NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Northwest Atlantic

Fisheries Organization

Serial No. N4344

NAFO SCR Doc. 00/87

SCIENTIFIC COUNCIL MEETING - NOVEMBER 2000

An Exploratory Extended Survivors Formulation (XSA) for Northern Shrimp (*Pandalus borealis*) in Flemish Cap (Division 3M)

by

Hans-Joachim Rätz Federal Research Centre for Fisheries, Institute for Sea Fisheries Palmaille 9, D-22767 Hamburg, Germany <u>raetz.ish@bfa-fisch.de</u>

and

Unnur Skúladóttir Marine Research Institute, Skúlagata 4, P.O. Box 1390, 121 Reykjavik, Iceland unnur@hafro.is

Abstract

A Virtual Population Analysis calibrated with two tuning series is presented for the shrimp stock in Div. 3M. The results indicate that the high landings in 1996 created a peak in the fishing mortality and a minimum in SSB. Thereafter, as the catches decreased, the fishing mortality decreased and SSB recovered also as a result of the good recruitment. There is however a negative trend in recruitment indicated for the most recent period. The shortness of the time series available does not allow to analyse the retrospective pattern of the fishing mortality, recruitment and SSB and causes general concern about the results.

Introduction

The shrimp stock in Flemish Cap is assessed by the NAFO Scientific Council based on age aggregated survey results and CPUE series derived from the commercial fleets. The data and analysis presented here are considered as a first step towards the formulation of an age structured production model for the stock in order to provide improved information on projections of stock biomass and catches under different management option scenarios.

Material and Data

The input data for the VPA are given in Appendix 1. Catch in numbers have been derived from Canadian length frequency samples for the period 1993-1995. Thereafter, sampling results were made available mainly from Iceland but also from Canada and Greenland. The modes of the length composition of the catches were split into ages 2 to 7 applying the MIX software (MacDonald and Pitcher, 1979). Mean weights at age in the catches were calculated by means of a length weight regression and were used also as input for mean weights at age in the stock. Natural mortality was set at M=0.2 for all ages. This value seems reasonable since total mortality is indicated to amount to a level of Z=0.55 for ages 3 to 6 as derived from both series of abundance indices available. The maturity ogive over ages was kept constant between years and resulted from experience of the experts for the stock.

There are two tuning fleets available for calibration of the terminal fishing mortality (Appendix 2). One is derived from the commercial Icelandic CPUE (Skúladóttir, 2000) and the second from the Faeroese shrimp survey (Nicolajsen, 2000).

The applied software for the age structured assessment of historical stock and spawning stock size in numbers and weight as well as exploitation rates is the Lowestoft VPA Version 3.1 with the Extended Survivors Analysis (XSA). Settings of the XSA and the results are given in Appendix 3. Age 6 was not determined as a plus group since the estimates of older shrimp were extremely low indicating that the shrimp cohorts die out during their seventh year of life. Catchability was set to be dependent on stock size for age 2 (recruitment) and independent of age for ages >=4. Single runs for both tuning series revealed no trends in log-transformed catchability residuals (Fig. 1 and 2) and resulting estimates of Fbar 3-5 and SSB in 1999 are not significantly different (Fig. 3).

Results

The results of the final VPA are given in Appendix 4 and the summary table is illustrated in Fig. 4 and 5 for trends in fishing mortality, SSB and recruits, respectively. They indicate that the high landings in 1996 created a peak in the fishing mortality and a minimum in SSB. Thereafter, as the catches decreased, the fishing mortality decreased and SSB recovered as a result of the recruitment of the strong 1993 year-class. There is however a negative trend in recruitment at age 2 since 1995 and the 1997 year-class is estimated to be only 50 % of the average size.

The shortness of the time series available does not allow to analyse the retrospective pattern of the fishing mortality, recruitment and SSB and causes general concern about the results. The present formulation of the XSA calibration requires more exploration.

References

- Skúladóttir, U. 2000. The Icelandic Shrimp Fishery (Pandalus borealis Kr.) at Flemish Cap in 1993-2000. NAFO SCR Doc., No. 74, Serial No. N4331, 33 p.
- MacDonald and T. Pitcher 1979. The MIX software. Age separation of length distributions. J. Fish. Res. Board Can., 36: 987-1001

Nicolajsen, Á. 2000. Biomass estimate, growth, length and age distribution of the northern shrimp (Pandalus borealis) stock on Flemish Cap (NAFO Div. 3M) in June. *NAFO SCR Doc.*, No. 83, Serial No. N4340, 17 p.

Appendix 1 VPA input tables

Landings in tonnes Landing Year 26876 1993 24549 1994 1995 32982 1996 48299 1997 24675 1998 30308 1999 42005 1 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 1 Catch numbers at age Numbers*10**-3 Catch numbers at age 1993, 1994, 1995, 1996, 1997, 1998, 1999, YEAR, AGE 369209, 646823, 3048376, 500354, 281106, 370219, 315960, 2, З, 690175, 1291865, 1831996, 4779827, 1616036, 1641601, 1879164, 371781, 304010, 342234, 1621994, 1674075, 2277693, 1517988, 4, 842297, 692033, 649366, 494678, 318792, 677275, 2194478, 929453, 625108, 878197, 223362, 59754, 32960, 674342, 3202915, 3559839, 6750169, 7620215, 3949763, 4999748, 6581932, 5, б, 0 TOTALNUM, TONSLAND, 26876, 24549, 32982, 48299, 24675, 30308, 42005, SOPCOF %, Ο, Ο, Ο, Ο, Ο, Ο, Ο, 1 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 2 Catch weights at age (g) YEAR. 1993, 1994, 1995, 1996, 1997, 1998, 1999. AGE 2.7720, 2.5760, 1.9650, 2.1600, 3.2010, 2.0660, 2.0240, 5.2250, 4.9980, 4.9240, 4.8530, 4.1300, 3.9410, 3.3780, 8.1880, 7.1010, 6.4620, 9.2340, 7.9660, 6.7470, 5.6310, 10.4410, 10.0800, 9.6110, 11.5590, 10.6310, 11.0470, 8.3070, 11.1890, 11.8840, 10.8400, 14.7010, 14.3500, 14.4530, 11.0730, 0010 0010 0010 0010 0010 0010 2. 3, 4, 5, б, Ω .0010, .0010, .0010, SOPCOFAC, .0010, .0010, .0010, .0010, 1 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 3 Stock weights at age (g) 1993, 1994, 1995, 1996, 1997, 1998, 1999. YEAR, AGE 2.7720, 2.5760, 1.9650, 2.1600, 3.2010, 2.0660, 2.0240, 5.2250, 4.9980, 4.9240, 4.8530, 4.1300, 3.9410, 3.3780, 8.1880, 7.1010, 6.4620, 9.2340, 7.9660, 6.7470, 5.6310, 10.4410, 10.0800, 9.6110, 11.5590, 10.6310, 11.0470, 8.3070, 2, 3, 4, 5, б, 11.1890, 11.8840, 10.8400, 14.7010, 14.3500, 14.4530, 11.0730, 1

Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 4 Natural Mortality (M) at age YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, AGE .2000, .2000, .2000, .2000, .2000, .2000, .2000, 2, 3, .2000, .2000, .2000, .2000, .2000, .2000, .2000, .2000, 4, .2000, .2000, .2000, .2000, .2000, .2000, 5, .2000, .2000, .2000, .2000, .2000, .2000, .2000, б, .2000, .2000, .2000, .2000, .2000, .2000, .2000, Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 5 Proportion mature at age YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, AGE 2, .0000, .0000, .0000, .0000, .0000, .0000, .0000, З, .1000, .1000, .1000, .1000, .1000, .1000, .1000, .3000, .3000, 4, .3000, .3000, .3000, .3000, .3000, 5, б, Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 7 Proportion of F before Spawning 1993, 1994, 1995, 1996, 1997, 1998, YEAR, 1999, AGE .0000, .0000, .0000, .0000, .0000, .0000, .0000, 2, .0000, .0000, .0000, .0000, .0000, .0000, З, .0000, .0000, 4, .0000, .0000, .0000, .0000, .0000, .0000, 5, .0000, .0000, .0000, .0000, .0000, .0000, .0000,

1

1

Table 6 YEAR,	Proporti 1993,	ion of M 1 1994,	before Spa 1995,	awning 1996,	1997,	1998,	1999,
AGE 2, 3, 4, 5,	.0000, .0000, .0000, .0000,						
б,	.0000,	.0000,	.0000,	.0000,	.0000,	.0000,	.0000,

.0000,

.0000,

.0000,

.0000,

.0000,

1

1

б,

.0000,

.0000,

Appendix 2 Tuning series used.

Shrimp 102	3M, Tun	ing data	1		
ICEFLS	ГА				
1993	1999				
1	1	0	1		
2	б				
100	4.987	9.322	5.021	11.376	12.554
100	6.324	12.63	2.972	6.766	6.111
100	26.156	15.719	2.937	5.572	7.535
100	2.248	21.475	7.288	2.223	1.004
100	2.187	12.574	13.027	2.481	0.465
100	3.591	15.924	22.095	6.66	0.32
100	1.896	12.274	9.106	13.165	4.046
FAESUR					
1997	1999				
1	1	0.5	0.6		
2	4				
100	901	1653	470		
100	226	1366	1006		
100	214	1288	835		

Appendix 3 XSA output

Lowestoft VPA Version 3.1

11/11/2000 16:51

Extended Survivors Analysis

Shrimp 3M 10/11/2000

CPUE data from file SHI3MT1.DAT

Catch data for 7 years. 1993 to 1999. Ages 2 to 6.

Fleet,			First,	Last,	First,	Last,	Alpha,	Beta
		,	year,	year,	age ,	age		
ICEFLSTA	,		1993,	1999,	2,	б,	.000,	1.000
FAESUR		,	1997	, 1999	, 2,	4,	.500,	.600

Time series weights :

Tapered time weighting applied Power = 3 over 20 years

Catchability analysis :

Catchability dependent on stock size for ages < 3

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 3

Catchability independent of age for ages >= 4

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 4 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

L								
Regres	sion weig							
	, .921,	.954,	.976, .99	0, .997,	1.000,	1.000		
Fichin	~ montal	tion						
Age	g mortali , 1993,	1994,	1995, 199	6, 1997,	1998,	1999		
Age	, ₁ , ₁ ,	1))4,	1))), 1))	0, 1997,	1990,	1)))		
2	102,	.110,	.200, .03	8, .031,	.050,	.068		
	, .273,		.512, .55			.381		
			.318, 1.28			.397		
			.752, 1.08					
0	, .104,	.205,	.400, .03	0, .339,	.239,	.444		
L								
XSA po	pulation	numbers	(Thousands)				
			AG	Е				
YEAR ,		2,	3,		4,		5,	
1000			007.06 5 5	07.06		c 10- 0-		
1993 ,			20E+06, 5.6					
1994 , 1995 ,			12E+06, 1.9 05E+06, 1.3					
1995 ,			24E+00, 1.3					
1997 ,			17E+07, 5.8					
1998 ,			07E+06, 8.1					
1999 ,	5.291	E+06, 6.	56E+06, 5.1	2E+06, 4.	57E+06,	2.08E+06,		
Estima	ted nonul	lation a	bundance at	lst Jan	2000			
	icca popul	Lacion a	Summer at	The Dail	2000			
,	0.00E-	+00, 4.0	1E+06, 3.66	E+06, 2.7	8E+06,	1.73E+06,		
Taper	weighted	geometr	ic mean of	the VPA p	opulati	ons:		
-	-	-		-	-			
,	8.70E-	+06, 6.3	6E+06, 3.71	E+06, 2.0	9E+06,	1.09E+06,		
Standa	rd error	of the	weighted Lo	g(VPA pop	ulation	s) :		
,	.53	316,	.5618, .	6627,	.8912,	1.3994,		
-								
		y resid	uals.					
Log ca	tchabilit							
-		רא						
-	: ICEFLS	ΓA						
-	: ICEFLS	ГА 1994,	1995, 199	6, 1997,	1998,	1999		
Fleet Age 2	: ICEFLS1 , 1993, , .89,	1994, .64,	1.11, -1.2	0,85,	16,	32		
Fleet Age 2 3	: ICEFLST , 1993, , .89, , .23,	1994, .64, .71,	1.11, -1.2 .41,1	0,85, 6,81,	16, 16,	32 16		
Fleet Age 2 3 4	: ICEFLST , 1993, , .89, , .23, ,93,	1994, .64, .71, 36,	1.11, -1.2 .41,1 .05, .7	0,85, 6,81, 9, .13,	16, 16, .33,	32 16 08		
Fleet Age 2 3 4 5	: ICEFLST , 1993, , .89, , .23, ,93, , .18,	1994, .64, .71, 36, 31,	1.11, -1.2 .41,1 .05, .7 .91, .6	0,85, 6,81, 9, .13, 2, 1.08,	16, 16, .33, 02,	32 16 08 .55		
Fleet Age 2 3 4	: ICEFLST , 1993, , .89, , .23, ,93, , .18,	1994, .64, .71, 36,	1.11, -1.2 .41,1 .05, .7	0,85, 6,81, 9, .13, 2, 1.08,	16, 16, .33, 02,	32 16 08		
Fleet Age 2 3 4 5 6	: ICEFLST , 1993, , .89, , .23, ,93, , .18, ,04,	1994, .64, .71, 36, 31, .00,	1.11, -1.2 .41,1 .05, .7 .91, .6	0,85, 6,81, 9, .13, 2, 1.08, 0, .02,	16, 16, .33, 02, 11,	32 16 08 .55 .03	ability	
Fleet Age 2 3 4 5 6 Mean 1	: ICEFLST , 1993, , .89, , .23, , .23, , .93, , .18, , .04, og catcha	1994, .64, .71, 36, 31, .00,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o	16, 16, .33, 02, 11, f ages	32 16 08 .55 .03 with catch		
Fleet Age 2 3 4 5 6 Mean 1 indepe	: ICEFLST , 1993, , .89, , .23, ,93, , .18, ,04, og catcha ndent of	1994, .64, .71, 36, 31, .00, ability a year cl	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con	16, 16, .33, 02, 11, f ages	32 16 08 .55 .03 with catch .r.t. time		
Fleet Age 2 3 4 5 6 Mean 1 indepe Age	: ICEFLST , 1993, , .89, , .23, ,93, , .18, ,04, .09 catcha mdent of	1994, .64, .71, 36, 31, .00, ability : year cl. 3,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5,	16, 16, .33, 02, 11, f ages stant w	32 16 08 .55 .03 with catch .r.t. time		
Fleet Age 2 3 4 5 6 Mean 1 indepe Age Mean 1	: ICEFLS , 1993, , .89, , .23, , .93, , .18, ,04, og catcha mdent of	1994, .64, .71, 36, 31, .00, ability ; year cl: 3, 17.3583,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476	16, 16, .33, 02, 11, f ages stant w 2, -17	32 16 08 .55 .03 with catch .r.t. time 6 .4762,		
Fleet Age 2 3 4 5 6 Mean 1 indepe Age	: ICEFLS , 1993, , .89, , .23, , .93, , .18, ,04, og catcha mdent of	1994, .64, .71, 36, 31, .00, ability : year cl. 3,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476	16, 16, .33, 02, 11, f ages stant w 2, -17	32 16 08 .55 .03 with catch .r.t. time		
Fleet Age 2 3 4 5 6 Mean 1 indepe Age Mean L S.E(LC	: ICEFLS , 1993, , .89, , .23, , .93, , .18, ,04, og catcha mdent of	1994, .64, .71, .33, .00, ability; year cl. 3, 17.3583, .4955,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762, .5358,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476	16, 16, .33, 02, 11, f ages stant w 2, -17	32 16 08 .55 .03 with catch .r.t. time 6 .4762,		
Fleet Age 2 3 4 5 6 Mean 1 indepe Age Mean 1 S.E(Lc Regres	: ICEFLS , 1993, , .89, , .23, , .93, , .18, ,04, og catcha ndent of , , .03 q, -1 g q), sion stat	1994, .64, .71, -36, -31, .00, ability , year cl. 3, 17.3583, .4955, tistics	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762, .5358,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687	16, 16, .33, 02, 11, f ages v stant w 2, -17 6,	32 16 08 .55 .03 with catch .r.t. time 6 .4762,		
Fleet Age 2 3 4 5 6 Mean l indepe Mean L S.E(Lc Regres Ages w	: ICEFLS , 1993, , .89, , .23, ,93, , .18, ,04, .og catcha andent of .og q, -1 	1994, .64, .71, .33, .00, ability a year cl. 3, 17.3583, .4955, clistics	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng	16, 16, .33, 02, 11, f ages v stant w 2, -17 6, th	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358,		
Fleet Age 2 3 4 5 6 Mean l indepe Mean L S.E(Lc Regres Ages w	: ICEFLS , 1993, , .89, , .23, ,93, , .18, ,04, .og catcha andent of .og q, -1 	1994, .64, .71, .33, .00, ability a year cl. 3, 17.3583, .4955, clistics	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng	16, 16, .33, 02, 11, f ages v stant w 2, -17 6, th	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358,		
Fleet Age 2 3 4 5 6 Mean l indepe Mean L S.E(Lc Regres Ages w	: ICEFLS , 1993, , .89, , .23, ,93, , .18, ,04, .og catcha andent of .og q, -1 	1994, .64, .71, .36, 31, .00, ability a year cl. 3, 17.3583, .4955, cistics pendent of -value ,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762, .5358, : on year cla Intercept,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare,	16, 16, 33, 02, 11, f ages y stant w 2, -17 6, th No Pts	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358,	Mean Log q	
Fleet Age 2 3 4 5 6 Mean 1 indepe Mean 1 S.E(Lc Regres Ages w Age, S 2,	: ICEFLS , 1993, , .89, , .23, , .93, , .18, ,04, .og catche mdent of og q, -1 g q), ssion stat rith q deg clope , t- 1.45,	1994, .64, .71, 36, 31, .00, ability a year cl. 3, (7.3583, .4955, cistics pendent a 415,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt .4, -17.4762, .5358, : on year cla Intercept, 20.34,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare, .15,	16, 16, .33, 02, 11, f ages v stant w 2, -17 6, th No Pts 7	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358, , Reg s.e, , 1.38,	Mean Log q	
Fleet Age 2 3 4 5 6 Mean l 1 indepe Mean L S.E(Lc Regres Ages w Age, S 2, Ages w	: ICEFLST , 1993, , .89, , .23, , .93, , .93, , .04, .00 catcha mdent of .00 q, -1 .01 gql, .10 stat with q dep .1.45, rith q inc	1994, .64, .73, -31, .00, ability : year cl. 3, 17.3583, .4955, :istics pendent of -value , 415, dependen	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762, .5358, : on year cla Intercept, 20.34, t of year c	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare, .15, lass stre	16, 16, 33, 02, 11, f ages y stant w 2, -17 6, th No Pts 7 ngth and	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358, , Reg s.e, , 1.38, d constant	Mean Log q -18.99, w.r.t. time.	
Fleet Age 2 3 4 5 6 Mean 1 indepe Mean 1 S.E(Lc Regres Ages w Age, S 2, Ages w Age, S	: ICEFLS: , 1993, , .89, , .23, , .93, , .18, ,04, og catcha mdent of 	1994, .64, .71, 36, 31, .00, ability 4 year cl. 3, 17.3583, .4955, :istics bendent 4 -value , 415, dependen	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt 4, -17.4762, .5358, : on year cla Intercept, 20.34, t of year c	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare, .15, lass stre RSquare,	16, 16, 33, 02, 11, f ages y stant w 2, -17 6, th No Pts 7 ngth am	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358, , Reg s.e, , 1.38, d constant , Reg s.e,	Mean Log q -18.99, w.r.t. time. Mean Q	
Fleet Age 2 3 4 5 6 Mean 1 indepe Mean 1 S.E(Lo Regres Ages W Age, S 2, Ages W Age, S 3,	: ICEFLST , 1993, , .89, , .23, , .93, , .18, , .04, .00g catche mdent of 	1994, .64, .71, .73, .00, ability a year cl. 3, (7.3583, .4955, cistics bendent a -value , 415, dependen -value , 3.439,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt .4, -17.4762, .5358, : on year cla Intercept, 20.34, t of year c Intercept, 22.25,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare, .15, lass stre RSquare, .23,	16, 16, 33, 02, 11, f ages v stant w 2,17 6, th No Pts 7 No Pts 7	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358, , Reg s.e, , 1.38, d constant , Reg s.e, , 1.14,	Mean Log q -18.99, w.r.t. time. Mean Q -17.36,	
Fleet Age 2 3 4 5 6 Mean l 5.E(Lc Regres Ages w Age, S 2, Ages w Age, S 2, Ages w Age, S 3, 4,	: ICEFLST , 1993, , .89, , .23, , .23, , .93, , .93, , .04, .00 catcha mdent of 	1994, .64, .71, 36, 31, .00, ability s year cl. 3, 17.3583, .4955, cistics bendent of -value , 415, dependen -value , 245, 245,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt .4, -17.4762, .5358, : on year cla Intercept, 20.34, t of year c Intercept, .22.25, .17.71,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare, .15, lass stre RSquare, .23, .56,	16, 16, 33, 02, 11, f ages y stant w 2, -17 6, th No Pts 7 No Pts 7 7	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358, , Reg s.e, , 1.38, d constant , Reg s.e, , 1.14,	Mean Log q -18.99, w.r.t. time, Mean Q -17.36, -17.48,	
Fleet Age 2 3 4 5 6 Mean 1 indepe Mean 1 S.E(Lo Regres Ages W Age, S 2, Ages W Age, S 3,	: ICEFLST , 1993, , .89, , .23, , .93, , .18, , .04, .00g catche mdent of 	1994, .64, .71, .73, .00, ability a year cl. 3, (7.3583, .4955, cistics bendent a -value , 415, dependen -value , 3.439,	1.11, -1.2 .41,1 .05, .7 .91, .6 .29, .1 and standar ass strengt .29, .1 .35358, on year cla Intercept, .20.34, t of year c Intercept, .22.25, .17.71, .18.96,	0,85, 6,81, 9, .13, 2, 1.08, 0, .02, d error o h and con 5, -17.476 .687 ss streng RSquare, .15, lass stre RSquare, .23, .56, .72,	16, 16, 33, 02, f ages y stant w 2, -17 6, th No Pts 7 7 7 7	32 16 08 .55 .03 with catch .r.t. time 6 .4762, .1358, , Reg s.e, , 1.38, d constant , Reg s.e, , 1.14, , .64, , .62,	Mean Log q -18.99, w.r.t. time, Mean Q -17.36, -17.48,	

Fleet : FAESUR

Age	,	1993,	1994,	1995,	1996,	1997,	1998,	1999
2	,	99.99,	99.99,	99.99,	99.99,	.65,	53,	11
3	,	99.99,	99.99,	99.99,	99.99,	23,	.00,	.22
4	,	99.99,	99.99,	99.99,	99.99,	39,	.05,	.34
5	,	No data	a for th	nis flee	et at th	nis age		
б	,	No data	a for th	nis flee	et at th	nis age		

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

3. 4 Age , Mean Log q, -13.0422, -13.3336, S.E(Log q), .2233, .3630,

Regression statistics :

Ages with q dependent on year class strength

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

2, .56, .480, 15.07, .55, 3, .43, -14.46,

Ages with ${\bf q}$ independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

З,	4.07,	-6.709,	4.08,	.83,	З,	.19,	-13.04,
4,	1.37,	178,	12.48,	.19,	З,	.69,	-13.33,
1							

Terminal year survivor and F summaries :

Age 2 Catchability dependent on age and year class strength

Year class = 1997

ICEFLSTA ,	Estimated, Int, Survivors, s.e, 2932308., .948, .00 3607980., .693,	s.e, Ratio, 00, .00, 1, .	, Weights, F 102, .093
P shrinkage mean	, 6362681., .56,,,,		.312, .044
F shrinkage mean	, 3183996., .50,,,,		.394, .086
Weighted prediction	1:		
at end of year, s	nt, Ext, N, Var. s.e, s.e, , Ratic 31, .21, 4, .674),	
Age 3 Catchabili	ty constant w.r.t. time and	l dependent on age	
Year class = 1996			
, ICEFLSTA ,	Estimated, Int, Survivors, s.e, 3130748., .463, .00 4081719., .275,	s.e, Ratio, 01, .00, 2, .	,Weights, F 196, .434
F shrinkage mean	, 3237544., .50,,,,		.249, .422
Weighted prediction	1:		
	Int, Ext, N, Var, s.e, s.e, , Ratic 22, .12, 5, .553),	
1			
Age 4 Catchabili Year class = 1995	ty constant w.r.t. time and	dependent on age	
ICEFLSTA ,	Estimated, Int, Survivors, s.e, 2275451., .363, .17 3394197., .232,	3, .47, 3, .	233, .472

F shrinkage mean , 2056002., .50,,,, .209, .512 Weighted prediction : Int, Ext, N, Var, F Survivors. at end of year, s.e, s.e, , Ratio, .13, 7, .682, .397 2784272., .19, Age 5 Catchability constant w.r.t. time and age (fixed at the value for age) 4 Year class = 1994
 Fleet,
 Estimated, Int,
 Ext,
 Var,
 N, Scaled,
 Estimated

 ,
 Survivors,
 s.e,
 s.e,
 Ratio,
 , Weights,
 F

 ICEFLSTA
 ,
 1581270.,
 .332,
 .386,
 1.16,
 4,
 .260,
 .813

 FAESUR
 ,
 1557514.,
 .245,
 .133,
 .54,
 2,
 .407,
 .822
 F shrinkage mean , 2119937., .50,,,, .333, .661 Weighted prediction : Ext, N, Var, Survivors, Int, F at end of year, s.e, s.e, , Ratio, 1732955., .21, .16, 7, .753, .755 1732955., .21, .753, 1 Age $\,$ 6 Catchability constant w.r.t. time and age (fixed at the value for age) $\,$ 4 Year class = 1993 Estimated, Int, Ext, Var, N, Scaled, Estimated Survivors, s.e, s.e, Ratio, , Weights, F , 1134885., .237, .078, .33, 5, .626, .430 , 743080., .420, .000, .00, 1, .121, .599 Fleet, TCEFLSTA FAESUR F shrinkage mean , 1228712., .50,,,, .252, .403 Weighted prediction : Int, Ext, N, Var, Survivors, F at end of year, s.e, 1099838., .20, s.e, , Ratio, .08, 7, .400, .444 .400,

1

Appendix 4 VPA results

1 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 8 Fishing mortality (F) at age YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, FBAR 97-99 AGE .1016, .1096, .2001, .0380, .0310, .0498, .0683, 2. .0497, 3, .2725, .6108, .5121, .5523, .1659, .2548, .3809, .2672, .3789, .3719, .0750, .1846, .3180, 1.2849, .3971, .3826, 4, 5, .2286, .1948, .7525, 1.0815, .9876, .2583, .7555, .6671, б, .1838, .2650, .4056, .6377, .3391, .2392, .4437, .3407, .1920, .3301, .5275, .9729, .5108, .2950, 0 FBAR 3-5, .5111, Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 9 Relative F at age 1993, 1994, 1995, 1997, 1998, YEAR, 1996, 1999, MEAN 97-99 AGE .5292, .3321, .3794, .0391, .0608, .1689, .1337, .1211, 2. 1.4192, 1.8505, .9708, .5677, .3248, .8636, 3, .7452, .6445, .6028, 1.3207, .3905, .5592, .7417, 1.2609, .7768, .9265, 4. .5903, 1.4264, 1.1117, 1.9336, .8755, 1.4780, 1.4290, 5, 1.1903, .9574, .8028, .7688, .6555, .3301, .5275, .9729, .6639, .8110, .8681, .7810, б, REFMEAN, .2950, .5111, 0 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 10 Stock number at age (start of year) Numbers*10**-4 YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, GMST 93-97 AMST 93-97 AGE 2, $422333\,,\quad 688498\,,\; 1857340\,,\; 1482437\,,\; 1016363\,,\quad 841745\,,\quad 528575\,,$ 0, 959609, 1093394, 319774, 312370, 505168, 1244833, 1168443, 806692, 655664, 401387, 593107, 710118, 3. 51974, 31270, 505168, 1244033, 1166443, 506692, 50564, 401387, 593107, 110118, 568779, 199359, 138854, 247830, 586687, 810415, 511925, 365834, 296442, 348302, 455586, 432037, 135713, 82717, 56142, 328862, 457418, 278427, 165470, 232439, 611678, 296788, 291104, 52356, 22963, 17120, 207967, 173296, 144744, 254978, 2378150, 1929052, 2928180, 3110174, 2850598, 2804834, 2361548, 1218943, 4. 5, б. TOTAL, Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Numbers*10**-3 Table 11 Spawning stock number at age (spawning time) 1994, 1995, 1996, 1997, 1998, 1999, YEAR, 1993, AGE 2, Ο, Ο, Ο, Ο, Ο, Ο, Ο, 0, 10, 0, 0, 15, 0, 0, 1, 160060, 2431246, 1535776, 3189100, 3024259, 949994, 579022, 392996, 2302033, 3201924, 6116779, 2967879, 2911042, 523557, 229630, 171199, 2079669, 3. 4, 5, б,

1

Run title : Shrimp 3M 10/11/2000

At 11/11/2000 16:52 Tonnes*10**-2 Table 12 Stock biomass at age (start of year) 1993, 1994, 1995, 1996, 1997, 1998, 1999, YEAR, AGE 117071, 177357, 364967, 320207, 325338, 173904, 106984, 2. 167082, 156122, 248745, 604118, 482567, 317917, 465716, 141565, 89727, 228847, 467355, 546787, 3. 221483, 4. 288265, 475677, 435493, 130434, 95513, 59685, 363294, 379977, 684406, 352703, 315557, 76968, 32952, 24743, 230282, 1909953, 1263241, 1149431, 1325752, 1367896, 1426646, 1226991, 5, б, 0 TOTALBIO, 1 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 13 Spawning stock biomass at age (spawning time) Tonnes*10**-2 YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, AGE 0, 24874, Ο, Ο, 2. Ο, Ο, Ο, 0. 60412, 48257, 31792, 16708, 15612, 22148, 3.
 5,
 16/10,
 15012,
 240/4,
 60412,
 4020,
 51/92,
 22146,

 4,
 139715,
 42469,
 26918,
 68654,
 140206,
 164036,
 86480,

 5,
 332974,
 304845,
 91304,
 66929,
 41779,
 254306,
 265984,

 6,
 684406,
 352703,
 315557,
 76968,
 32952,
 24743,
 230282,

 TOTSPBIO,
 1173804,
 715630,
 458654,
 272963,
 263194,
 474877,
 604893,
 0 1 Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 14 Stock biomass at age with SOP (start of year) Tonnes YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, AGE 36496, 2. 11711, 17637, 32049, 31911, 17247, 10899 16713, 15525, 46586, 14078, 3, 24874, 60465, 47333, 31529, 22564, 22905, 4. 8972. 45841, 54227, 29367. 47582, 43307, 13043, 68461, 35074, 31555, 13043, 5854, 5, 9570, 36029, 38710. 23460, 6, 7704, 3232, 2454, 191053, 125622, 114939, 132692, 134173, 141487, 125000, 0 TOTALBIO, Run title : Shrimp 3M 10/11/2000 At 11/11/2000 16:52 Table 15 Spawning stock biomass with SOP (spawning time) Tonnes YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999. AGE Ο, Ο, 2. Ο, 0. Ο, Ο, 0. 2256, З, 1671, 1553, 2487, 6047, 4733, 3153, 13976, 4, 4223, 2692, 6871, 13752, 16268, 8810, 5, 33308, 30315, 9130, 6699, 4098, 25221, 27097.

68461, 35074, 117416, 71165,

б,

TOTSPBIO,

0

1

31555, 45864,

7704,

27320,

3232,

25816,

2454,

47096,

23460, 61624, At 11/11/2000 16:52

Table 16 Summary (without SOP correction)

,	RECRUITS,	TOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB, FBAR	3-5,
,	Age 2					
1993,	4223333,	190995264,	117380352,	26876,	.0002,	.1920,
1994,	6884981,	126324048,	71562976,	24549,	.0003,	.3301,
1995,	18573404,	114943056,	45865360,	32982,	.0007,	.5275,
1996,	14824374,	132575184,	27296306,	48299,	.0018,	.9729,
1997,	10163627,	136789600,	26319432,	24675,	.0009,	.5108,
1998,	8417447,	142664592,	47487684,	30308,	.0006,	.2950,
1999,	5285750,	122699048,	60489336,	42005,	.0007,	.5111,
Arith.						
Mean ,	9767559,	138141541,	56628777,	32813,	.0008,	.4771,
0 Units, 1	(Thousands),	(Tonnes),	(Tonnes),	(Tonnes),		

Run title : Shrimp 3M 10/11/2000

At 11/11/2000 16:52

Table 17 Summary (with SOP correction)

,	RECRUITS, Age 2	TOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB,	SOPCOFAC, FBAR	3- 5,
, 1993, 1994, 1995, 1996, 1997, 1998, 1999,	Age 2 4223333, 6884981, 18573404, 14824374, 10163627, 8417447, 5285750,	191053, 125622, 114939, 132692, 134173, 141487, 125000,	117416, 71165, 45864, 27320, 25816, 47096, 61624,	26876, 24549, 32982, 48299, 24675, 30308, 42005,	.2289, .3450, .7191, 1.7679, .9558, .6435, .6816,	.0010, .0010, .0010, .0010, .0010, .0010, .0010,	.1920, .3301, .5275, .9729, .5108, .2950, .5111,
Arith. Mean 0 Units, 1	, 9767559, (Thousands),	137852, (Tonnes),	56614, (Tonnes),	32813, (Tonnes),	.7631		.4771,

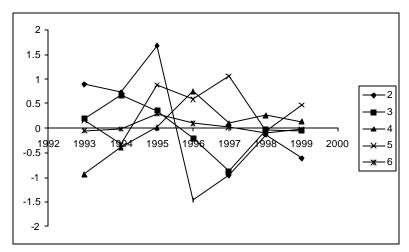


Fig. 1 Log-transformed catchability residuals derived from the Island trawl fleet tuning series for ages 2 to 6. Catchability set dependent on stock size for ages < 3 and independent of age for ages >= 4.

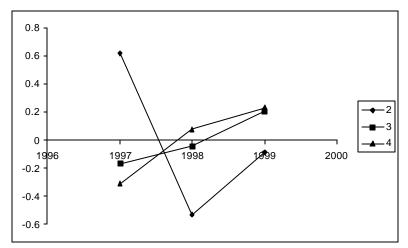


Fig. 2 Log-transformed catchability residuals derived from the Faeroes survey tuning series for ages 2 to 4. Catchability set dependent on stock size for ages < 3 and independent of age for ages >= 4.

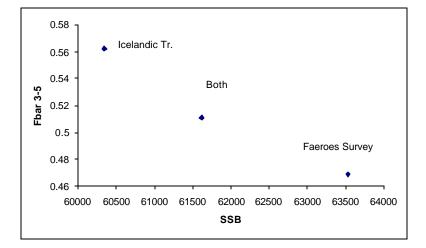


Fig. 3 Estimates of Fbar (3-5) and SSB in 1999 as derived from single fleet (Icelandic Trawlers or Faeroe survey) and combined tuning. Catchability set dependent on stock size for ages < 3 and independent of age for ages >= 4.

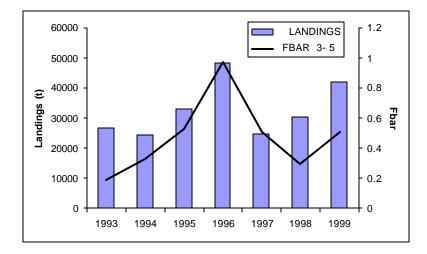


Fig. 4 Trends in landings and fishing mortality, 1993-1999

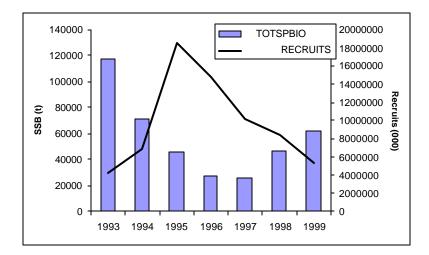


Fig. 5 Trends in SSB and recruitment at age 2.