

NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N4268

NAFO SCR Doc. 00/39

SCIENTIFIC COUNCIL MEETING – JUNE 2000

Assessment of Roughhead Grenadier, Macrourus berglax, in NAFO Subareas 2 and 3

by

H. Murua¹, S. Junquera² and K. Patterson³

¹AZTI – Technological Institute for Food and Fish ² IEO – Instituto Español de Oceanografía ³ DG FISH, European Commission

ABSTRACT

Roughhead grenadier is becoming an important commercial fish in NAFO Regulatory Area and reliable information is needed for its assessment. The fishery for *M. berglax* is unregulated as it is mainly taken as by-catch in Greenland halibut fishery. Catches of roughhead grenadier increased sharply from 1989 (333 tones) to 1999 (7 200 tones). At the moment there is scarce information about the fishing pressure.

A yield per recruit analysis has been performed for males and females separately, and the estimated $F_{0.1}$ is 0.129 and F_{max} is 0.261. Both values are in the same level as last year.

For exploratory purposes, available information was assembled in the framework of an age-structured production model. This can be considered, very approximately, as a combination of a classic catch-curve analysis and a biomass-dynamic surplus production model. The model indicates a moderate decline in exploitable biomass and much sharper decline in spawning biomass.

COMMERCIAL CATCHES

It has been recognised that the recent catches of grenadiers by EU-Portugal and EU-Spain in Subarea 3, previously reported to NAFO as roundnose grenadiers, correspond to roughhead grenadier (Alpoim *et al.*, 1994; Power and Parsons 1998; Junquera 1998). The reason for this misclassification could be mainly because roundnose grenadier is the only name that appears in the statistical data reporting forms. The misreporting has not yet been resolved in the official statistics before 1996, but the species are reported correctly since 1997. Beginning in 1990, more roughhead grenadier has been caught than roundnose grenadier (Atkinson 1995). Roughhead grenadier is taken as by-catch in the Greenland halibut fishery in the Regulatory Area mainly in Divisions 3LMN.

It is uncertain the level of roughhead grenadier catches in Subareas 2 and 3 prior to the start of the deep-water Greenland halibut fishery in the Regulatory area, in 1988. Parsons (1975) indicate that in Northwest Atlantic only the roundnose grenadier has been subjected to exploitation since about 1967, while the roughhead grenadier was a much more disperse resource, occurring only in limited numbers in the commercial grenadier catches off Northeast Newfoundland and Labrador. However it can be noted that those results refer to depths above 730 m, a much shallower depth than where the fishery is being conducted at present (up to 1700, mostly between 900 and 1200 m). Savvatimsky (1983) reported that roughhead grenadier amounted to 66 % by number and 49 % by weight of the total grenadier catch taken by long-line in Newfoundland and Flemish Cap area in 1982 (depths 310 to 1000 m).

The revised catch history after 1987 is presented in Table 1 and Figure 1. Catches increased gradually until 1999 (7 160 tons). As in previous years, in 1999 the largest proportion of catches by country corresponds to Spain and Portugal (Table 2).

RESEARCH SURVEY DATA

- Canadian fall survey

Stratified random bottom trawl surveys have been conducted in Div. 2GHJ and 3KL in fall since 1978, usually in October-November. Since 1990 the survey also covered Div. 3NO. Until 1995 an Engel trawl was used, changed since then to a Campelen 1800. Surveys depth is up to 1500m in Div. 2GHJ and 3K and to 730 m in Div. 3LNO, extended to 1463 m after 1995. A description of those surveys is in McCallum and Walsh (1996) and Power and Parsons (1998). In 1999 a total of 11 hauls have been made in Div. 3M at depths between 900 – 1460 m.

The roughhead biomass indexes from this series of surveys are presented in Table 3 and Fig. 2. The aggregated biomass estimates in 1978 was 24048 t., increased to 26300 t. in 1984, and then decreased slowly to a minimum value of 1978 t. in 1994. After, increased again to 32954 t. in 1996, 32313 t. in 1997, 41148 t. in 1998 and in 1999 was 31328 t. However the estimates from 1995 onwards are not directly comparable with the previous time series because of the change in the survey gear. According to the biomass estimates from this series of surveys (Table 3), the main part of the stock used to be distributed mainly in Div. 3K, followed by Divisions 2J and 3L. Since 1984 the proportion of the biomass in 3L is increasing, as it does also in Div. 3N since 1993. In 1999, 50 % of the total roughhead biomass surveyed was found in Div. 3L. Divs. 3K and 3L combined account for 67 % of this total. It can be noted that, as in previous years, the whole depth range of the species is not covered because the survey depths in Div. 3NO only goes to 730 m. Hence the biomass estimates for those Divisions would underestimate the stock size. Because, as has been observed in recent years (Junquera et al. 1999), the largest biomass indexes were obtained at depths between 1000 - 1200 m. in all areas.

• Canadian spring survey

Stratified random bottom trawl surveys have been conducted in Div. 3L and 3N in spring since 1978. A description of those surveys is found in McCallum and Walsh (1996). Until 1996 an Engel trawl was used, changed to a Campelen 1800 since then. The depth range of the surveys is up to 914 metres.

The roughhead biomass obtained in this series of surveys are presented in Table 4 and Figure 2. The biomass estimate slightly decreased to 3474 tons comparing with the highest level of 4919 in 1998. However, a general increasing trend in biomass is observed from 1995 onwards. But again in this case a direct comparison of the biomass levels through the whole time series is not possible due to the change in the survey gear in 1995. Biomass is largely concentrated in Div. 3L. Biomass estimates from the spring survey series are considerably lower than the ones obtained in the fall series, as the first surveys cover only the southern divisions and the shallower depths, where according to the other results this species is less abundant.

• Canadian deepwater survey

Canada conducted deepwater bottom trawl surveys (750 - 1500 m.) in 1991, 1994 and in 1995 in Divisions 3 KLMN. The 1991 survey was carried out in August, the 1994 in February and the 1995 in spring. The results of those surveys were reported by Atkinson et al. (1994) and Bowering et al. (1995), and are presented in Table 5 and Figure 2. It is observed an increasing trend from 16215 t. in 1991 to 46668 in 1995. Most part of the biomass was taken in Div. 3L and 3M, which confirms that the stock in those Divisions are distributed beyond the depths covered by the spring surveys in those Divisions. The increased estimates for Div. 3L and 3M in 1994 were probably due, at least in part, to the increased survey area (Atkinson *et al.*, 1994). The results suggest somewhat higher biomass in southern 3L and 3N.

- Spanish spring survey.

Since 1995, a stratified bottom trawl survey is conducted in April – May in Div. 3NO Regulatory Area (Paz *et al.* 1995, 1996 and 1997; Durán *et al.* 1998). The depth range of this survey was progressively increased every year, as indicated in Table 6, to a maximum depth of 1463 in 1998 and 1999. A parallel increase in the biomass estimates was observed in the survey series (Table 6 and Fig. 2), very pronounced in 1998 where 50843 t. have been taken, though it decreased to 25589 t. in 1999. Biomass estimates largely concentrates at depths beyond 500 m. in every year.

• EU (Spain and Portugal) summer survey

EU- Spain and Portugal conduct a stratified bottom trawl survey in Div. 3M since 1988, up to depths of 730. The survey procedure is described in Vázquez (2000). The roughhead grenadier biomass indexes from this survey series, updated from Murua (2000), are presented in Table 7 and Fig. 2. A peak biomass of 3595 was observed in 1993, apart of this, the biomass estimates from this survey are rather stable about a mean of 1700 tons. Roughhead significant biomass only is found at depths beyond 500 m every year.

BIOLOGICAL DATA

Roughhead length frequencies from the Spanish, Portuguese and Russian trawl catches in Div. 3LMNO are available from Junquera *et al.* (2000), Vargas *et al.* (2000) and Sigaev *et al.* (2000) respectively. The mean lengths (preanal fin lengths) from the commercial catches (Fig. 3) are stable from 1995 to 1999. In 1999 the proportion of both sexes in the commercial fishery was similar, though the female proportion was slightly higher in Div. 3M in the Spanish catches. Females attain larger sizes than do males, and from 24 cm (AFL) all the individuals are females (Fig. 4).

Catch at age data of the Spanish, Portuguese and Russian commercial catches are presented in Table 8, based in the Spanish age-length key used in Junquera *et al.* (2000), and in data from Vargas *et al.* (2000) and Sigaev *et al.* (2000). Most of the Spanish catches are from ages between 7 and 9, with a mode at age 8, the same as in the Russian catches, while the modal age in the Portuguese ones are age 6.

The total catch at age in 1999 (Table 8) has been used to obtain a synthetic catch curve (fig 5) and according to it, a total mortality of 0.41 was estimated. In previous studies Murua et al. (1999) and Murua (2000) suggested a difference in M between sexes. The proportion of sexes at length shown in Fig. 4 could also support this view, as males disappear from 20-24 AFL onwards, and there is no indication of an increase in F on males at previous lengths. In order to analyse this, an estimate of Z by sexes have been performed using the catch at age by sexes of the pair-trawl fleet (Fig. 6). The results indicate Z values of 0.5 and 0.9 for females and males respectively, both values higher than the ones obtained by Murua *et al.* (1999); although this was estimated based on the Flemish Cap survey which only covers the shallowest distribution of roughhead grenadier.

ASSESSMENT

The Canadian fall survey series is the best input for the assessment of this stock, because it provides a synoptic view of the species distribution over a wide geographic and depth range, in spite the objections that has been pointed to this series, regarding the changing depth coverage and the change of the survey gear (Anon. 1998). In 1999 most of the biomass concentrate in Div. 3L and 3K, at depths between 1000-1200 m.

According to all the survey series analysed, the roughhead total biomass indexes in the fall Canadian survey, Canadian spring survey and the summer EU survey were stable in 1999, while it decreased almost 50 % in the 3 NO spring Spanish survey. The catch / biomass (C/B) index obtained with the Canadian fall survey (Fig. 7) is at the same level as in 1998 (C/B₁₉₉₉ = 0.27). The trend observed in the C/B index is similar to the observed in the Greenland halibut fishery (Cárdenas et al. 1999), due to close association of this two species.

The Z estimate from the 1999 pair-trawl catches is 0.5 for females and 0.9 for males. A yield per recruit has been performed using the input data presented in Table 7. The partial recruitment vector comes from Cárdenas *et al.* (1995), the maturity curve at age from Murua and Motos (1997) and the mean weight at age from the 1999 age-length key. The input value of M has been set for males and females separately, and it has been estimated as the difference between Z by sex and the C/B index. The results of the yield per recruit appears in Figure 8. The estimated $F_{0.1}$ is 0.129 and F_{max} is 0.261. The $F_{0.1}$ value is in the same level than last year ($F_{0.1} = 0.13$).

No changes in the mean length (Figure 3), that could suggest an excessive fishing pressure, are observed on the catch since 1995. The available time series of catches at age is too short to analyse trends in the SSB, however it can be noted that in 1999 only about 18 % of the catch was above the female age at maturity (15 years). We have scarce information at the moment to assess an appropriate exploitation level.

TRIAL APPLICATION OF AGE-STRUCTURED PRODUCTION MODEL

For exploratory purposes, available information was assembled in the framework of an age-structured production model. This can be considered, very approximately, as a combination of a classic catch-curve analysis and a biomass-dynamic surplus production model. The data used in the model are:

- Commercial catches at age in 1997 to 1999, C_{a,y}.
- Commercial catches in weight from 1987 to 1999, A_v.
- Estimates of abundance U_{s,y} in EU surveys on 3M and Canadian Surveys (Data in 1995 and later are treated as a separate survey on account of a gear change).
- Estimates of partial recruitment S_a, maturity O_a and weights at age W_a from Table 9.

The following modelling assumptions are made:

- Catches are known with much higher precision than that of other sources of information
- Survey estimates of biomass exhibit a simple proportionality to exploitable biomass in the stock, ie U_{s,y}=q_sB_y.
- The variances of the two surveys are assumed to be equal.
- Recruitment R_y is modelled as a Beverton-Holt function, parameterised as $R_y = a.SSB_{y-1}/b+SSB_{y-1}$
- Fish are assumed fully recruited at ages 10 and above.

The structural model represents recruitment processes with the Beverton-Holt model and represents mortality and fishing processes with the conventional Baranov equations. No attempt was made to model the male and female populations separately.

The parameters estimated are:

- Fishing mortality by year, F_y, referenced to fully-recruited ages.
- Parameters a and b of the stock-recruit relationship
- Catchabilities in the surveys, q_s
- Variance of the surveys, σ_s^2
- Variance of the catch-at-age observations, σ_c^2
- Natural Mortality, M.

The model is fitted by a nonlinear minimisation of :

$$\sum_{a=10}^{a=18} \sum_{y=1997}^{y=1999} \frac{1}{\boldsymbol{s}_{c}^{2}} * \ln\left(\hat{C}_{a,y}/C_{a,y}\right)^{2} + \sum_{1995}^{1999} \frac{1}{\boldsymbol{s}_{s}^{2}} \ln\left(\hat{U}_{1,y}/U_{1,y}\right)^{2} + \sum_{1987}^{1999} \frac{1}{\boldsymbol{s}_{s}^{2}} \ln\left(\hat{U}_{2,y}/U_{2,y}\right)^{2} + \sum_{1989}^{1999} \frac{1}{\boldsymbol{s}_{s}^{2}} \ln\left(\hat{U}_{3,y}/U_{3,y}\right)^{2} + \sum_{1987}^{1999} \frac{1}{\boldsymbol{s}_{s}^{2}} \ln\left(\hat{U}_{3,y}/U_{3,y}\right)^{2} + \sum_{1987$$

Where \mathbf{s}_c^2 and \mathbf{s}_s^2 are calculated in successive iterations but \mathbf{s}_A^2 is arbitrarily set = 0.02. Here U_1 represents Canada Fall survey (Campelen gear), U_2 represents Canadian Fall survey, and U_3 represents EU Flemish Cap survey data. Expected values are calculated as

$$U_{s,y} = q_s \sum_{a} S_a N_{a,y} W_a$$

and

$$A_{y} = \sum_{a} C_{a,y} W_{a,y}$$

The variances were estimated iteratively. An arbitrary inverse variance weight of 50 constrains the model estimates of catches to the reported catches.

Results are shown in Figure 9 and parameter estimates are given in Table 10. The corresponding estimate of natural mortality was 0.28. The model indicates a moderate decline in exploitable biomass, to almost half its value in the late 1980s. However, spawning biomass is estimated as having undergone a much sharper decline, to about one-

quarter of its value in the late 1980s. This difference in trend is due to the very late age of first spawning for this species.

REFERENCES

- ALPOIM, R., A. M. AVILA DE MELO, M. L. GODINHO and E. SANTOS (1994).- Portuguese Research Report for 1993. *NAFO SCS Doc.* 94/13.
- Anon. (1998).- NAFO Scientific Council Report 1998.
- ATKINSON, D. B., D. POWER and J. MORGAN (1994).- Roundnose grenadier (*Coryphaenoides rupestris*) and Roughhead grenadier (*Macrourus berglax*) in NAFO Subareas 2+3. *NAFO SCR Doc*. 94/48.
- ATKINSON, D. B. (1995).- An update on roundnose grenadier (*Coryphaenoides rupestris*) in NAFO Subareas 2+3 with information on roughhead grenadier (*Macrourus berglax*). *NAFO SCR Doc*. 95/**61**.
- BOWERING, W. R., D. POWER and M. J. MORGAN (1995).- Distribution and abundance of five major groundfish species at the continental slope of Divisions 3KLMN based upon Canadian deepwater surveys in 1991, 1994 and 1995. *NAFO SCR Doc.* 95/**51**.
- DE CÁRDENAS, E., A. AVILA DE MELO, S. IGLESIAS and F. SABORIDO (1995).- Selectivity of 130 mm mesh size in deep sea bottom trawl fishery in NAFO Regulatory Area. *NAFO SCR Doc*. 95/47.
- DE CÁRDENAS, E., L. MOTOS and S. JUNQUERA (1999).- A simple method to project catches in the absence of VPA. *NAFO SCR Doc*. 99/2.
- DURÁN, P.; X. PAZ and E. DE CÁRDENAS (1998).- Results from the 98 Spanish bottom trawl survey in the NAFO Regulatory area for 3NO. *NAFO SCR Doc.* 98/48.
- JUNQUERA, S. (1998).- A proposal to rename the STACFIS section dealing with grenadiers. *NAFO SCR Doc*. 98/28.
- JUNQUERA, S., A. VÁZQUEZ, H. MURUA, E. ROMÁN AND J. L. DEL RÍO (2000).- Spanish Research Report for 1999. *NAFO SCS Doc*. 00/20.
- MCCALLUM, B. R. AND S. J. WALSH (1996).- Groundfish survey trawls used at the Northwest Atlantic Fisheries Centre, 1971-present. *NAFO SCR Doc*. 96/**50**.
- MURUA, H. AND L. MOTOS (1997).- Reproductive biology of roughhead grenadier, Macrourus berglax in NAFO Divisions 3MNL. NAFO SCR Doc. 97/20.
- MURUA, H., A. SARASUA and E. RODRIGUEZ MARÍN (1999).- A review on the roughhead grenadier (*Macrourus berglax*) population structure on Flemish Cap (NAFO Div. 3M) 1991-1998. *NAFO SCR Doc*. 99/18.
- MURUA, H. (2000).- A review on roughhead grenadier (*Macrourus berglax*) biology and population structure on Flemish Cap (NAFO Div. 3M) 1991-1999. *NAFO SCR Doc*. 00/**30**. 19pp.
- PARSONS, L. S. (1975).- Distribution and relative abundance of roundnose, roughhead and common grenadiers in the Northwest Atlantic. *ICNAF Res. Doc.* 75/26.
- PAZ, X.; J. MARTINEZ and E. DE CÁRDENAS (1995).- Preliminary results from the 95 Spanish bottom trawl survey in the NAFO Regulatory area for 3NO. *NAFO SCR Doc*. 95/55.
- PAZ, X. ; P. DURÁN AND E. DE CÁRDENAS (1996).- Preliminary results from the 96 Spanish bottom trawl survey in the NAFO Regulatory area for 3NO. *NAFO SCR Doc*. 96/**49**.
- PAZ, X.; P. DURÁN and E. DE CÁRDENAS (1997).- Preliminary results from the 97 Spanish bottom trawl survey in the NAFO Regulatory area for 3NO. *NAFO SCR Doc*. 97/25.

- POWER, D., and D. MADDOCK PARSONS (1998).- An assessment of roundnose grenadier (Coryphaenoides rupestris) in NAFO Subareas 2+3 and catch information on Roughhead grenadier (Macrourus berglax). NAFO SCR Doc. 98/57.
- SAVVATIMSKY, P. I. (1983).- Distribution, biological characteristics and percentage of roughhead grenadier in the catches from the Grand Newfoundland Area in May-July 1982. *NAFO SCR Doc.* 83/45.
- SIGAEV, I. K., V. A. RIKHTER AND P. S. GAsiukov (2000). Russian Research Report for 1999, Part I. NAFO SCS Doc. 00/9.
- VARGAS, J.; R. ALPOIM, E. SANTOS and A. M. AVILA DE MELO (2000).- Portuguese Research Report for 1996. *NAFO SCS Doc*. 00/16.
- VASKOV, A. A., T. M. IGASHOV AND V. M. KISELEVA (1999).- Russian Research Report for 1998. *NAFO* SCS Doc. 99/5 PART II.
- VÁZQUEZ, A. (2000).- Results from the bottom trawl survey of Flemish Cap in July 1999. NAFO SCR Doc. 00/9.

 Table 1.- Revised grenadier catches, updated from Power and Parsons (1998).

			S	FATLANT	RHG Nomiı	nal catches ((t) by Divisio	on		
Year	2G	2H	2J	3K	3L	3M	3N	30	Other	TOTAL
1987					912	7	82			1001
1988		1			907		52			960
1989		2		3	289	28	11			333
1990		1	32		2211	688	312			3244
1991 ^a			12	113	2543	497	1093	10		4268
1992			23	274	2582	2961	760	125		6725
1993			10	193	996	1428	1680	61	27	4395
1994 ^b	1		2	35	585	2301	1062	28	9	4023
1995 ^b	22	6	16	16	1199	1625	1074	20	4	3982
1996 ^b					1945	888	1300	2		4135
1997 ^b	36	5	63	100	1774	922	1797	43		4740
1998 ^b					2652	2180	2289	18	92 ^c	7139
1999 ^b				61	2037	3127	1705	180	49 ^c	7160

^a Catch could not be well estimated; based on revised data is estimated to be 8000 to 14000 t.mixed roundnose and rouhhead grenadiers. (Power and Parson 1988).

^b Provisional.

^c Russian catches reported for Divisions 3LMNO together. From Vaskov et al. (2000).

Table 2 -Roughhead grenadier nominal catches (t.) in Subarea 2+3, updated from Power and Parsons (1998), Junquera et al.(1999), Vargas et al. (2000) and Vaskov et al. (2000).

	1987	1988	1989	1990	1991	1992	1993	1994 ^a	1995 ^a	1996 ^a	1997 ^a	1998 ^a	1999 ^a
Canada				31	215	595	345	79	84		240		108
Former GDR		49	43										
EU-ESP						4125 ^b	2054^{b}	1720 ^b	2521 ^b	3090 ^b	3738	6050	5704
EU-PRT	1001 ^b	914 ^b	290 ^b	3211 ^b	4486 ^b	2000 ^b	1969 ^b	2223 ^b	1402 ^b	784 ^b	762	1089	1299
Norway				2									
Russia												92 ^c	49
TOTAL	1001	963	333	3244	4701	6720	4368	4022	4007	4131	4740	7231	7160

^a Provisional.

^b First reported as roundnose grenadier ^c Reported as roundnose grenadier in STATLANT 21A.

				Perc	centages o	of biomas	s (%)		
Year	Biomass (t.)	2G	2H	2J	3K	3L	3M	3N	30
1978	24048			31	46	24			
1979	15962			37	63				
1980	17229			49	51				
1981	19451			29	43	28			
1982	22762			33	36	31			
1983	16597			38	49	13			
1984	26301			22	28	50			
1985	15661			14	31	55			
1986	6733			61	39				
1987	20763			14	15	71			
1988	9734			28	24	48			
1989	6433			34	14	52			
1990	12455			24	30	46			
1991	8900			16	36	47		2	
1992	2848			44	14	41			
1993	2779			20	30	31		16	3
1994	1915			23	23	37		14	3
1995	6933			8	44	25		21	2
1996	32954		2	8	14	53	21	1	
1997	32313	6	3	9	17	39	21	5	
1998	41148	1	2	9	15	39	13	20	1
1999	31328	2	3	11	17	50	12	6	1

Table 3. Roughhead biomass indexes from the fall survey series and percentages of the biomass by Division.

		Percentages	of biomass (%)
Year	Biomass (t.)	3L	3N
1978	2754	38	62
1979	2105	93	7
1980	4070	89	11
1981	3115	91	9
1982	608	84	16
1983	ns	ns	ns
1984	50	ns	100
1985	2432	97	3
1986	1096	98	2
1987	2080	88	12
1988	805	98	2
1989	1439	99	1
1990	475	98	2
1991	264	95	5
1992	1129	98	2
1993	539	84	16
1994	952	93	7
1995	347	93	7
1996	2854	97	3
1997	3125	88	12
1998	4919	86	14
1999	3474	82	18

Table 4.Roughhead biomass indexes (tons) from the Canadian spring survey series and percentages of biomass in the
Divisions surveyed. ns = not surveyed.

Table 5.Roughhead grenadier biomass index (tons) from the deepwater Canadian surveys and percentages of biomass by
Divisions (from Bowering et al., 1995)

		Percentage of biomass (%)						
Year	Biomass (t.)	3K	3L	3M	3N			
1991	16215	26	39	34				
1994	26588	16	34	39	11			
1995	46668	15	48	25	13			

			Year		
Depth (m)	1995	1996	1997	1998	1999
55 - 92	0	0	0	0	0
93 - 184	0	12	0	0	0
185 - 274	0	0	0	0	0
275 - 366	12	0	35	11	0
367 - 549	0	45	42	64	0
550 - 731	363	213	73	701	99
732 - 914		630	1504	1924	843
915 - 1097		3943	5079	8399	3148
1098 - 1280			12882	23243	7093
1281 - 1463				16502	14405
Total	374	4842	19615	50843	25589

 Table 6.
 Roughhead grenadier biomass indexes (t.) from the Spanish spring surveys in Div. 3NO.

Table 7.Rouhhead grenadier biomass indexes (t.), and biomass per depth intervals from the EU summer survey in Div. 3M.

	Bi	.)		
Depth (m):	266 - 380	381 - 570	571 - 760	Total
1989	17	364	642	1024
1990		241	755	996
1991	7	327	1254	1587
1992	33	417	1426	1878
1993	25	895	2675	3595
1994		288	2058	2350
1995	35	533	1286	1855
1996	228	482	910	1619
1997	26	359	1039	1424
1998	48	510	1454	2012
1999	86	583	818	1487

AGE	SPAIN	PORTUGAL	RUSSIA	TOTAL
2	990	12689	135	13814
3	111774	398753	997	511524
4	239344	341654	2230	583228
5	570321	664409	8465	1243195
6	843300	1001474	12723	1857497
7	1129135	630613	12706	1772454
8	1695718	545569	13010	2254298
9	1154714	236255	5610	1396578
10	734701	94629	3227	832557
11	758477	107185	4545	870207
12	427749	57542	3041	488333
13	324031	36263	2213	362508
14	343573	29478	1673	374723
15	162762	16968	1183	180913
16	67182	6959	912	75053
17	42197	4985	456	47639
18	61356	2993	625	64974
19	42210	1255	473	43938
20	50872	467	389	51727
21	26420	178	237	26835
22	9439	261	169	9869
23	11010	391	68	11469
24	1105		17	1122
25	2970			2970
26	759			759
Total	8812111	4190968	75105	13078184
Catch (t.)	5704,1	1299	49	7052,1

 Table 8.
 Spain, Portugal and Russia roughhead grenadier catch at age in Div. 3LMN in 1999.

 Table 9. Input parameters of the roughhead grenadier yield per recruit analysis.

AGES	Partial R.	Mean W (Kg)	M males	M females	Mat. Og.
2	0.22	0.047	0.6	0.2	0.000
3	0.30	0.099	0.6	0.2	0.000
4	0.36	0.138	0.6	0.2	0.000
5	0.41	0.172	0.6	0.2	0.000
6	0.58	0.228	0.6	0.2	0.000
7	0.69	0.314	0.6	0.2	0.000
8	0.81	0.387	0.6	0.2	0.001
9	0.87	0.473	0.6	0.2	0.002
10	0.93	0.592	0.6	0.2	0.004
11	0.96	0.678	0.6	0.2	0.009
12	0.98	0.814	0.6	0.2	0.025
13	0.99	1.006	0.6	0.2	0.048
14	1.00	1.193	0.6	0.2	0.106
15	1.00	1.557	0.6	0.2	0.602
16	1.00	1.749	0.6	0.2	0.948
17	1.00	1.907	0.6	0.2	0.981
18+	1.00	2.783	0.6	0.2	0.999

Table 10. Parameter Estimates and Variance Estimates for Age-Structured Production Model

м

Beverton Holt Stock-Recruit Relation

a b		75290.64 1			0.28								
Fishing Mortal	lity by 1 1987 0.03	/ear 1988 0.03	1989 0.01	1990 0.08	1991 0.13	1992 0.20	1993 0.15	1994 0.14	1995 0.15	1996 0.16	1997 0.20	1998 0.35	1999 0.44
Catchabilities Canada Fall EU 3M Survey Campelen		0.150005 0.049251 0.873657											
Residuals				v	Veighting		Wted SSQ	n obs	Variance	Inverse varia	ance M	lean Surv. \	'ar.
Canada Fall Su	urvey S	SQ	3.797432		2.940008		11.16447888	9	0.340109	2.940236	(0.340109	
Campelen SSC	2		2.485827		2.940008		7.308351198	5	0.340109	2.940236			
			2 210461		2 940008		6.52523132	11	0.340109	2.940236			
EU Survey 3M	SSQ		2.219401		2.010000								
EU Survey 3M Catches	SSQ		0.037728		50		1.886412998	13	0.002902	50			

Total Weighted SSQ to Minimise

45.87492163

Figure 1.- Roughhead grenadier nominal catches by Division and the total for Subareas 2+3.

Figure 2.- Roughhead grenadier survey biomass indexes from Subareas 2 + 3.

Figure 3.- Roughhead grenadier mean lengths (anal fin length) in the Spanish (SP) and Portuguese (PT) catches.

Figure 4.- Percentages of females at length in the Spanish and Russian roughhead grenadier commercial catches. A regression between total length and PFL (Atkinson 1991) was used to convert rughhead Russian length distributions into PFL.

Figure 5.- Roughhead grenadier synthetic catch curve from the total catch of 1999 and Z estimate as the slope of the regression line for ages 9 and older.

Figure 6. Roughhead grenadier synthetic catch curve by sex from the total catch of the pair-traw1 fleet in 999, Z estimate as the slope of the regression line for ages 9 and older.

Figure 7.- Roughhead grenadier C/B Index.

Figure 8. Roughhead grenadier yield per recruit analysis for roughhead grenadier ($M_{males} = 0.6$ and $M_{females} = 0.2$).

Figure 9. Summary results from trial age-structured production modelling.