

NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

NAFO SCR Doc. 00/36

Serial No. N4265

SCIENTIFIC COUNCIL MEETING - JUNE 2000

Fisheries Organization

An Investigation of Early-Season Abundance Indices for Short-finned Squid (*Illex illecebrosus*) in Subareas 3+4.

by

E. G. Dawe¹ and M. Showell²

Department of Fisheries and Oceans, Northwest Atlantic Fisheries Centre P. O. Box 5667, St. John's, Newfoundland A1C 5X1

² Department of Fisheries and Oceans, Bedford Institute of Oceanography P. O. Box 1006, Dartmouth, Nova Scotia B2Y 4A2

Abstract

A commercial catch per unit effort (CPUE) index of squid biomass was produced based on 1977-1999 squid by-catch from the directed fishery for silver hake (*Merluccius bilinearis*) during July on the Scotian Shelf (Subarea 4). Although this index was not standardized to account for variation in fleet composition, it was included with 3 other input variables in multiple regression analysis with SA 3+4 squid catch as the dependent variable. Other regressors included squid biomass and body size from July Scotian Shelf surveys as well as an environmental index. The CPUE index did not contribute significantly in explaining variation in catch, but a final model which included the July survey biomass index and mean weight, as well as spring ice extent, accounted for considerably more of the variation in annual catch than any single-variable model.

Introduction

The purpose of this paper is to attempt to develop an early-season predictive model of short-finned squid abundance level in Subareas 3+4 using several indices. Initially, commercial catch and effort data from the international fishery for silver hake, squid and argentine are analysed toward establishing a CPUE index. The resultant CPUE index is then included with 3 other indices in a multiple regression analysis toward predicting annual catch level early in the fishing season.

Materials and Methods

Annual Subarea 3+4 squid catch was assumed to reflect annual abundance level since 1977, and was used as the dependent variable in regression analysis. Catches for Subarea 3 are predominately derived from a directed small-boat jig fishery which is prosecuted in shallow near-shore areas of insular Newfoundland. Subarea 4 catches are from the international bottom trawl fishery for silver hake, squid and argentine on the Scotian Shelf. Commercial CPUE of squid in this Subarea 4 fishery is thought to vary considerably depending on the species for which effort is directed. Commercial catch and effort data, from fishing activity monitored by observers since 1977, were compared among 3 categories of directed effort (squid, silver hake, and other species), by month, toward developing an unbiased early-season CPUE index of squid abundance. Only a small portion of the annual fishing activity was monitored by observers and used in this analysis.

Two additional early-season predictors were available from July Scotian Shelf (Div. 4VWX) bottom trawl surveys. These include a biomass index (kg/tow), and a mean body weight index (Dawe and Hendrickson, 1998; Hendrickson, 1999; NAFO, 1999, Dawe et al. (this meeting).

An environmental variable was also selected as a fourth predictor for regression analysis. A variety of environmental variables are known to be related to squid abundance level (Dawe et al., in press). The index selected for the current modelling exercise was winter (Jan-Mar) sea ice area (sq. km.) because it represents a very early index.

The 4 regressors selected were:

SURVEY; July survey kg/tow CPUE; July squid by-catch CPUE from the directed SA 4 silver hake fishery (kg/h) WT; July SA 4 survey mean squid body wt (kg.) ICE; Jan-Mar Northwest Atlantic area of sea ice extent ('000 sq km.)

All correlation and regression analysis was performed using SAS basics. The approach taken in developing the model was to start with a full model including all 4 regressors and progressively eliminate unimportant variables until a final model is accepted.

Results and Discussion

Commercial CPUE Index

Commercial CPUE of squid from the Subarea 4 mixed-species fishery was variable but generally low in June of most years (Fig.1). It increased considerably in July. Data were scanty or lacking in August. It was apparent, especially in July (Fig. 1),that squid CPUE was much higher in the directed squid fishery than when effort was directed for silver hake or other species. However it also appeared that annual trends were similar among all 3 categories of directed fishing. Annual trends in squid CPUE agreed fairly well with July survey catch rates for both the squid and the silver hake directed fisheries (Fig. 2). However annual effort levels were low and variable from the directed squid fishery. Therefore squid by-catch CPUE from the directed silver hake fishery was selected for further consideration as a commercial index. Annual trends in CPUE were compared among the months April- August (Fig. 3) toward identifying the earliest month which could provide a useful index. Annual trends for the months earlier than July did not agree well with catch or July survey trends, due especially to high CPUE values for the period 1987-1999 relative to 1977-1981. The August series appeared to agree well with catch trends (Fig.4) as did a SA 4 September survey index. However the August series is incomplete (Table 1) and relatively late. Therefore, the July CPUE series from the directed silver hake fishery was selected for use in the modelling exercise.

Model Development

Simple correlation analysis (Table 2) showed that all 4 selected predictors were significantly correlated with annual catch. The July survey biomass index and mean weight were especially strongly correlated with catch (p<0.001).

Annual July fishing effort levels varied considerably among years so the effect of weighting CPUE by effort was initially investigated. The fit of regressions of CPUE on catch was only marginally improved when weighting was applied (r-square=0.33, Table 4) versus unweighted regression (r-square=0.32). Therefore weighting was not applied in multiple regression analysis.

The full model, with 4 regressors, provided a highly significant fit and accounted for 71 percent of the variability in catch (Table 5). However CPUE did not contribute significantly to the model (p=0.71) and so it was rejected. The resultant 3-regressor model accounted for 70 percent of the variability in catch (Table 6) and was accepted as the final model. Although mean wt was significant only at the 0.20 probability level it was retained in the final model because its rejection resulted in r-square declining from 0.70 to 0.67.For comparison, a simple model with only survey biomass index as a single regressor accounted for only 49 percent of the variation in catch (Table 7) and that simple model did not fit the catch series as well as did the final model (Fig. 5). Catches predicted by the final model tended to underestimate empirical values during years of high abundance and overestimate those in years of low abundance, particularly in the past 3 years.

Acknowledgements

We thank Doug Swain for updating the September survey series for the southern Gulf of St. Lawrence, Eugene Colbourne for providing the ice area index and Don Parsons for helpful suggestions.

References

- Dawe, E. G., E. L. Colbourne and K. F. Drinkwater. 2000. Environmental effects on recruitment of short-finned squid (Illex illecebrosus). ICES J. Mar. Sci.(in press).
- Dawe, E. G. and L. C. Hendrickson. MS. 1998. A review of the biology, population dynamics, and exploitation of short-finned squid in the Northwest Atlantic Ocean, in relation to assessment and management of the resource. NAFO SCR Doc. 98/59, Ser. N3051, 33 p.
- Dawe, E. G., L. C. Hendrickson and M. A. Showell. MS 2000. An Update to Commercial Catch and Survey Indices for Short-finned Squid (*Illex illecebrosus*) in the Northwest Atlantic for 1999. NAFO SCR Doc. 00/37.
- Hendrickson, L. C. MS. 1999. Fishery effects on spawner escapement in the Northwest Atlantic *Illex Illecebrosus* stock. NAFO SCR Doc. 99/66, Ser N4125, 8 p.
- NAFO 1999. Report of the Scientific Council. June 1999 meeting. NAFO Scientific Council Report 1999: 167-170.

Year	Apr	Мау	Jun	Jul	Aug
77	3	375.4		46.3	578.9
78	9.7	17.8	1037.1	310.3	73.1
79		846.6	286.1	389.7	114.6
80	31.5	1236.9	3370.2	2244.5	143.9
81	24.8	400	3111.1	2258.5	104.7
82	6.3	64.7	432	895.4	26
83	49.3	437.5	394.5	20.2	
84	138.7	237	1228.9	1393.7	207.7
85	88.5	94.2	1096;6	1603.8	402.7
86	2.2	250.7	1255.3	1132.1	472.1
87	10.2	949.7	2032.8	5159	917.8
88	97	2224.8	5912.1	1996.6	
89	126.7	5922.2	5236.6	673.7	
90	1214.1	3314.9	5886.3	2002.9	254.4
91	531.9	3460.8	8433.2	3696.7	
92	321.4	2715.5	1578.1	954.3	1297
93	812.4	1978.1	4105.1	4448.1	311.7
9 4	184.4	2079	1724.8	639.4	
95	775.2	1144.7	3449.8	1789.9	
96	450.2	1584.6	2304	1604.3	2.4
97	285	780.9	3210.3	1121.7	104.5
98	136.3	174.9	1426	574.5	132
99	538		538.8	419.8	

Table 1. Distribution of fishing effort (h) directed for silver hake over the months Apr-Aug, by year, 1977-1999

Table 2. Correlation matrix for all variables, 1977-1999.

Correlation Analysis

5	'VAR'	Variables:	CATCH	SURVEY	CPUE	WT	ICE

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
САТСН	23	22.49813	41.04724	517.45700	0.11100	162.09200
SURVEY	23	3.57652	3.20532	82.26000	0.40000	14,20000
CPUE	23	233.54348	232.40945	5372	9.90000	894.80000
WT	23	0.09196	0.03865	2.11500	0.02700	0.18700
ICE	23	2.20783	0.72520	50.78000	1.18000	3.44000

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 23

	CATCH	SURVEY	CPUE	WT	ICE
CATCH	1.00000	0.69903	0.56166	0.68998	-0.45703
	0.0	0.0002	0.0053	0.0003	0.0283
SURVEY	0.69903	1.00000	0.51807	0.54138	-0.03438
	0.0002	0.0	0.0113	0.0076	0.8762
CPUE	0.56166	0.51807	1.00000	0.60144	-0.28639
	0.0053	0.0113	0.0	0.0024	0.1852
WT	0.68998	0.54138	0.60144	1.00000	-0.46727
	0.0003	0.0076	0.0024	0.0	0.0246
ICE	-0.45703	-0.03438	-0.28639	-0.46727	1.00000
	0.0283	0.8762	0.1852	0.0246	0.0

Table 3. Glm output, model catch=cpue, unweighted.

Dependent	Variable: CATCH				
Source	DF	Sum of Squares	.Mean Square	F Value Pr	> F
Model	1	11693.390937	11693.390937	9.68 0.0	0053
Error	21	25373.871244	1208.279583		
Corrected	Total 22	37067.262181			
	R-Square	C.V.	Root MSE	CATCH	Vean
	0.315464	154.5031	34.760316	22.49	8130
Source	DF	Type I SS	Mean Square	F Value Pr	> F
CPUE	1	11693.390937	11693.390937	9.68 0.0	0053
Source	DF	Type III SS	Mean Square	F Value Pr	> F
CPUE	1	11693.390937	11693.390937	9.68 0.0	053
		T fa		Obd France of	
Parameter		Estimate Param	neter=0	Estimate	
	66 0.09	90329887 91985030	-0.06 0.9493 3.11 0.0053	10.39196704 0.03188736	
				0.00.00100	

Table 4. Glm output, model catch=cpue, weighted by effort.

Dependent Variable Weight:	e: CATCH EFFJ				
		Sum	of Mean		
Source	DF	Squar	es Square	F Value	Pr > F
Model	1	7193548.34	27 7193548.3427	10.12	0.0045
Error	21	14926408.34	22 710781.3496		
Corrected Total	22	22119956.68	49		
	R-Square	С.	V. Root MSE		CATCH Mean
	0.325206	6817.4	49 843.07850		12.366481
Source	DF	Type I :	SS Mean Square	F Value	Pr > F
CPUE	1	7193548.34	27 7193548.3427	10.12	0.0045
Source	DF	Type III S	SS Mean Square	F Value	Pr > F
CPUE	, 1	7193548.34	27 7193548.3427	10.12	0.0045
Parameter		T Estimate Pa	for HO: Pr > 1 rameter=0	[Std Er Esti	ror of mate

			,	
INTERCEPT	-1.029116075	-0.17	0.8687	6.15003003
CPUE	0.078809174	3.18	0.0045	0.02477269

.

General Linear Models Procedure

Dependent Variab	Le: CATCH					
-		Sum	of	Mean		
Source	DF	Squa	res	Square	F Value	₽r > F
Model	4	26161.423	36 7 654	40.355967	10.79	0.0001
Error	18	10905.838	314 60	05.879906		
Corrected Total	22	37067.262	181			
	R-Square	C.	۷.	Root MSE	C	CATCH Mean
	0.705782	109.40)74 2	24.614628		22.498130
Source	DF	Туре І	SS Mea	n Square	F Value	Pr > F
SURVEY	1	18112.8524	30 1811	2.852430	29.90	0.0001
CPUE	1	2016.8116	03 201	6.811603	3.33	0.0847
WT	1	3285.8324	77 328	5.832477	5.42	0.0317
ICE	1	2745.9273	58 274	5.927358	4.53	0.0473
Source	DF	Type III	SS Mea	n Square	F Value	Pr > F
SURVEY	1	6421.23436	45 6421	.2343645	10.60	0.0044
CPUE	1	86.03635	58 86	.0363558	0.14	0.7107
WT	1	702.81385	06 702	.8138506	1.16	0.2957
ICE	1	2745.92735	76 2745	.9273576	4.53	0.0473
		т	for HO:	Pr > ITI	Std Frr	or of
Parameter	Es	timate Pa	rameter=0		Estim	ate
	15 0	902645	0 E0	0 0000	00.44	10077
	10.20	577900	0.52	0.0044	29.44	100//
OUNVET	0.9	111323	3.20	0.0044	2.13	12323

0.38

1.08

-2.13

0.7107

0.2957

0.0473

0.0296497

8.6069407

203.6488944

. . .

0.0111730

219.3355044

-18.3231467

CPUE

WT

ICE

8

Table 6. Glm output, final model catch=survey wt ice.

۰.

Dependent	Variable: CATCH					
-		S	Sum of	Mean		
Source	DF	Sq	luares	Square	F Value	Pr > F
Model	3	26075.3	87511 86	91.795837	15.02	0.0001
Error	19	10991.8	574669 5	78.519719		
Corrected	Total 22	37067.2	62181			
	R-Square		c.v.	Root MSE	с	ATCH Mean
	0.703461	106	.9086	24.052437		22.498130
Source	DF	Туре	ISS Me	an Square	F Value	Pr > F
SURVEY	1	18112.8	52430 181	12.852430	31.31	0.0001
WT	1	5089.3	54218 50	89.354218	8.80	0.0079
ICE	1	2873.1	80863 28	73.180863	4.97	0.0381
Source	DF	Туре І	IISS Me	an Square	F Value	Pr > F
SURVEY	1	7569.07	67524 756	9.0767524	13.08	0.0018
WT	1	1004.84	84901 100 [,]	4.8484901	1.74	0.2032
ICE	1	2873.18	08635 2873	3.1808635	4.97	0.0381
			T for HO:	Pr > T	Std Err	or of
Parameter		Estimate	Parameter=0		Estima	ate
INTERCEPT	15	.2976550	0.53	0.6011	28.76	36535
SURVEY	7	.2010527	3.62	0.0018	1.990	08274
WT	245	.9664120	1.32	0.2032	186.63 [.]	13499
ICE	-18	.6484171	-2.23	0.0381	8.367	79596

Table 7. Glm output, model catch=survey.

Dependent Variab	Le: CATCH				
Source	DF	Sum of	Mean)n > E
	Di	oqual es	Squar e	F VALUE F	1. - -
Model	1	18112_852430	18112.852430	20.07 0	.0002
Error	21	18954.409751	902.590941		
Corrected Total	22	37067.262181			
	R-Square	C.V.	Root MSE	CATCH	Mean
	0.488648	133.5362	30.043151	22.4	98130
Source	DF	Type I SS	Mean Square	F Value P	r > F
SURVEY	1	18112.852430	18112.852430	20.07 0	.0002
Source	DF	Type III SS	Mean Square	F Value P	r > F
SURVEY	1	18112.852430	18112.852430	20.07 0	.0002
				.	_
Parameter	Fst	imate Parama	rHU: Pr > T	Std Error o Fstimate	r
	LUC			CO CIMA (C	
INTERCEPT	-9.5182	25733	-1.00 0.3280	9.5038274	4
SURVEY	8.9518	13662	4.48 0.0002	2 1.9983110	7

Fig. 1. Comparison of SA 4 commercial CPUE of short-finned squid for each of 3 categories of directed fishing effort by year for the months June, July, and August.

Fig. 2. Comparison of SA 4 July survey catch rate of squid with commercial CPUE when effort is directed for squid (top) versus silver hake (below).

Fig.3. Annual trends in squid CPUE from the SA 4 directed fishery for silver hake for the months April-August, 1977-1999.

Fig. 4. Annual trends in SA 4 August CPUE from the directed silver hake fishery and Sept. Div. 4T survey abundance index (top) and in annual SA 3+4 catch and July SA 4 suurvey mean squid body weight (below).

Fig. 5. Comparison of observed SA 3+4 Catch with that predicted by the July survey catch rate alone (top) and with that predicted by the final model that includes July survey catch rate, winter ice extent, and mean July survey body weight as predictors (below).