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Abstract 
 
This paper presents first results of a Bayesian approach to shrimp stock assessments. Non-age structured models 
based on the logistic function with and without an explicit term for cod predation, is used to describe shrimp 
population dynamics. Biomass indices from survey and standardised commercial catch-per-unit -effort series, catch, 
cod stock size estimates and prior estimates of model parameters provided information to the models. The 
inadequacy of a model to fully describe population behaviour and the inevitable errors associated with the observed 
data series, i.e. observation and process error, was incorporated simultaneously using a state-space modelling 
framework. 
 
The models can provide posterior probability distributions of management related parameters as desired. E.g. the 
model predicts that in the absence of cod predation a fishery of 100 000 tons annually will have 75% probability of 
being below ‘Maximum sustainable yield’ – or 25% risk of being above.  
 

Introduction 
 
Annual landings of northern shrimp (Pandalus borealis) in the North Atlantic have increased from about 100000 
tons in the early 1980s to more than 350000 tons in 2000 (Skúladóttir, pers. com.). Although shrimp has become one 
of the most important target species in these waters, little progress has been made in developing a standardised 
predictive tool for stock assessment (cf. Stefánsson et al., 1994; Cadrin and Clark, 1999; Savard et al., 1991; 
Hvingel and Kingsley, 2000; Anon., 2000a). 
 
Management advice for most shrimp stocks in the North-west Atlantic is formulated by qualitative assessment of 
recent trends in biomass indices, in the size composition of the stock, and in the catch history (Anon., 2000b; ref 
Can. assessment etc.), and by a qualitative evaluation of the short-term prospects for recruitment. Advice is given as 
a Total Allowable Catch (TAC) one year ahead as set by consensus of the assessment board. The method of arriving 
at a certain TAC value is not explicitly stated and the uncertainty associated with the process is not quantified. Such 
methods lack predictive rigour, including formal statements of uncertainty, and are therefore unable to satisfy 
increasing demands for longer-term predictions and for quantitative comparisons between alternative management 
options. 
 
A quantitative assessment may be reached through construction of mathematical models describing stock dynamics 
and their links to collected data and ancillary information. Each model represents one hypothesis about "the state of 
nature". From the infinite collection of possible models a subset of the most plausible may be chosen based on 
expert knowledge. An integrated evaluation of inferences about management options from that subset may be 
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considered taking into account the "model uncertainty" of the assessment process. Within each model uncertainty 
arises from its inability to fully capture the dynamics of the stock and from having to interpret erroneous data. Thus, 
to capture the full range of assessment uncertainty, three levels of uncertainty need to be considered: 1. model 
uncertainty, 2. process error and 3. observation error.  
 
Following the ideas of Punt and Hilborn (1997) the first step in the construction of an assessment framework is 
specifying the alternative hypotheses. This is done through exploring models within three levels of model 
complexity: 1. the logistic (This paper), 2. the delay-difference (Hvingel and Kingsley, in prep.) and 3. the age-based 
(Hvingel and Kingsley, in prep.). Within these model-types different versions is investigated by including predation 
and environmental effects. Process and observation error is incorporated by using a state-space modelling 
framework (Schnute, 1994) and Bayesian inference (e.g. Gelman et al., 1995) to estimate probability distributions of 
model parameters.  
 
Age-structured population models that account in great detail for age-dependent growth, growth-dependent 
recruitment to the fishery, and age-specific fishing and natural mortality are now the standard tool for the assessment 
of most fish stocks. Such models are critically dependent on accurate annual information on the age and length 
composition of the stock and the catches. But shrimp have no permanent hard parts to accumulate annual layers and 
ages cannot be measured. Modal analysis of length distributions (e.g. McDonald and Pitcher, 1979) seems to be 
inevitably dependent on assumptions about growth rate that are largely unverifiable and leaves large residual 
uncertainty about converting size distributions into age distributions. This is particularly true for the relatively slow-
growing shrimp in northern waters and for the important larger size classes. 
 
The use of non-age-structured models may therefore be an alternative. Such models are usually of the stock-
production type (Graham, 1935; Schaefer, 1954; Fox, 1970; Pella and Tomlinson, 1969) and describe stock 
dynamics simp ly in terms of rates of change of total biomass, rather than by the detail of age-specific growth and 
mortality of individuals (see Hilborn and Walters, 1992, chap 8. for a review of production models).   
 
Predation is an important factor in shrimp stock dynamics. Several fish and marine mammal species prey on shrimp 
(Pedersen and Riget, 1993; Magnússon and Pálsson, 1989; Grunwald, 1998, ref on marine mammals).  The Atlantic 
cod (Gadus morhua) co-occurs with northern shrimp, is a bottom-feeding predatory fish, and can attain high 
biomass densities, qualities which give it the potential for being a controlling predator (Lilly et al., 2000; Berenboim 
et al., 2000; Stefánsson et al., 1998). The rapid development of the West Greenland shrimp fisheries during the 
1970s is thought to be connected to a major decline in the cod stock in that area (Carlsson and Smith, 1978); shrimp 
fisheries on the Labrador banks appear similarly to have thriven after the collapse of the ‘northern’ cod stocks in 
NAFO 2J3KL. Predation by cod predation should therefore be taken into account in attempting to model the stock 
dynamics of northern shrimp, even at an aggregate stock level. 
 
The physical environment also affects shrimp populations (e.g. Koeller, 2000; Anderson, 2000) and may be the 
cause of the rapid changes in abundance seen in some stocks (Anderson, 2000; Apollonio et al., 1986). However, at 
this stage of modelling, environmental effects were not considered as explicite variables. 
         
This paper is a first draft of the first article in a planned series of three on shrimp population dynamic modelling, 
with the purpose of developing a first set of models based on the logistic function. These models constitute 
hypotheses about "the state of nature" intended along with the mo dels developed in following papers (Hvingel and 
Kingsley, in prep. a and b) to enter into an integrated shrimp stock assessment and decision framework able to make 
use of all available information pertaining to the dynamics of the stock and to provide realistic estimates of 
uncertainty of the assessment process. 
 

Methods  
 
Modelling framework 
 
The models were built in a state-space framework (e.g. Schnute, 1994). The state-space conception of a stock 
dynamic model regards the series of state values defining the stock trajectory through time as existing 
simultaneously, related to each other and to the parameters that control stock dynamics by a set of simultaneous, 
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possibly stochastic, equations. The models were thus defined in terms of sets of parameters (θ ), the values of which 
defined the stock dynamics of the shrimp stock.  
 
A Bayesian approach was used to construct a "posterior" distribution of likelihoods of possible values of model 
parameters. The posterior gives the probability of a hypothetical set of values for unobserved model parameters ( θ ), 
given the data and a “prior” probability distribution for θ  which defines the information available about θ  before 
the experiment was carried out or the observation made. Bayes (1763) restated a general probability identity in the 
form: 
 

)()|()|( θθθ pdatapdatap ∝ , 
 
where )|( datap θ  is the posterior probability distribution, )(θp  is the estimated or assumed prior probability 

distribution of the unobservables, and )|( θdatap  is the likelihood of the data as a function of the values of θ . 
 
In applying this equation, the posterior probability distribution of θ  is derived numerically by sampling many 
possible trial sets of values. Obtaining large samples, with satisfactory statistical properties, from the posterior 
distributions of multiple parameters presents complex computational problems. The programming framework 
WinBUGS v.1.3, made available by the Medical Research Council and the Imperial College of Science, 
Technology and Medicine in England (www.mrc-bsu.cam.ac.uk/bugs; Gilks et al., 1994; Spiegelhalter et al., 
2000), provided a means of specifying and analysing Bayesian models, including selection and implementation 
of appropriate algorithms. For numerical integration WinBUGS uses "Metropolis -Hastings within Gibbs 
sampling" (Gilks et al., 1996, see http://www.mrc -bsu.cam.ac.uk/bugs/). 
 
State equations 
 
The basic stock-dynamic model was a generalisation of the logistic model of population growth (Richards, 1959; 
Pella and Tomlinson, 1969). Its differential form is: 
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where B  is biomass, K is carrying capacity, and r is the intrinsic rate of growth. m is a shape parameter for the stock-
recruitment curve; a value of 1 gives the standard logistic trajectory. If m takes high values, it implies that density-
dependent reductions in population growth do not become significant until higher stock levels. 
 
A discrete and stochastic form of this model, also modified to include fishing mortality and predation, was expressed 
in the form: 
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where P is the stock biomass relative to carrying capacity (P=B/K) and MSY is the annualised value of the 
instantaneous maximum sustainable yield rate. Ct , the catch, and Vt, the predation, in year t, are also normalised on 
the carrying capacity. It was found that this reparameterization gave slightly more tractable solution characteristics 
(cf. Meyer and Millar, 1999). The ‘process errors’, vt are normally, independently and identically distributed with 
mean 0 and variance 2σ .  
 
The basic stock-dynamic model in the absence of fishing and explicit predation has the characteristics that the MSY 
level of biomass relative to carrying capacity is equal to: 
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and the MSY itself is given by 
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V is a predation term depending simultaneously on the shrimp stock biomass and on the biomass of the predator, 
Atlantic cod (Gadus morhua). Shrimp is not regarded as the primary forage for cod if fish, e.g. capelin, is available 
(ref. Bereinboom and Icelandic). The relative abundance of shrimp may therefore be expected to have to reach a 
certain level for cod to switch to this food type. A Holling type III functional response (Holling, 1959) was therefore 
used for inclusion of cod predation in the model. This function predicts a sigmoidal response of predation rate to 
increasing prey density, which essentially states that at intermediate shrimp density the consumption per predator 
increases linearly with prey density, but that at low prey density it approaches zero and at high prey density it has an 
asymptotic maximum. It can most simply be expressed in the form: 
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where Omax is the maximum consumption of prey per predator (kg/kg) reached at large prey  biomass, and P0.5  is the 
prey biomass index at which the consumption is half of the maximum. The total consumption at time t is then given 
by: 
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Inclusion of predation in this form requires including in the stock-dynamics model the two defining constants Omax 
and P0.5 and an error termτ which is normally, independently and identically distributed with mean 0 and 

variance 2ε . 
 
Priors 
 
Bayesian statistics perceives a set of observations as updating or correcting a prior model of reality, and a Bayesian 
model must be provided with information from two sources. One source is the study itself, i.e. the data acquired 
therein; the other is ancillary knowledge about the parameters, independent of the study, conceptually pre-existing, 
and summarised in "prior" distributions of model parameter values. The prior distribution for a parameter should 
incorporate all external information available. If no prior knowledge is available a low-informative "reference" prior 
(Kass and Wasserman, 1996) is used. 
 
Prior probability distributions of parameter values may in data scarce situations (i.e. in most marine population 
dynamic modelling) often have a strong effect on the posterior distribution and therefore on the conclusions drawn 
from a model. Selection of appropriate priors is therefore an important phase of building a Bayesian model. 
Distributions of the different parameters in the model interact, and what appears to be a reference prior for one 
variable may through its interactions with other variables act as an undesirably informative prior for them. Some 
guidelines for developing priors are given in Punt and Hilborn, 1997; and Gelman et al., 1995. 
 
qs, qc (catchability) 
 
The catchability coefficients, qc and qs, scaled the biomass indices of the standardised CPUE and survey series 
respectively to the absolute biomass estimates. Little prior information about these parameters was available except 
that the survey index was a minimum estimate of stock biomass (ref.) so values of qs greater than 1 are unlikely. The 
CPUE indices were expressed relative to a value of 1 in the most recent year, and therefore qc had to be smaller than 
1 as well. 
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Thus Reference priors were used. Because the catchability coefficients interacted with the carrying capacity, K, a 
uniform distribution was not non-informative, and a prior distribution uniform on a log scale from -∞ to 0 was 
preferred (Punt and Hilborn, 1997; McAllister and Kirkwood, 1997; Gelman et al., 1995). In practice this was 
approximated by using ln(qc)~U(20,0) and ln(q s)~U(20,0) (‘~’ means distributed as; U is the uniform distribution). 
 
MSY (Maximum sustainable yield) 
 
Few estimates of the intrinsic rate of increase, r, for other shrimp stocks have been published, which makes it hard to 
define an informative prior for this parameter. We therefore parameterised the model in terms of MSY instead of r.  
 
The prior distribution for MSY was modelled conservatively by a log-normal distribution, defined by ln(x) having 
mean 4.5 and standard deviation 1.  The mode of this distribution was at 35 thousand tons somewhat less than the 50 
thousand tons, which is the average catches of the time series. This prior corresponds in this set-up to a prior for r 
with 10th percentile at 0.1 and 90th percentile at 4.1.  
 
m ( the shape parameter)  
 
We had no prior information on the shape-parameter, m, for this stock. The ordinate at the point of inflection of 
Richards curve is given by m

MSY mP 1)1( −+= .  The curve of m as a function of PMSY in the interval 0.35<p<0.65 was 

approximated by )exp( c
MSYbPam = with appropriate values of a (0.4333), b (4.8121), and c (1.6734).  PMSY was 

assigned a uniform prior on the interval 0.35 to 0.65, and this approximate function was used to convert this to a 
non-informative prior for m.  
 
K (carrying capacity) 
 
The largest catch taken in a year is about 100 thousand tons and this may be taken as a lower bound on K. It was 
hard to come up with an upper limit to K. However, it seemed at least in this case where little information was 
available in the data on K, to be important to prevent sampling of very high and unrealistic values. Thus an upper 
limit was constructed as follows: some of the highest densities ever recorded in the survey are around 0.5kg/m2. The 
total distributional area of the stock is about 120 000 km2, much of which has densities well below commercial 
interest. If 5% of the total area had 0.5 kg/m2 it yields some 3 000 thousand tons. This was chosen to provide what 
was thought as a safe upper limit.  Instead of using a uniform distribution U (100,3000) the prior was uniform on a 
log scale with limits at 4.6 and 8 in order to reduce the tendency of the sampler to wander off to extreme values. 
 
P0 (starting biomass level) 
 
There is usually little information about the historic size of a stock preceding the time series of biomass indices. 
Commonly the assumption of Pzero = 1 i.e. the stock was, initially, at carrying capacity is used to partly overcome 
this difficulty.  However, this may have the effect of imposing an informative prior on K, it is not easy to defend in 
any circumstances, and it is especially questionable when, as in the present case, the stock had already been fished 
for some years before the start of the observations and/or was subject to predation by a fluctuating cod stock. Instead 
we used the less informative normally distributed prior P~N (1,0.2) in the model without a predation effect, and  
P~N(0.8,0.2) when predation was included – the decreased mean to acknowledge the presence of a large cod stock 
historic to the time series.  
 
ν, τ, κ, ω  (error terms) 
 
The priors for the error terms associated with the biomass indices were based on an estimated CV of around 10% for 
the CPUE-series (Hvingel et al., 2000) and about 17% for the survey series (Kingsley et al., 2000). The probability 
distribution of their standard deviations therefore had modes at 0.10 and 0.17 respectively, i.e. their precision were 
gamma distributed: 1/sdc

2~G(2,0.03) and 1/sds
2~G(2,0.0675). The standard deviations of the stock size, P, and the 

predation, V, were given priors similar to that for sdc
2.    
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Omax (maximum predation rate)  
 
Omax provides an upper limit to the amount of shrimp consumed by cod. The data itself could not be expected to 
contain much information about this parameter. An informative prior for the largest possible quantity of shrimp (kg) 
eaten pr. kg of cod was therefore constructed using estimates of growth and food conversion coefficients for cod 
feed to satiation in laboratory experiments (Björnsson et al., 2001; Björnsson and Steinarsson, in press). A 
maximum annual weight gain pr. kg fish for each age group were calculated inserting mean weight at age (Anon. 
2000, NWWG) and the average water temperature on the banks off West Greenland of 2oC (Buch, 2000) in the 
growth model (Björnsson and Steinarsson, in press). A food conversion coefficient of 3 (Björnsson et al., 2001) was 
then applied to convert the weight gain to maximum annual shrimp consumption. Assuming an average population 
structure (1975-89) a level for Omax was estimated to 2.5kg shrimp/kg cod/year. The prior took the form 
Omax~N(2.5,0.14) truncated at 1.5 and 3.5.  
 
P50  
 
The parameter P50 is the size of the shrimp stock at which 50% of Omax is reached. A prior uniform on a log-scale 
between 0.1 and 5 were chosen for the P50 to be non-informative with respect to the predation rate, O(P).   
 
Data and link functions 
 
Two series of biomass indices were available (Table 1). A standardised and combined series of annual commercial 
vessel catch rates (Hvingel et al., 2000; Hvingel, 2000) and a biomass index obtained by the Greenland trawl survey 
for the years 1988-2000 (Kingsley et al., 2000; Carlsson et al., 2000).  
 
These indices were assumed scaled to real biomass by a catchability constant. Lognormal observation error were 
applied, ω and κ, and hence these data took the distributions: 
 

)),(ln(log~ ωtct KPqNCPUE    ,   )),(ln(log~ κtst KPqNsurv  
 
Total reported catch in Subarea 1 + Div. 0A 1970-2000 (Hvingel, 2000) was used as yield data (Table 1). These data 
are considered very reliable without major discarding problems or misreportings and were therefore entered in the 
model as error-free.   
 
A series of cod biomass 1955-1992 were obtained from the assessments done by the NWWG (Anon., 1996). 
Absolute estimates of stock size were only available for West and East Greenland stocks combined. However, a 
separate series for the West Greenland component was constructed as an estimated 70% fraction of the total stock 
(Table x). In 1992 the cod fishery stopped due to a very low stock size and the VPA estimates done by the NWWG 
could not be continued. The cod stock was set to 5000 tons for 1993-2000. The series was entered deterministically 
in the model and the error associated was left to accumulate along with the process error in the error term for 
predation, V.     
 
Convergence diagnostics 
 
Conclusions based on an MCMC output depend on the assumption that the chain of sampled values for each 
parameter can be considered to be an unbiased random sample from the target (posterior) distribution. A chain is 
usually serially correlated, and at the start  is affected by the initial value assigned to each parameter. Initial values 
are not necessarily, or even usually, random samples from the posterior distributions. To check that the influence of 
the initial value had decayed and that the chain had ‘converged’ to a stationary sampling from a constant distribution 
before data collection began, several diagnostic tools were applied. This was done in S+ (ref) using the Bayesian 
Output Analysis programme (BOA) v. 0.5.0 by Brian Smith (www.public-health.uiowa.edu/boa/), which provides a 
suite of processing and diagnostic tools for MCMC outputs. 
 
A number of parallel chains with different starting points and with different random number seeds were analysed by 
the Brooks, Gelman and Rubin convergence diagnostic (Gelman and Rubin, 1992; Brooks and Gelman, 1998) to 
evaluate if the samples could be considered to have arisen from the target distribution. A stationarity test 
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(Heidelberger and Welch 1983) was applied to individual chains. If evidence of non-stationarity is  found this 
process discards iterations from the beginning of the chain until the remaining chain passes the test. A convergence 
diagnostic (Geweke 1992), which especially tests for convergence of the mean of the sampled parameter was also 
used along with Raftery and Lewis’s (1992) tests for convergence to the stationary distribution and estimation of the 
run-lengths needed to accurately estimate quantiles. 
 
Model check 
 
In order to check whether the model was a ‘good’ fit to the data, the observations were compared with their 
predicted distributions. Different goodness-of-fit statistics were computed. 
 
Firstly, we calculated the simple difference between each observed data point and its trial value in each MCMC 
sampling step.  The summary statistics of the distributions of these residuals indicated by their central tendency 
whether the modelled values were biased with respect to the observations.  The dispersion of the residuals was 
compared with both the classical statistical estimate of the SE of the respective observed value and the modelled 
collective estimate of the precision of the observation sequence. 
 
Secondly, the overall posterior distribution was investigated for potential effects of model deficiencies by comparing 
each data point with its posterior predictive distribution (Posterior Predictive Checks—PPC; Gelman et al. 1995, 
1996). Intuitively this is equivalent to running the model backwards to see the data needed to get the suggested 
result and then judge if that is a realistic scenario.  
 
Simulated sets of observed data, datarep, were drawn from the sampling distributions for the observations as outuput 
from the model.  Therefore, datarep has distribution: 
 

∫= θθθ ddataPdataPdatadataP obsrepobsrep )|()|()|(  

 
In this expression the term )|( θrepdataP  represents the sampling of observations from the distributions set up in the 

model to define them, and the term )|( obsdataP θ  represents the sampling of the parameters of those distribution 
from their own posterior distributions. If the model fitted the observed data well, the observed data should, 
collectively, be a ‘likely’ drawing from its simulated distribution, i.e. the observed data and the replicate data should 
look alike. The degree of similarity between the original and the replicate data points were summarised in a vector 
of p.values, calculated as the proportion of N simulations in which a sampling of the posterior distribution for an 
observed value exceeded the value in the input data: 
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where I(x) is 1 if x is true, 0 if x if false. Values close to 0 or 1 in the vector p-value would indicate that the observed 
data point was an unlikely drawing from its posterior distribution. 
 
Thirdly, the ‘Conditional Predictive Ordinate’ (Gelfand and Dey, 1994) was calculated as the inverse of the 
posterior mean of the inverse of the likelihood for observation i: 
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where N is the number of MCMC samples. This statistic indicated by small values if the relevant data points were a 
poor fit to the model. 
 
Fourthly, to compare the fit of the two models we calculated the deviance (Gilks et al., 1992) as the sample mean of 
the log-likelihoods times –2.  
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and the negative cross-validatory log-likelihood (Gelfan and Dey, 1994):  
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again N is the number of MCMC samples. These statistics both give small values the better the fit of the model. 
 

Results 
 
Two models were investigated. In each run BUGS was set up to do 5 mill. iterations, however only recording every 
100th to comp ensate for high serial correlation within the chains of some of the sampled parameter values. The first 
1000 samples of the recorded chain were discarded for burn-in leaving 49,000 samples as the final result. 
Convergence diagnostics were calculated for all parameters listed in Table 3 to confirm that the model and sampling 
set-up was appropriate to ensure convergence. 
 
Model 1 (without explicit predation effect) 
 
A Bayesian model, similar to that described above, but omitting all observations, parameters, equations and 
distributions concerning predation on shrimp by Atlantic cod, was fitted to the data series on CPUE, survey and 
catch.  This model was similar in concept to that fitted by likelihood methods in Hvingel and Kingsley (2000).  
 
The model was able to produce a relative tight simulation of the observed data (Figure 1). The probabilities of 
getting a more extreme observation than the realised ones given in the two data series were in the range of 0.12 to 
0.5 (Table 2) i.e. the observations did not lie in the tails of their posterior distributions. For the CPUE series, the 
model was having slight problems capturing the peaks in 1979, 1982, 1987, 1994 and 2000 as also indicated by 
these points having the largest log-residuals and smallest COP (Table 2). The survey series was generally less well 
estimated with the values of 1991 and 1994 being the most obvious deviations.  
 
Some of the parameters showed high linear correlation  (Table 3). The catchabilities, i.e. the parameters that scale 
the biomass indices to the real biomass were highly negatively correlated with the parameter for carrying capacity, 
K, and showed some correlation with MSY and the estimated biomass level of 2001, P2001 , as well.  
 
For the parameters Pmsy, K and Pzero the marginal posterior distributions tended to approximate the input priors 
(Figure 2). However, the model was able to add some precision to the prior estimate of MSY. The posterior was 
positively skewed and showed a mode at 95 000 tons and upper and lower quartiles at 85 000 and 155 000 tons 
giving a more optimistic view of MSY than assumed in the prior. The catchabilities, q s and qc, showed marked peaks 
at 0.13 and 0.00036 respectively but had relatively wide posterior distributions. The estimated CV of the observed 
CPUE series had a median at about 0.09 and for the survey series at 0.14. The process error, given as CVP , had a 
median of 11.4%. 
 
The estimated time series of mean biomass level, Pt, ranged from 1.31 to 2.05 times mean Pmsy and the probability 
that each successive annual shrimp biomass ratio had been greater than the P at MSY was calculated to be larger 
than 0.9, i.e. it seemed likely that the stock had been maintained above its MSY level throughout the history of the 
fishery. 
 
Model 2 (cod predation effect included) 

 
Entering a predation effect in the model only had minor influence on the ability of the model to fit the data as judged 
from the diagnostics presented in table 2 and 4. Actually the model without an explicit cod predation effect showed 
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a slightly better fit as indicated by smaller values for DEV and NCL (Table 2 and 4). Large correlations among 
parameters still prevailed (Table x)  
 
The probabilities of getting a more extreme observation than the realised ones were in the range of 0.15 to 0.5 
(Table 4). For the CPUE series it was still the peaks in 1979, 1982, 1987, 1994 and 2000 that had the largest log-
residuals and smallest COP’s (Table 4). Similarly, the greater variability of the survey series was still less well 
estimated with the values of 1991 and 1994 being the most obvious deviations. However, the model was now able to 
provide a historic perspective of a likely development of the stock since 1956 (figure 4), which agrees with the 
contemporary perception of the amount of shrimp at West Greenland (Horsted, pers. comm.).  
 
Compared to the results from model 1, the marginal posterior for the parameter K now had a more peaked 
distribution with a mode at 650000 t. The posterior distribution for Pmsy, approximately uniform in the absence of 
predation, changed to favour values at the lower end of its range i.e. values defining the Fox form of the logistic 
model (Fox, 1970). The prior for Pzero was updated to a slightly lower mean of 0.72 however no improvement of 
precision was evident. In shape and precision the posterior for MSY looked similar to the one estimated in the model 
1. The mode was at the lower quartile at 100 000 t - the upper quartile at 172 000 t. The catchabilities, qs and qc, 
were less precisely estimated than in model 1 and had modes slightly higher at 0.15 and 0.00048 respectively. The 
estimated CV’s of the observed biomass indices and of the estimated biomass, CVP , were similar to those estimated 
in model 1. The posterior for CV of estimated consumption, V, showed the same mode as the prior however, is 
precision was increased.   
 
As expected there was no information in the data about Omax and the posterior was a copy of the prior. The 
parameter P50 was markedly updated with a posterior showing a peak at 2. The estimated median annual 
consumption by cod 1955-2000 (figure 7) ranged from 2 000-118 000 tons. When the offshore fishery began in 1976 
the amount of shrimp eaten by cod was of the same magnitude as the catches. It then declined with the declining cod 
stock until a final strong year class of cod showed up and made consumption increase in the mid to late 1980’s. 
After that it declined to almost zero as the cod finally disappeared in the beginning of the 1990’s.  
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Table 1.  Input data series: catch in 1000 tons, standardised catch-per-unit-effort in the fishery (CPUE), biomass 

index from research survey and estimates of total cod (G. morhua) biomass. 

 
 

Year Catch CPUE Survey Cod
1955 2018
1956 1940
1957 1500
1958 1555
1959 1510
1960 1854
1961 1857
1962 1703
1963 1690
1964 1700
1965 1573
1966 1618
1967 1449
1968 1024
1969 625
1970 8.6 458
1971 9.4 391
1972 9.7 265
1973 12.6 160
1974 22.0 100
1975 37.9 73
1976 50.1 0.949 155
1977 42.1 0.890 143
1978 34.5 0.703 140
1979 35.2 0.636 158
1980 46.0 0.766 125
1981 44.8 0.741 121
1982 44.6 0.932 112
1983 46.8 0.812 87
1984 43.4 0.761 65
1985 54.5 0.795 42
1986 63.1 0.828 43
1987 63.7 1.059 175
1988 60.3 0.786 229.8 234
1989 65.7 0.631 228.0 230
1990 69.4 0.605 228.3 117
1991 75.9 0.591 172.6 38
1992 86.8 0.646 225.1 18
1993 75.6 0.646 256.1 14
1994 76.6 0.609 270.6 7
1995 70.7 0.664 217.1 7
1996 69.2 0.692 248.9 7
1997 64.5 0.664 206.2 7
1998 66.1 0.742 293.3 7
1999 76.5 0.790 287.4 7
2000 76.5 1.000 350.0 7
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Table 2.  Log-residuals, probability of getting a more extreme observation and conditional predictive ordinate 

(CPO) in model 1. 
 

 
 
 
Table 3.  Significant correlations (p<0.01) among parameters in model 1. 
 

 
 

K MSY P2001 Pmsy Pzero sd c sd P sd s q
MSY 0.25
P2001 0.32 0.18
Pmsy 0.04 -0.18 0.02
Pzero 0.03 ns 0.07 ns
sd c ns -0.01 0.04 0.03 ns
sd P 0.05 ns -0.04 ns ns -0.18
sd s ns 0.01 0.02 ns ns ns -0.07
qc -0.84 -0.29 -0.41 -0.06 -0.04 ns -0.07 -0.01
qs -0.84 -0.30 -0.41 -0.06 -0.04 ns -0.07 -0.01 1.00

CPUE-series Survey-series
Year resid.(%) p.extreme CPO resid.(%) p.extreme CPO
1976 4.1 0.37 6.4
1977 3.9 0.35 7.4
1978 -4.0 0.35 9.2
1979 -7.8 0.24 6.0
1980 1.7 0.46 10.5
1981 -3.9 0.36 10.1
1982 7.5 0.25 4.6
1983 -0.2 0.49 11.2
1984 -2.6 0.40 10.5
1985 -1.2 0.45 6.4
1986 -1.0 0.45 10.8
1987 13.2 0.14 0.4
1988 4.1 0.35 9.8 -14.2 0.19 0.017
1989 -4.1 0.34 12.4 -1.0 0.47 0.033
1990 -2.9 0.39 14.8 4.4 0.40 0.031
1991 -0.5 0.49 16.3 -18.8 0.12 0.014
1992 1.0 0.46 15.5 0.2 0.50 0.034
1993 -2.1 0.42 14.4 10.5 0.26 0.021
1994 -7.2 0.25 7.8 16.3 0.15 0.011
1995 0.8 0.47 15.1 -6.2 0.36 0.031
1996 1.1 0.46 14.5 3.7 0.42 0.029
1997 -1.0 0.45 14.5 -13.2 0.21 0.020
1998 -1.8 0.44 13.2 10.1 0.26 0.018
1999 -2.5 0.40 11.6 1.1 0.48 0.026
2000 7.4 0.25 4.0 7.2 0.33 0.017

Dev. mean -126.6 96.3
Dev. min. -165.1 81.5

NCL -54.7 49.7
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Table 4.  Mean, standard deviation and 25, 50, and 75 percentiles of MCMC samples from the posterior 

distribution for selected parameters in model 1. 
 

 
 
Table 5.  log-residuals, probability of getting a more extreme observation and conditional predictive ordinate 

(CPO) in model 2 
 

 
 

Parameter Mean  sd 25% Median 75%
K 1519 708.4 917.1 1426 2081
MSY 128.4 64.99 85.63 113.5 155.5
P2001 0.9455 0.1613 0.8384 0.9353 1.039
Pmsy 0.5011 0.08284 0.4283 0.4966 0.5724
Pzero 1.007 0.1967 0.8745 1.009 1.14
precCPUE 139.2 56.18 98.34 130.2 169.9
precP 82.68 31.97 59.99 77.25 99.32
precsurv 52.74 20.73 37.78 49.71 64.46
q 8.00E-04 4.92E-04 4.33E-04 6.44E-04 0.001021
qs 0.2808 0.1737 0.1516 0.2252 0.3571

CPUE-series Survey-series
Year resid.(%) p.extreme CPO resid.(%) p.extreme CPO
1976 5.6 0.31 5.1
1977 5.5 0.31 6.0
1978 -3.9 0.37 10.5
1979 -8.4 0.23 6.0
1980 1.6 0.44 11.2
1981 -3.7 0.37 10.4
1982 8.0 0.24 3.8
1983 0.0 0.49 11.3
1984 -2.9 0.40 10.8
1985 -1.5 0.45 11.4
1986 -2.2 0.42 10.4
1987 12.1 0.15 0.7
1988 3.9 0.37 10.4 -14.1 0.19 0.017
1989 -3.9 0.37 13.4 -0.5 0.49 0.033
1990 -2.0 0.43 16.0 5.6 0.37 0.030
1991 0.0 0.50 17.3 -18.1 0.12 0.014
1992 0.9 0.46 15.7 0.5 0.49 0.034
1993 -2.1 0.43 14.7 10.7 0.25 0.020
1994 -7.8 0.24 7.8 16.1 0.15 0.012
1995 0.1 0.49 15.2 -6.6 0.33 0.030
1996 0.4 0.48 14.8 3.3 0.42 0.030
1997 -2.1 0.42 14.7 -14.0 0.19 0.019
1998 -2.5 0.40 12.4 9.7 0.26 0.019
1999 -3.4 0.38 11.3 0.5 0.48 0.026
2000 7.1 0.26 4.5 7.2 0.33 0.017

Dev. mean -70.0 125.9
Dev. min. -103.5 112.2

NCL -25.4 64.5
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Table 6.  Significant correlations (p<0.01) among parameters in model 2. 
 

 
 
 
 
Table 7.  Mean, standard deviation and 25, 50, and 75 percentiles of MCMC samples from the posterior 

distribution for selected parameters in model 2. 
 

 
 
 
 
 
 

K MSY Omax P2001 P50 Pmsy Pzero sd c sd P sd V sd s q
MSY 0.57
Omax ns ns
P2001 0.17 0.45 ns
P50 -0.22 -0.33 ns 0.10
Pmsy -0.07 -0.12 ns 0.16 0.24
Pzero 0.25 0.12 -0.01 0.13 0.22 0.06
sd c -0.03 -0.02 ns 0.03 -0.01 ns -0.02
sd P -0.18 -0.13 ns -0.11 -0.07 -0.04 -0.11 -0.15
sd V ns ns ns 0.02 ns 0.01 -0.02 ns -0.02
sd s ns 0.03 ns 0.04 -0.02 ns ns ns -0.07 ns
q -0.82 -0.59 ns -0.40 0.15 0.02 -0.29 0.04 0.17 -0.01 -0.02
qs -0.82 -0.59 ns -0.40 0.15 0.02 -0.29 0.04 0.17 -0.01 -0.02 1.00

Parameter Mean  sd 25% Median 75%
K 1259 669.7 716.3 1067 1686
MSY 148.1 73.66 99.75 125.3 171.8
Omax 2.494 0.1415 2.399 2.493 2.589
P2001 0.849 0.1576 0.756 0.8505 0.9466
P50 2.315 0.8679 1.69 2.162 2.79
Pmsy 0.4735 0.07623 0.408 0.4601 0.5298
Pzero 0.7199 0.2035 0.5796 0.719 0.8581
precCPUE 140.9 56.03 100.7 131.8 171.4
precP 98.67 40.14 70.19 91.73 119.4
precV 66.28 46.79 31.95 55.4 89.13
precsurv 53.04 20.78 38.03 49.92 64.71
q 0.00112 0.00061 0.00062 0.001 0.001509
qs 0.3927 0.2134 0.2172 0.3482 0.529
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Fig. 1. Observed biomass indices based on standardised catch-per-unit-effort data (CPUE) from the fishery, swept 

area biomass index estimates from the Greenland trawl survey and corresponding medians of their posterior 
distributions estimated by model 1. 
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Fig. 2a-j.  Prior (broken lines) and posterior (solid lines) density functions of parameters in model 1 as obtained 

from the MCMC samples. 
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Fig. 2b.  
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Fig. 2c.  
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Fig. 2d. 
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Fig. 2e.  
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Fig. 2f.  
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Fig. 2g. 
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Fig. 2h. 
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Fig. 2i. 
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Fig. 2j. 
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Fig. 3.  Production vs. stock size as predicted from the indices using model 1 and a “best fit” (least squares) stock-

recruitment curve. 
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Fig. 4.  Observed biomass indices based on standardised catch-per-unit-effort data (CPUE) from the fishery, swept 

area biomass index estimates from the Greenland trawl survey and corresponding medians of their posterior 
distributions estimated by model 2. 
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Fig. 5a-m.  Prior (broken lines) and posterior (solid lines) density functions of parameters in model 1 as obtained 
from the MCMC samples. 
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Fig. 5b.  
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Fig. 5c.  
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Fig. 5d. 
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Fig. 5e. 
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Fig. 5f.  



 

 

23 

0 0.1 0.2 0.3 0.4 0.5

sd survey series

Pr
ob

ab
ili

ty
 d

en
si

ty

 
Fig. 5g. 
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Fig. 5h. 
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Fig. 5i.  
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Fig. 5j. 
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Fig. 5k. 
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Fig. 5l. 
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Fig. 5m. 
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Fig. 6.  Production vs. stock size as predicted from the indices using model 2 and a “best fit” (least squares) stock-

recruitment curve. 
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Fig. 7.  Annual removal (tons) of shrimp from the West Greenland stock by cod and by the fishery. Cod 

consumption is the median of the posteriors as estimated by model 2 
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Fig. 8.  Summed annual removal (tons) of shrimp from the West Greenland stock by cod and the fishery. (Cod 

consumption is the median of the posteriors as estimated by model 2) 
 
 
 
 


