

Fisheries Organization

NOT TO CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N4642

NAFO SCR Doc. 02/31

SCIENTIFIC COUNCIL MEETING – JUNE 2002

Standardized Catch Rate Index for Greenland Halibut in SA2+3KLMNO

by

D. Power Science Branch, Department of Fisheries and Oceans P. O. Box 5667, St. John's, Newfoundland, Canada A1C 5X1

Abstract

Catch and effort data were analysed with a multiplicative model to derive a standardized catch rate index for Greenland halibut in NAFO SA2+3KLMNO. There were two measures of effort were used (hours fished and days fished) in separate analyses because of the lack of hours fished data for some fleets. The results indicate an increase in recent years from lowest the rate in the time series in 1997, which is consistent with improved recruitment. It is uncertain whether the catch rate index is representative of stock abundance because fleets fish in different areas of the stock. The Canadian fleet operates within the 200-mile limit in Div. 3KL while non-Canadian vessels fish in the NAFO Regulatory area outside the 200-mile limit primarily in Div. 3LMN.

Introduction

A catch rate standardization based on commercial fishery data is presented for the assessment of Greenland halibut in SA2+3KLMNO.

Materials and Methods

Catch and effort data from the directed fishery for Greenland halibut during the period 1975 to 1999 were obtained from ICNAF/NAFO Statistical Bulletins and were combined with provisional 2000 NAFO STATLANT 21B data and 2001 Canadian data. The catch/effort data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index for hours fished, as has been done in the last few assessments of this stock. A second standardization was conducted for days fished due to missing hours fished data from two major fleets, EU-Portugal since 1992 and EU-Spain since 1995.

Factors included in each model were a combination country-gear-tonnage-class category type (CGT), month, NAFO Division and year. Consistent with previous catch rate standardizations utilizing "hours fished", individual observations of catch less than 10 tons or effort less than 10 hours fished were eliminated prior to analysis. Subsequently, any remaining categories where there were less than five occurrences in the database were also eliminated. For the days fished model the only difference in *apriori* elimination was that for the effort, data less than 5 days fished were eliminated.

Results and Discussion

For the "hours fished" standardization, the regression was significant (p < 0.05), explaining 58% of the variation in catch rates (Table 1). Although there was a significant year effect, there were only two years (1992 and 1997) that were significantly different from the 1975 reference year. The regression coefficients suggest that for the whole time period, catch rates were generally higher in winter and best in Subarea 2. The

standardized catch rate index (Table 2, Fig. 1 upper panel) shows high between and within year variability, especially in the late-1970s to mid-1980s. There was an increasing trend in catch rate from the mid-1970s that peaked in 1982. CPUE subsequently fluctuated but declined by 60% to the lowest rate estimated in 1997. Catch rate has increased steadily from 1997 to 2001. The increase is consistent with improved recruitment of several successive year classes from 1993-1995 (Bowering, 2001; Mahe and Bowering, 2001). The 2001 estimate, based solely on preliminary Canadian data is about 65% of the highest rate in the series in 1982.

For the "days fished" standardization, the regression was also significant (p < 0.05), explaining 55% of the variation in catch rates (Table 3). The standardized catch rate index (Table 4, Fig. 1 lower panel) also shows high between and within year variability prior to the 1990's. The catch rate was relatively stable to 1984 and, with the exception of an anamalous increase in 1987, declined by about 45% by 1988. Between 1988 and 1995 the index shows two cycles of increase followed by a decrease. Since 1995 the index declined gradually to the lowest rate observed in 1998, but has increased by 50% between 1998 and 2001. The 2001 estimate, based solely on preliminary Canadian data, is about 70% of the highest estimate in the series in 1982. Similar to the "hours fished" index, over the whole time period, catch rates were generally higher in winter and higher in Subarea 2, based on the coefficients in Table 3.

It is uncertain whether the catch rate index is representative of stock abundance because fleets fish in different areas of the stock. The Canadian fleet operates within the 200-mile limit in Div. 3KL while non-Canadian vessels fish in the NAFO Regulatory area outside the 200-mile limit primarily in Div. 3LMN.

References

- Bowering, W.R. 2001. Population Trends in the Greenland halibut (*Reinhardtius hippoglossoides*) Resource of NAFO Subarea 2 and Divisions 3KLMNO based on Canadian Research Vessel Survey Results during 1978-2000. NAFO SCR Doc. 01/39, Ser. No. N4417, 42p.
- Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.
- Mahe, J-C and Bowering, W.R. 2001. An Assessment of Stock Status of the Greenland Halibut Resource in NAFO Subarea 2 and Divisions 3KLMNO based on Extended Survivors Analysis. NAFO SCR Doc. 01/80, Ser. No. N4459, 18p.

Table 1. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized catch rate series for Greenland halibut in NAFO SA2 + Div. 3KLMNO. Effort is HOURS fished. (2001 based on preliminary data).

REGRESSI ON MULTI PLE F MULTI PLE F	2		. 0	MDDEL . 762 . 581		CATEGORY	CODE	VAR #	REG. COEF	STD. ERR	NO. OBS
ANALYSIS 0							11 12	31 32	-0.047	0. 064 0. 070	91 73
ANALISIS U	F VARI	ANCE				3	12 21	33	0. 073 0. 045	0.070	73 52
SOURCE OF		SUMS	OF	MEAN		5	23	33 34	0.043	0. 082	117
VARI ATI ON	DF	SQUAR		SQUARE	E-VALUE		23 31	35	-0.240	0.005	118
							32	36	-0.176	0.073	236
I NTERCEPT	1	7.74		7.74E2			33	37	-0.455	0.099	89
REGRESSION	65	1.91		2.94E0	16. 280		34	38	-0.218	0.103	70
Cntry Gear TC(4.00		1. 91E0	10. 544		35	39	-0.243	0. 137	21
Month(1.24		1.13E0	6. 262	4	76	40	- 0. 061	0. 222	11
Di vi si on(3) 7	7.74	EO	1.11EO	6. 122		77	41	0.074	0.213	19
Year((4) 26	2.58	E1	9. 91E- 1	5.482		78	42	0.288	0. 230	18
							79	43	0.109	0. 226	10
RESI DUALS	764	1.38	SE2	1. 81E- 1			80	44	0. 315	0. 234	12
TOTAL	830	1.10	E3				81	45	0. 132	0. 222	15
							82	46	0. 395	0. 216	19
REGRE	ESSION	COEFFI	CI ENTS				83	47	0.357	0.209	24
				~			84	48	0. 295	0.212	23
CATE CODE	CODE	VAR	REG.	STD.			85	49	0.091	0.213	21
CATEGORY	CODE	#	COEF	ERR	OBS		86	50	-0.173	0.212	24
		 T N/T					87	51	0.113	0.203	33
Cntry Gear TC	3125	I NT	-0.802	0. 211	830		88	52	-0.260	0.212	22
Di vi si on Manth	9						89 90	53 54	-0.084 -0.030	0.216	22
Month	22						90 91	54 55	-0.030	0. 215 0. 210	26 51
Year 1	75 3123	1	- 0. 199	0. 153	9		91 92	55 56	-0. 318	0. 210	51 102
1	3123	2	-0.126	0. 155	8		92 93	50 57	-0.264	0. 208	84
	9125	23	0. 775	0. 104	12		94	58	-0. 422	0. 211	101
	10127	4	1.074	0. 183	8		95	59	-0.276	0. 226	21
	11125	5	0. 235	0. 131	16		96	60	-0.439	0. 219	23
	11126	6	-0.112	0. 201	6		97	61	-0.558	0. 220	24
	11127	7	0. 383		17		98	62	-0.377	0. 227	34
	14124	8	0.445	0.073	114		99	63	-0.404	0. 224	49
	14126	9	0.733	0. 112	23		100	64	-0.129	0. 222	19
	14127	10	0.409	0. 093	43		101	65	- 0. 025	0. 223	17
	15126	11	0. 300	0. 198	6						
	16127	12	0.264	0. 088	51	LEGEND FOR	AVOVA 1	RESULT	<u>'S:</u>		
	19124	13	- 0. 309	0. 092	102	CGT CODES:					
	19125	14	- 0. 025	0. 101	75	3123 = Can(TC 3		= Norway	TC 6
	19126	15	0. 297	0.117	28	3125 = Can(TC 5		= Pol and	TC 7
	20125	16	0.337	0. 185	7	3126 =	"	TC 6		= Spain	TC 4
	20126	17	-0.086	0.142	12	9125 = Fra(TC 5	19125		TC 5
	20127	18	0.003	0.095	37	10127 = Form			19126		TC 6
	27125	19	0.244	0.098	26 17	11125 = Form	mer DDR		1		USSR TC 5
	34125	20	0.516	0.155	17	11126 =		TC 6 TC 7	20126	_	TC 6
2	34126	21 22	0. 261 0. 254	0.144	22 40	11127 = 14124 = Japa		TC 4	20127	= $Can(M)$	TC 7 TC 5
2	1	23	0. 202	0. 084 0. 082		14124 = Japa 14126 =	"	TC 6		$= \operatorname{Russia}$	
	2 3	23 24	0. 202	0. 082	44 57	14120 = 14127 =	"	TC 7	34125		TC 5 TC 6
	3 4	24 25	0.030	0.075	60	$\frac{14127}{\text{DIVISION COD}}$		10 /	1 34140	-	10 0
	4 5	23 26	0. 049	0.073	54	21 = 2G, 22		23 = 2	I 31 -	3K 32 -	31
	6	27	0. 210	0.072	54 65	21 = 20, 22 33 = 3M, 34				5n, 52 =	
	7	28	0. 148	0.072	03 74	00 – 0m, 04	- on, c		0		
	8	29	0.032	0.063	89						
	10	30	-0.274	0.065	83						
	10	50	0. 214	0.000	00						

Table 2. Standardized catch rate index for Greenland halibut in NAFO SA2+ Div. 3KLMNO from a multiplicative model utilizing HOURS FISHED as a measure of effort. (2001 based on preliminary data).

PREDICTED CATCH RATE

	LN TH	RANSFORM	RETRA	NSFORMED		
YEAR	MEAN	S. E.	MEAN	S. E.	САТСН	EFFORT
1975	- 0. 8016	0.0444	0. 480	0. 100	28814	59995
1975	- 0. 8626	0.0444 0.0235	0.460	0. 100	24611	53896
1970	-0.7272	0.0233	0. 437	0.070	32048	61138
1977	-0. 5137	0.0184 0.0210	0. 524	0.071	32048	60284
	-0. 5137	0.0210 0.0285	0. 648	0.093	39070	63154
1979						49359
1980	-0.4865	0.0212	0.666	0.097	32867	
1981	-0.6701	0. 0186	0.555	0.075	30754	55421
1982	-0.4068	0.0145	0.724	0.087	26278	36319
1983	-0.4442	0.0127	0.698	0.078	27861	39939
1984	-0.5067	0.0120	0.656	0.072	26711	40745
1985	-0.7109	0.0141	0. 534	0.063	20347	38110
1986	- 0. 9745	0. 0129	0.410	0.047	17976	43797
1987	- 0. 6884	0. 0131	0. 546	0.062	32442	59380
1988	- 1. 0621	0.0142	0.376	0.045	19215	51135
1989	- 0. 8855	0.0133	0.449	0.052	20034	44661
1990	- 0. 8317	0.0112	0.474	0.050	47454	100142
1991	- 1. 1199	0.0106	0.355	0.036	65008	182944
1992	-1.2737	0.0099	0.305	0.030	63193	207347
1993	- 1. 0654	0.0111	0.375	0.039	62455	166489
1994	- 1. 2239	0.0119	0. 320	0.035	51029	159460
1995	- 1. 0779	0.0185	0.369	0.050	15272	41377
1996	- 1. 2402	0.0153	0.314	0.039	18840	59939
1997	- 1. 3600	0.0154	0.279	0.034	19858	71222
1998	- 1. 1783	0.0191	0. 334	0.046	19946	59762
1999	- 1. 2058	0.0177	0.325	0.043	24226	74564
2000	- 0. 9302	0.0167	0. 428	0.055	34177	79806
2000	-0.8268	0.0107 0.0169	0.420 0.475	0.061	29437	61994
2001	-0.0200	0.0109	0.475	0.001	~J4J1	01554
AVERA	GE C.V. I	FOR THE R	ETRANSFO	RMED MEAN	I: 0. 128	

Table 3. ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized catch rate series for Greenland halibut in NAFO SA2 + Div. 3KLMNO. Effort is DAYS fished. (2001 based on preliminary data).

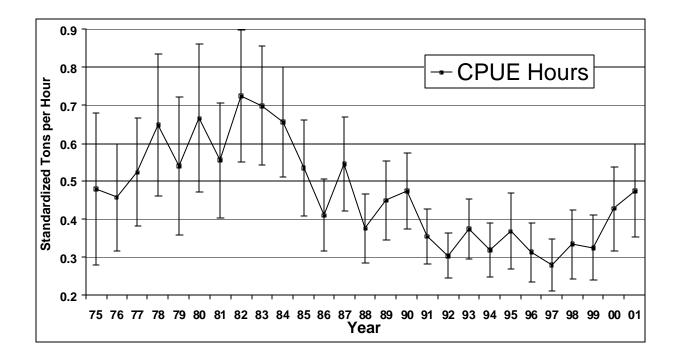

REGRESSI ON MULTI PLE F MULTI PLE F	2		. 0	MDDEL .741 .549		CATEGORY	CODE	VAR #	REG. COEF	STD. ERR	NO. OBS	
ANALYSIS 0							8 10	31 32	0. 187 - 0. 226	0. 066 0. 069	95 85	
							11	32	-0.078	0.069	96	
SOURCE OF		SUMS	0F	MEAN			12	34	0.078	0.071	86	
VARI ATI ON	DF	SQUAR	ES	SQUARE	F-VALUE	3	21	35	0.140	0. 099	43	
							23	36	0.056	0.075	107	
I NTERCEPT	1	2.24		2.24E3	15 700		31	37	-0.262	0.091	104	
REGRESSION Cntry Gear TC(67 1) 22	2.24 6.26		3. 34E0 2. 72E0	15. 766 12. 832		32 33	38 39	-0.236 -0.718	0. 096 0. 109	316 102	
Month		1.95		1. 72E0	8. 374		33 34	39 40	-0.477	0. 109	130	
Di vi si on(2.27		3. 24E0	15. 283		35	41	-0.409	0. 146	23	
	(4) 26	2.34		9. 00E-1	4. 242	4	76	42	-0.137	0. 248	9	
							77	43	- 0. 095	0. 237	15	
RESI DUALS	868	1.84		2. 12E-1			78	44	- 0. 068	0.270	9	
TOTAL	936	2.65	E3				79	45	-0.036	0.258	8	
DECDI	CCT ON	COFFEI	CIENTS				80 81	46	0.072	0.275	8 19	
KEGKI	ESSION	CUEFFI	CIENIS				81 82	47 48	-0.294 0.097	0. 251 0. 238	12 18	
		VAR	REG.	STD.	NO.		83	40	- 0. 025	0. 238	25	
CATEGORY	CODE	#	COEF	ERR	OBS		84	50	0.072	0. 233	21	
							85	51	-0.146	0. 239	17	
Cntry Gear TC	3125	I NT	2.030	0. 236	936		86	52	-0.348	0. 240	16	
Di vi si on	9						87	53	-0.090	0. 228	27	
Month	22						88	54	-0.537	0. 233	21	
Year	75 2122	1	0 501	0 159	10		89 90	55 56	-0.338 -0.326	0. 241 0. 238	19 24	
1	3123 3126	1 2	- 0. 501 - 0. 098	0. 158 0. 177	10 8		90 91	56 57	-0. 320	0. 238	24 45	
	9125	23	0. 535		28		92	58	-0.590	0. 232	99	
	11125	4	-0.064	0. 138	18		93	59	-0.377	0. 230	88	
	11126	5	- 0. 260		5		94	60	-0.364	0. 230	112	
	11127	6	0.179		16		95	61	-0.575	0. 239	33	
	14124	7	0.478		109		96	62	-0.595	0. 234	42	
	14126	8	0.570		19		97	63	-0.681	0.234	41	
	14127 15126	9 10	0. 419 0. 302		37 5		98 99	64 65	-0.701 -0.539	0. 231 0. 235	98 60	
	16127	11	0. 302		46		100	66	-0.242	0. 233	48	
	17126	12	-0.270		112		101	67	-0.288	0. 248	15	
	19124	13	-0.216	0.097	101							
	19125	14	-0.101	0. 098	111	LEGEND FOR	AVOVA 1	RESULT	<u>'S:</u>			
	19126	15	0.463	0.128	28	CGT CODES:			n Trawle	ers		
	19166	16	0.388	0. 184	8	3123 = Can(TC 3		= Portuga	1	TC 6
	20125 20126	17 18	0. 346 -0. 345	0. 215 0. 167	6 10	3125 = Can(3126 =	NFLD) "	TC 5 TC 6	19124	= Spain		TC 4 TC 5
	20120	19	-0.242	0. 107	35	9125 = Fra		TC 5	19125			TC 6
	27125	20	0. 166		17	11125 = Form	()			- =Spai nPai	rTrawl	
	34125	21	0. 554		15		"	TC 6		= Former		TC 5
	34126	22	0.421	0. 132	24	11127 =	"	TC 7	20126	= "		TC 6
	34127	23	- 0. 082	0. 226	5	14124 = Japa	n	TC 4	20127			TC 7
2	1	24	0.314		49	14126 =		TC 6		= Can(M)		TC 5
	2	25	0. 299		57	14127 = 15120		TC 7		= Russia		TC 5
	3	26 27	0.137		77 73	15126 = Norw 16127 = Pol 2		TC 6 TC 7	34126 34127			TC 6 TC 7
	4 5	27 28	0. 185 0. 338		73 68	$\frac{16127 = Pol a}{DIVISION COD}$		10 /	5412/	-		<u>IU /</u>
	6	29	0. 338		73	21 = 2G, 22		23 = 2	J. 31 =	3K. 32 =	3L	
	7		0. 146		72	33 = 3M, 34				, 02		
	-						- , -	-				

Table 4.Standardized catch rate index for Greenland halibut in NAFO SA2+ Div. 3KLMNO from a
multiplicative model utilizing DAYS FISHED as a measure of effort. (2001 based on preliminary data).

PREDICTED CATCH RATE

	LN T	RANSFORM	RETR	ANSFORMED		
YEAR	MEAN	S. E.	MEAN	S. E.	CATCH	EFFORT
1975	2.0305	0.0556	8. 239	1.917	28814	3497
1976	1.8930	0.0342	7. 258	1. 331	24611	3391
1977	1. 9355	0. 0259	7.604	1.216	32048	4215
1978	1.9630	0.0349	7.781	1.443	39070	5021
1979	1.9941	0.0398	8.007	1.583	34104	4259
1980	2.1025	0.0351	8.945	1.661	32867	3674
1981	1.7362	0. 0285	6. 222	1.043	30754	4943
1982	2.1277	0.0188	9.248	1.264	26278	2841
1983	2.0052	0.0159	8.194	1.030	27861	3400
1984	2.1026	0.0163	9.030	1.149	26711	2958
1985	1.8842	0. 0202	7.244	1.025	20347	2809
1986	1.6822	0. 0210	5.917	0.854	17976	3038
1987	1.9408	0. 0199	7.668	1.076	32442	4231
1988	1.4935	0. 0189	4.905	0.671	19215	3918
1989	1.6921	0.0178	5.986	0.796	20034	3347
1990	1.7040	0.0145	6.067	0.728	47454	7821
1991	1.5650	0.0134	5.283	0.610	65008	12305
1992	1.4402	0. 0133	4.663	0.537	63193	13551
1993	1.6538	0. 0137	5.772	0.674	62455	10820
1994	1.6670	0. 0140	5.848	0. 690	51029	8726
1995	1.4556	0.0187	4.723	0.643	15272	3234
1996	1.4351	0. 0160	4.633	0. 585	18840	4066
1997	1.3500	0. 0163	4.255	0.541	19858	4667
1998	1.3296	0.0147	4.172	0.504	19946	4781
1999	1.4919	0. 0168	4.902	0.634	24226	4942
2000	1.7889	0. 0161	6.600	0.834	34177	5178
2001	1.7427	0. 0222	6.282	0. 931	29437	4686

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.144

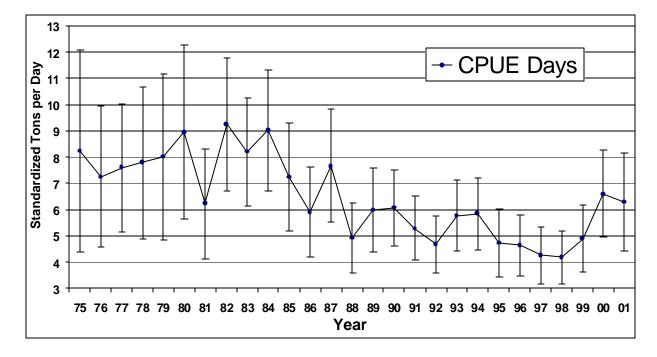


Fig. 1. Standardized CPUE ± 2 standard errors for Greenland Halibut in SA2 + Div. 3KLMNO from 1975-2000 (preliminary) utilizing effort in HOURS fished (upper panel) and DAYS fished.

7