches. Small immature fish constituted the bulk of catches. Detailed description of Greenland halibut biology is given in the paper by T.M.Igashov (NAFO SCR Doc.99/11).

No survey for Greenland halibut stock assessment was carried out.

<u>Cod.</u> Length of cod in catches taken on the Flemish Cap Bank (Div.3M) varied from 33 to 83cm, with mean length being 52.9cm. Fish 48-56cm long at age 4-5 from the 1993-1994 year-classes made up the bulk of catches.

No survey on cod stocks was carried out.

<u>Roughhead grenadier</u>. In Divs.3LMN, grenadier 19-96cm long with the mean length being 44.6cm occurred in catches. The bulk of catches consisted of specimens 39-47cm long at age 6-7.

Roundnose grenadier. In Divs.3LMN, grenadier 13-84cm long, 39.2cm mean length, occurred in catches. The bulk of catches consisted of specimens 30-36cm long.

<u>American plaice</u>. This species occurred in Divs.3LMN at the depth to 1200m. Fish length varied from 23 to 57cm, with the mean length being 38.2cm. Specimens 36-39cm long constituted the bulk of catches.

Witch flounder. Fish occurred in Divs.3LMN at the depth to 1200m. The length of fish caught varied from 21 to 61cm, mean length was 40.3cm. Specimens 38-41cm long were predominant in catches.

S.mentella. The species occurred in Divs.3LMN. Length of the fish caught varied from 17 to 49cm, mean length was 30.4cm. Specimens 25-27cm long dominated in catches.

No survey on S.mentella stock assessment was carried out.

<u>S.marinus</u> occurred in Divs.3LMN. The specimens caught were 20-48cm long and their mean length made up 29.5cm. Catches were mainly represented by specimens 27-29cm long. No survey for S.marinus was performed.

Other species. Such species as common grenadier, wolffish, hake, tusk, skate, sharks, chimaera, rough-nosed grenadier,

yellowtail flounder, spiny eels, eels, lumpsucker, orange roughy and other fish species occurred in catches.

Minor amount of data on the species mentioned was gathered.

Species	Division	Catch, t
Greenland halibut	3L	1559,2
Greenland halibut	3M	244,4
Greenland halibut	3N	86,1
Greenland halibut	3LNM	1889,7
American plaice	3LNM	23,9
Witch flounder	3LNM	9,5
Yellowtail flounder	3N	18,3
Roughhead grenadier	3LNM	92,4
Redfish	3LNM	12,3
Skate	3LNM	16,5
Wolffish	3LNM	6,6
Cod	3М	1,2
Other species	3LNM	52,8
Total	3LNM	2123,0

 Table 1.
 Provisional data on catch taken by Rassian trawlers in NAFO Divs. 3LMN, 1998.

Month	Month Division		Gree	nland ha	libut	American plaice		laice	Witch f	lounder	Red	fish	C	od	Rough	head gro	enadier	Roundnose grenadier	
			L	В	AB	L	В	AB	L	В	L	В	L	AB	L	В	AB	L	AB
1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
May	L		1740	167	-	-	-	_	_	-	281	-	-	-	85	-	-	-	-
	М		432	63	-	-	-	-	-	-	-	-	-	-	567	-	-	-	-
		LM	2172	230	-	-	-	-	-	-	281	-	-	-	652	-	-	-	-
June	L		8124	138	499	79	79	_	-	-	1440	281	-	-	744	319	-	-	-
	М		221	32	-	-	-	-	-	-	-	-	-	-	149	36	-	-	-
		LM	8345	170	499	79	-	-	-	-	1440	281	-	-	893	355	-	-	-
July	L		10536	1226	355	-	-	-	_	-	-	-	_	-	955	319	-	-	-
	М		1116	88	79	-	-	-	-	-	-	-	-	-	140	40	-	-	-
		LM	11652	1314	434	-	-	-	-	-	-	-	-	-	1095	359	-	-	-
August	L		14112	1852	106	-	-	-	176	-	-	-	-		2866	468	375	-	-
_	М		907	186	-	-	-	-	-	-	-	-	600	41	272	81	-	-	-
	Ν		2033	205	27	-	-	-	-	-	-	-	-	-	205	75	-	-	-
		LMN	17052	2243	133	-	-	-	176	-	-	-	600	41	3343	624	375	-	-
September	L		5202	657	97	-	-	-	402	-	-	-	-	-	1584	-	390	-	-
	Ν		3791	215	270	233	8	-	143	-	-	-	-	-	-	-	-	-	-
		LN	8993	872	367	233	8	-	545	-	-	-	-	-	1584	-	390	-	-
October	L		8832	1671	184	6	4	-	163	17	4	4	-	-	949	-	213	461	139
	Μ		4314	161	509	23	11	-	12	5	511	6	-	-	-	-	-	-	-
	Ν		3545	-	510	9	-	-	275	27	45	1	-	-	-	-	-	-	-
		LMN	16691	1832	1203	38	15	-	450	49	560	11	-	-	949	-	213	461	139
November	L		6757	1053	50	88	23	-	259	180	171	78	-	-	53	-	49	279	86
	Μ		5273	618	243	155	76	40	264	143	203	41	-	-	213	40	10	130	55
	Ν		616	-	64	-	-	-	4	-	-	-	-	-	-	-	-	-	-
		LMN	12646	1671	357	243	99	40	527	323	374	119	-	-	266	40	59	409	141

 Table 2.
 Biological data * collected by national observers on board the Russian trawlers MI-0172 and MI -0297.

Table 2.to be continued.

Table 2.	to be continued	1.																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
December	L	6774	954	39	485	25	169	235	169	350	89	4	3	18	-	16	71	62
	Μ	-	-	-	-	-	-	-	-	-	-	92	92	-	-	-	-	-
	LN	1 6774	954	39	-	25	169	235	169	350	89	96	95	18	-	16	71	62
Total	L	62077	7718	1330	685	131	169	1235	366	2243	452	4	3	7254	1106	1043	811	287
	Μ	12263	1148	831	178	87	40	276	148	714	47	692	133	1341	197	10	130	55
	Ν	9985	420	871	242	8	-	422	27	245	3	-	-	205	75	-	-	-
	LM	84325	9286	3032	1078	226	209	1933	541	3202	502	696	136	8800	1378	1053	941	342

* L - measurements, spec.
 B - incomplete biological analysis (without weighing), spec.
 AB - age samples, including complete biological analysis, spec..

Length,cm	May	June	July	Aigust	September	October	November	December	Total
Longuiton	Wildy	oune	oury	ingust	September	october	1 (0 / ember	December	Total
22	0	188	36	0	0	0	0	0	224
24	134	1255	144	166	0	0	21	0	1718
26	446	3575	1077	558	0	186	62	133	6037
28	1961	15493	4128	2415	164	559	474	318	25513
30	3431	35879	8292	4181	263	1603	1774		56935
32	4679	46919	13174	6837	1349	3132	3403	4932	84425
34	7665	50682	19851	9720	3421	4828	5734		112693
36	9982	72950	31482	16255	7598	9284	8848		174775
38	10027	68497	35826	18066	13289	13665	12457	23891	195716
40	7219	46919	36400	19696	18223	15324	15778		185624
42	7397	40395	37728	23303	20624	18885	16561	26277	191172
44	4590	28478	34246	21884	19934	16517	15262		159153
46	4813	26345	34462	21733	20131	17020	13076		151050
48	3119	18567	27390	16240	13881	12789	11570		113791
50	2406	14051	22113	13372	12565	10458	7652		88371
52	1961	11228	21072	10670	9901	8855	6806		76008
54	1604	8405	14862	8331	8092	6469	4661	2970	55394
56 50	1515	6398	9908	6188	5822	6245	4001	2519	42596
58	802	2509	7646	4030	3618	4250	2557	1644	27057
60	579	2634	4523	2747	2467	2908	1609		18793
62	579	2258	4164	1917	1678	2591	1526		15986
64	178	1129	2477	1404	1414	1902	1093	742	10339
66	223 134	878 753	1436 1149	724 634	987	1398 951	784 619	557 398	6987 5788
68 70	134	1192	790	287	1151 625	931	536		5788 4707
70	134 312	376	790 754	287 347	592	932 746	289		3628
72 74	312	251	503	317	724	652	309	159	3028 3227
74 76	312	376	826	211	362	690	247	424	3449
78	134	63	323	181	691	447	247	318	2404
80	223	251	574	181	296	391	351	186	2453
82	312	125	395	151	625	391	289		2455 2554
84	89	251	108	75	197	242	206		1514
86	178	63	108	75	164	168	206		1095
88	45	63	215	30	132	93	165	212	955
90	0	0	0	45	132	56	82	133	448
92	45	125	0	15	0	19	41	27	272
94	0	0	0	0	0	0	21	53	74
96	0	63	36	0	0	0	21	0	119
98	0	0	0	0		0	21		21
Total	77540	509585	378215	212986	171112	164649	139358		1833065
Fish	1740	8124	10536	14112	5202	8832	6757		62077
measured,spec.									
Mean length,cm	41,8	39,7	44,5	44,7	47,1	46,8	45,5	43,2	44,4
Weight of fish	1,4	5,2	9,5	12,7	,	9,4	6,6		55,8
measured,t	,	,		,	,-	,	,-	,-	
Catch, t	61,6	325,2	341,2	191,6	182,0	175,3	135,7	146,5	1559,2

 Table 3.
 Length composition of Greenland halibut in catches taken by Russian trawlers, spec. Div. 3L, 1998.

Length,cm	June	Jule	August	October	November	Total
	0	0	0	0	0	
22	0	0	0	0	0	0
24	0	0	0	0	0	0
26 22	0	17	27	0	26	70
28	0	17	40	121	79	257
30	76	100	121	156	528	980
32	228	382	228	1108	1425	3371
34	152	565	415	2094	3299	6525
36	1141	1229	951	4171	6809	14302
38	1065	1827	1099	5919	10742	20651
40	1065	1561	1232	9242	14753	27854
42	1902	1761	1139	10765	18976	34542
44	1826	1412	831	10194	18897	33159
46	2587	1611	1005	9449	17208	31860
48	1978	1146	911	7459	15281	26776
50	761	1113	603	5555	10108	18140
52	685	714	536	3929	8314	14177
54	1141	747	509	2267	5384	10049
56	152	648	348	1229	3378	5755
58	533	631	402	537	1715	3818
60	228	382	402	260	950	2222
62	0	498	348	104	660	1610
64	76	282	161	87	185	791
66	228	332	147	17	132	857
68	76	365	134	0	106	681
70	152	199	107	0	53	511
72	76	149	80	0	53	359
74	76	149	67	0	53	345
76	76	183	94	0	26	379
78	0	149	40	0	0	190
80	76	66	40	0	0	183
82	228	50	54	0	0	332
84	76	50	0	0	26	152
86	76	100	13	0	0	189
88	0	33	13	0	0	47
90	0	33	0	0	0	33
92	76	17	27	0	0	119
94	0	0	0	0	0	0
96	0	17	13	0	0	30
98	0	0	13	0	0	13
Total	16816	18537	12151	74660	139166	261331
Fish	221	1116	907	4314	5273	11831
measured,spec.						
Mean length,cm	48,0	48,7	47,7	44,5	45,3	45,6
Weight of fish	0,3	1,4	1,1	3,6	4,7	11,1
measured,t						
Catch, t	20,0	23,7	14,3	62,6	123,7	244,4

 Table 4.
 Length composition of Greenland halibut in catches taken by Russian trawlers, spec. Div. 3M, 1998.

Length,cm	August	September	October	November	Total
22	0	0	0	0	0
22	0	0	0	0	0
24	29 71	9	0	0	38
26 28	71	83	108	16	279
28	385	426	232	37	1080
30	656	685	681	79	2101
32	1554	1047	983	126	3709
34	2266	1287	1648	205	5407
36	3592	2158	2135	184	8069
38	3549	2528	2220	352	8650
40	3193	3251	2839	289	9572
42	3164	3519	2754	289	9727
44	2551	3325	2870	321	9067
46	2224	3538	2135	331	8228
48	1525	2593	1865	289	6272
50	998	2853	1416	131	5398
52	1026	2195	1184	142	4547
54	499	1593	758	121	2971
56	428	954	781	116	2279
58	328	908	495	95	1825
60	328	565	410	32	1334
62	114	389	364	26	893
64	71	259	333	11	674
66	114	222	186	5	527
68	128	120	201	11	460
70	14	93	124	0	231
72	43	130	162	5	340
74	14	111	116	21	262
76	29	56	85	0	169
78	43	46	101	0	190
80	14	46	85	0	146
82	14	37	77	0	129
84	14	56	54	0	124
86	0	19	8	0	26
88	0	9	0	0	9
90	0	0	15	0	15
92	0	0	0	5	5
94	0	0	0	0	0
96	0	0	0	0	Ő
98	0	0	0	0	Ő
Total	28977	35111	27427	3237	94752
Fish measured,	2033	3791	3545	616	9985
spec.					
Mean lenth, cm	42,2	45,8	45,2	44,3	44,7
Weight of fish	1,5	3,7	3,5	0,5	9,3
measured, t	,	,	,	,	,
Catch, t	21,8	34,6	26,9	2,9	86,1

 Table 5.
 Length composition of Greenland halibut in catches taken by Russian trawlers, spec. Div. 3N, 1998.

Length,cm	Cod 3M	Roughhead grendier 3LMN	Length,cm	American place 3LMN	Witch flounder 3LMN
18		22	22	77	8
21		217	24	306	0
24		1195	26	996	17
27		4085	28	1379	42
30		8474	30	2451	161
33	4	11863	32	3983	355
36	5	16991	34	4174	727
39	12	28789	36	5323	1285
42	19	41782	38	6281	2054
45	60	26964	40	4481	3009
48	181	15905	42	3791	2553
51	237	9843	44	3064	1834
54	146	6127	46	2336	1691
57	112	4302	48	1723	1107
60	45	3390	50	498	600
63	17	2825	52	268	406
66	10	1716	54	77	279
69	7	1477	56	77	101
72	5	1282	58		68
75	1	1152	60		34
78	0	869	62		8
81	1	869			
84		630			
87		239			
90		87			
93		65			
96		43			
Total	865	191204	Total	41284	16340
Fish measured, spec.	692	8800	Fish measured, spec.	1078	1933
Mean length, cm	52,9		Mean length, cm	38,2	40,3
Weight of fish measured,t	0.9	4.3	Weight of fish measured,t	0.6	1.1
Catch,t	1.2	92.4	Catch,t	23.9	9.5

Table 6.Length composition of cod, roughhead grenadier, american place and witch flounder in catches taken by
Russian trawlers, spec. Divs.3LMN, 1998.

Age	Greenland halibut 3LMN	Cod 3M	Roughhead grenadier 3LMN
2	70245		1043
3	324815	39	7038
4	614442	379	10101
5	502751	341	23374
6	303287	93	44467
7	175807	11	36516
8	92240	3	26133
9	33058		12447
10	27241		7668
11	17321		6995
12	12309		3997
13	8829		2846
14	4181		1912
15	1246		1868
16	1246		1173
17	0		782
18	130		934
19			869
20			391
21			304
22			261
23			65
24			22
Total	2189148	866	1912(

 Table 7.
 Age composition of Greenland halibut, cod and roughhead grenadier in catches taken by Russian trawlers, spec. Divs.3LMN, 1998.