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Abstract 

 
In order to quantitatively estimate the species composition and number of sharks utilized by the shark fin trade, a 
partial set of daily auction records was obtained from the world’s largest shark fin trading center in Hong Kong for 
October 1999 to March 2001.  Over 10 000 lot descriptions of shark type, fin position, fin size and fin weight were 
translated and statistically modeled using Bayesian Markov Chain Monte Carlo methods (WinBUGS).  These 
methods allowed a robust estimation of missing information in individual auction records, as well as entire auctions 
for which no data are available, through a hierarchical model with uninformative priors.  The model provides 
estimates of the complete data set for the sampled period, including the total auctioned weights of fins by shark type 
and fin position.  Separate studies, conducted in Hong Kong to genetically map trade names to species names, are 
being used to align the estimates with particular taxa.  This paper demonstrates how the traded quantity estimates 
can be converted to the weight and number of sharks represented based on preliminary conversion factors from the 
literature and from this research.  A potentially more robust Bayesian conversion algorithm, involving fin size 
classes and stochastic relationships between lengths and weights, is outlined for future implementation.   
 

Introduction 
  
Much of the current concern regarding the sustainable utilization of shark resources centers on the practice of 
finning and the role of the shark fin trade in driving shark mortality.  Short of conducting a detailed case study 
analysis of the many variables determining whether sharks are targeted and finned in particular fisheries (e.g. 
McCoy and Ishihara, 1999), market data can used be to assess the numbers of sharks represented by traded 
quantities of shark fin, and to identify the species composition in trade.  Given the absence of extensive and reliable 
species-specific shark catch statistics, estimates of shark landed weights or numbers generated from fin trade-based 
studies can also provide useful reference points against which to evaluate reported shark catch rates.  In these ways, 
shark fin market data can contribute to a better understanding of shark utilization rates and provide useful insights 
into the current pressures facing world shark populations.  Similar methods, once proven, can also be applied to 
other marine or wildlife species of concern.  
  
Hong Kong, which serves as an entrepôt for Mainland China, has been the center of the world trade in shark fins for 
many decades (Kreuzer and Ahmed, 1978; Parry-Jones, 1996; Vannuccini, 1999; Fong and Anderson, 2002).  
Estimates of Hong Kong’s share of the trade have varied between 50% (Tanaka, 1995, based on data through 1990) 
and 85% (Vannuccini, 1999, based on 1992 data).  In recent years, unprocessed shark fins have been exported to 
Hong Kong by at least 85 countries on six continents (Clarke and Mosqueira, 2002).  Even when a recent trend 
toward importing more shark fins in frozen form is accounted for, the weight of imports into Hong Kong has 
increased year-on-year at a rate of 5% (Clarke, 2002).  Rather than relying on customs statistics, this study is based 
on records from daily shark fin auctions held in Hong Kong by approximately 16 different trading houses.  A 
proportion of fins imported to Hong Kong in unprocessed form are auctioned by importers to processors, who 
generally re -export the fins to Mainland China for low-cost processing.  Data collection at this point in the supply 
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chain allows fins to be characterized by shark type, fin type and fin size.  Since this market draws large quantities of 
shark fins from all over the world, detailed characterization of this market can be extrapolated, with appropriate 
caveats, to depict the global trade.   
 
This paper describes a probabilistic (Bayesian) approach to modeling shark fin auction data and demonstrates how 
these can be used to derive estimates of total traded fin weights and shark numbers.  Although Bayesian statistics are 
computationally more demanding than frequentist analogs, their use in fishery stock assessment is steadily gaining 
momentum (Punt and Hilborn, 1997; McAllister and Kirkwood, 1998; McAllister et al, 2001).  Bayesian methods 
allow parameters to be treated as random variables rather than as fixed values and thus explicitly account for 
uncertainty in the statistical modeling, as well as provide a more intuitively obvious interpretation of resulting 
probabilities.  This application of probabilistic statistics involves prediction and filling of missing trade data, 
resulting in more reliable estimates and probability intervals.   

 
Materials and Methods  

 
Shark fins auctioned in Hong Kong are organized into lots which are described on sheets distributed to all 
participating bidders.  Each sheet lists the name of the trading house, the date, the type of fin (by trade name (some 
of which are loosely species-specific), size and position), and the number of bags in each lot.  These records are 
usually annotated after the auction by official record keepers to show the weight and official selling price of each 
lot.  Since the records do not provide information about the source location of the fins, it is not possible to draw any 
conclusions about the country or ocean of origin from these records.  Sheets from 148 auctions were obtained 
spanning the period October 1999 to February 2001, representing a subset of all auctions held.  Lot descriptions, 
weights and prices were translated and transcribed into an Excel database for all 10 669 lots.  In addition, a calendar 
showing the name of the trading houses holding auctions between October 1999 and March 2001 was compiled in 
order to identify missing auction records.  During this period a total of 513 auctions were held, approximately 29% 
of which were observed.   
 
Statistical models were developed to address two key deficiencies in the data set:  filling of missing lot weights for a 
small number of trading houses which refuse to disclose this information, and filling of auctioned quantities for 
dates on which no records were available.  Models were formulated using WinBUGS (Bayesian inference Using 
Gibbs Sampling) software (http://www.mrc -bsu.cam.ac.uk/bugs) employing a hierarchical modeling approach 
(Gelman et al., 1995).   
 
Although fin lots were described on the sheets using more than 50 different market categories for shark type, this 
analysis focused on eleven common categories plus one additional category for all other fins.  The eleven categories 
were chosen to complement a parallel study mapping these categories to particular species or genera using DNA 
polymerase chain reaction techniques (Shivji et al., 2002; Clarke et al., in prep).  Trade category-taxonomic matches 
currently undergoing testing are shown in Table 1.  Traders often record the fin position for each lot, particularly 
when the market value of the fins depends not only on the type of shark but also on the body position of the fin.  The 
three most commonly recorded fin positions are dorsal, pectoral, and lower caudal, but other fin positions such as 
anal, upper caudal, and second dorsal, are also observed.  In this analysis, only the three most common fin positions 
were modeled separately.  All other fin positions, including large numbers of lots of unspecified fins, were grouped 
into an “other” category.   
 
The aim of Model A was to use the relationship between the number of bags in the lot and the lot weight for those 
records where both data were dis closed, to predict the lot weight for records that only revealed the number of bags in 
the lot (Fig. 1).  The relationship was estimated for each shark type and fin type on a per auction basis, using average 
number of bags and average lot weight in a given auction as the estimation parameters, to reduce the effects of 
outlier lots.  All observations where average number of bags and average lot weight were zero were removed to 
avoid biasing the relationship.  Plots of average lot weight versus average number of bags per lot indicated a linear 
equation of the form, bmxy += , where y is the average lot weight and x is the average number of bags in the lot, 
would be appropriate.  To avoid negative y values, all weight data were ln transformed for model input and 
backtransformed for model output.  The slope and intercept for each shark type/fin type combination were estimated 
using normally distributed, uninformative (diffuse) priors and additive effects for shark type and fin type which were 

http://www.mrc
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also based on normally distributed, uninformative priors.  The shark type and fin type effects, were constrained to 
sum to zero.  A normally distributed error term for the regression equation was also included, ie ε++= bmxy .   

 
The model estimates a base slope and intercept for all observed shark type/fin type combinations in 

aggregate as well as separate additive effects (or offsets) for each shark type/fin type individually.  The shark type- 
and fin type- specific slope and intercept are used to predict the average lot weight for that combination.  In the final 
step, the average lot weight is multiplied by the observed number of lots of that combination in each auction to 
provide a total auction weight for the combination.  Although the prior probability distributions (priors) are 
uninformative (diffuse), the data consist of 1 980 pairs (average number of bags, average lot weight per auction) of 
points and these exert a strong influence on the estimated slope and intercept parameters (posterior probability 
distributions or posteriors).  Using an in-built capacity of the WinBUGS software for data filling, total auction 
weights are predicted for 313 auctions with missing lot weights.  This result provides a complete set of traded 
weights for each shark type/fin type combination for every auction (i .e. observed and unobserved) to be calculated.  
 
Model B was designed as a mixed binomial-negative binomial model using the traded weight for each shark type/fin 
type combination in each auction as the basis for predicting analogous traded weights in unobserved auctions.  The 
mixed model conceptualization was motivated by plots of total auction weight by shark type/fin type combination 
which showed a large spike of values at zero, i.e . no fins of a particular combination auctioned, and a flattened 
distribution with a long tail for the non-zero values.  These data points were found to fit the negative binomial 
distribution (as given in Hilborn and Mangel, 1997) through chi square testing (p<0.01).  These plots also suggested 
that traded weights vary by trading house, thus it was decided to use the model to predict for all combinations of 
shark type (12), fin type (4) and trading house (16), i.e. 768 combinations in total.   
 
The binomial portion of Model B estimates the probability of zero traded weight, using, as in Model A, a base 
parameter with additive effects for shark type, fin type, trader type, and a shark type/fin type interaction term (Fig. 
2).  The latter is necessary in the binomial portion of the model only, and is due to the fact that some sharks’ fins 
vary considerably in value by fin position and thus are always sorted by fin position and never left unspecified.  In 
contrast, when an particular shark’s fins are nearly equal in value regardless of fin position, the fins are frequently 
left unspecified during trading, resulting in a very low probability of observing a zero weight in the unspecified 
category.  The negative binomial portion of Model B predicts the traded weight of fins when the traded weight is not 
zero.  This portion of the model also uses base parameters and offsets for shark, fin and trader effects.  In each 
Monte Carlo iteration of the model, the product of the binomial parameter, either 0 or 1, and the negative binomial 
parameter, a positive integer representing traded weight per auction, is generated for each of the 768 combinations, 
and a probability distribution for each of the combinations is generated.   
 
The final step in Model B involves sampling from the distributions of the 768 combinations to fill in an array 
representing the auction calendar for the period October 1999 to March 2001.  The array consists of the 48 shark 
type/fin type combinations in one dimension and a vector of the sequence in which trading houses held auctions in 
the other dimension.  Each cell in the array can thus be either filled by an observed traded weight or mapped to one 
of the 768 distributions and iteratively sampled.  Column totals produced through iteration provide total traded 
weights by shark type and fin type over the 18-month period of interest.   
 

Results 
 
The first step in using Model A was to appropriately simplify the 12 effects terms for shark type and 4 effects terms 
for fin type.  This step both improved the convergence efficiency of the model and increased the estimation power 
for those shark types with limited observations.  To accomplish this, Model A was run using only shark type effects, 
probability intervals for each shark type effect were observed, and shark types were grouped based on similarities in 
the intervals.  Similar model runs were undertaken to group fin type effects.  Results from these initial runs indicated 
that for the slope parameter the number of effects for shark type could be reduced from 12 to 3, and the number of 
effects for fin type could be reduced from 4 to 3.  For the intercept parameter, the number of shark type effects could 
be reduced from 12 to 4, but all 4 fin type effects needed to be retained.  The full model was then run for the reduced 
number of effects, ie 14 rather than 32.  Convergence was evaluated for all effect parameters, slopes and intercepts 
using several tests provided within the WinBUGS Convergence Diagnostics and Output Analysis software (CODA).   
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A final test of Model A involved using the model to simulate data and then evaluating how well the distribution of 
predicted data approximates the observed data.  This was implemented through posterior predictive p-values 
(Gelman et al., 1995), a measure of where in the posterior predictive distribution the observed value lies.  P-values 
of less than 0.05 indicate a significant underprediction by the model.  Of the 1 980 p-values examined only 2.4% 
were <0.05 and thus it was concluded that the model was sufficiently robust.  Due to the log-space estimation in 
Model A, medians rather than means from each of the 313 predicted distributions (Fig. 3) were used as input to 
Model B.  The use of these medians as point estimates for 313 of the 7 104 data points input to Model B tends to 
narrow the probability distributions resulting from Model B.  The use of a unique probability distribution function 
for each median from Model A would be preferable and will be incorporated in future enhancements.   
 
As with Model A, initial runs of Model B were devoted to exa mining the overlap in the probability intervals for 
effect terms to discern whether the number of effects to be estimated could be reduced.  Model B requires effects to 
be assigned for two parameters in the negative binomial portion of the model and one parameter in the binomial 
portion.  Initial results indicated that for trader type, the original 16 effects were reduced to 3 or 4 groups in both 
portions of the model; for fin type, the original 4 effects could be reduced to 2 groups for two of the parameters but 
not reduced for the other parameter; and for shark type, the original 12 effects were reduced to either 2, 3 or 4 
groups.  The interaction term applied only in the binomial portion of the model and was calculated for each unique 
combination of shark type/fin type from the reduced number of shark type and fin type groups.  Convergence for all 
effects parameters was evaluated using CODA and adjustments were made as required to achieve convergence and 
improve convergence efficiency.   
 
Evaluation of posterior predictive p-values showed that approximately 4% of the simulated data points significantly 
underpredicted the actual values.  In order to avoid a downward bias in the final results, the predicted values for all 
observed data points were summed and compared to the sum of all observed data points.  The predicted value sum 
was 91.338% of the observed sum and thus a correction factor of 1 095 was applied in the model to every predicted 
data point prior to the final array summation.   
 
The results of Model B are the mean and its 95% probability interval for each shark type/fin type combination 
modeled (Table 2).  Each value represents the summation of all observed data, and a number of samples from the 
predicted data distribution for each combination based on the known number of auctions held and the identity of the 
trader holding the auction.  Nodes were included in the model to iteratively sum the traded fin weights for each 
shark type (i.e. all fin types combined within each shark type), and overall, to provide a mean and probability 
interval for each sum (Table 3).  The proportion that each shark type forms of the overall traded shark fin weight 
was also estimated stochastically (Table 3).   
 
These results indicate that of the individually modeled market categories of shark type, Ya Jian, thought to 
correspond to blue shark (Prionace glauca) comprises the largest distinct proportion of fins at 18.21%.  The next 
largest proportions were Chun Chi (4.66%) composed of at least two, and probably more, species of hammerheads 
(Sphyrna spp.), and Wu Yang (4.44%), thought to correspond to silky shark (Carcharhinus falciformis) and other 
visually similar Carcharhinid fins (see Table 1).  Other fins, including other distinct market categories not included 
in this study as well as fins which may actually belong to one of the eleven modeled categories but were described 
as unidentified fins on the auction sheets, comprised approximately 54% of the total traded weight of 2 916 000 
catties (1 763 568 kg).   The  probability  interval  for  the  traded  weight  over  the  18-month  period  extends from 
2 748 000 to 3 094 000 catties (1 661 963 to 1 871 220 kg) representing between 1 108 and 1 247 mt per year (mean 
= 1 176 mt).   
 

Discussion 
 
These results can be extrapolated to the entire quantity of shark fins transiting Hong Kong (i.e. including 
unauctioned fins), and to the global fin trade.  Furthermore, these results can be used to estimate the numbers of 
sharks represented by these traded weights.  For interim reference purposes only, we present simplified assumptions 
which can be applied to achieve rough approximations of quantities of interest.  Estimation of these quantities is 
currently being implemented in a probabilistic framework and this work is discussed further below.   
 
Firstly, comparison of the point estimate of annual traded weight, i.e. 1 176 mt, to the quantity of fins reported to be 
imported to Hong Kong in 2000 (Anon, 2001), adjusted for water content of frozen fins and double counting of fins 
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re-imported from Mainland China after thawing (Clarke et al., 2002), i.e . 5 930 mt, suggests that the results 
presented in Tables 2 and 3 represent approximately 20% of the shark fins traded through Hong Kong.  Since Hong 
Kong is believed to control about half of the world shark fin trade (Clarke, 2002), the modeling conducted for this 
study was performed on a sample of approximately 10% of the global market.   
 
These figures assume that a sample drawn from auctioned fins is representative of the shark fin market as a whole.  
However, it is possible that auctioned fins have a potentially higher value than unauctioned fins, and that is the 
reason they are offered to the highest bidder on the open market.  Hong Kong shark fin traders exhibit a preference 
for fins which contain longer, thicker and denser fin rays (Fong and Anderson, 2000; Clarke, pers obs), therefore 
larger fins of high value species may occur more frequently in the auction dataset.  Nevertheless, many very small, 
poor quality shark fins have been observed at Hong Kong auctions and it is not possible to conclusively address this 
issue on the basis of existing information.   
 
Another key area of concern is the number of sharks represented by traded fin weights.  In order to illustrate the 
utility of the modeling results, simplified assumptions based conversion factors from the literature can be applied to 
the estimates of Ya Jian fins presented in Table 3.  Preliminary genetic testing of a small sample of Ya Jian fins from 
the Hong Kong market (n = 12) has confirmed the species identity as blue shark (Prionace glauca) (Shivji et al., 
2002), thought to be one of the most abundant and prolific of pelagic sharks (Nakano and Stevens, in prep; Smith et 
al., 1998).  Two conservative assumptions are adopted from a previous study (Clarke and Mosqueira, 2002):   
 
• Dried fin weight is 2% of total weight of the shark when landed (Rose, 1996; McCoy and Ishihara, 1999; 

Anderson and Ahmed, 1993); and 
• Small sharks have an average weight of 20 kg and larger sharks have an average weight of 40 kg (based on 

various datasets including Bonfil 1994).   
 
In addition, it is assumed that the sample from Hong Kong represents 10% of the global trade (see above).  Applying 
these assumptions to the quantities of Ya Jian fins in Table 3 (after conversion, 214 096 kg year-1), indicates that 
between 2.7 and 5.4 million blue sharks are represented in the shark fin trade each year.   
 
As this estimate is based on highly simplified assumptions, the aim of ongoing research is to extend the Bayesian 
algorithm both within the existing models and in an additional model calculating the number of sharks represented 
for each shark type/fin type combination.  One enhancement will involve using probability distributions, rather than 
point estimates, when transferring the output from Model A to Model B.  In addition, another model will be 
developed (Model C) to convert shark- and fin-specific weights in Table 2 into the number of sharks represented.  In 
this model, comparisons between dorsal and caudal-based estimates, where one fin per shark is contributed, are 
expected to show a strong similarity.  Ideally, these estimates would, in turn, be nearly equivalent to 50% of the 
estimates based on pectoral fins, where two fins per shark are contributed.   
 
This  fin weight to shark number conversion model will incorporate market-derived data on the size distributions of 
each shark type/fin type combination from the auction records.  For example, for Ya Jian/blue shark, as many as 
fifteen fin size categories from the auction sheets have been reclassified into six size ranges with each given a 
probabilistic distribution based on empirical data and auction observations (Clarke, unpublished data).  A value from 
within one of these fin size ranges is then converted to a fin weight using regression coefficients estimated from the 
data (in total, n = 408) for each shark type/fin type combination (Clarke, unpublished data).  This probabilistically 
derived weight can then be divided into the appropriate estimated quantity from Table 2 to generate an estimate of 
the number of fins, and for each fin type, the number of sharks.  Other means of converting from traded fin weights 
to indicators of shark catches such as total captured biomass are also being explored.   
 
Existing market databases embody substantial uncertainties which can be only partially addressed through even the 
most advanced statistical modeling techniques.  Therefore, trade-based assessments of the total take of fishery or 
wildlife species such as those described in this paper are not a substitute for effective monitoring at the point of 
capture or landing.  Although shark catch reporting and independent monitoring requirements are increasing 
incrementally with time, even in the best managed fisheries they still fall far short of addressing the question of 
whether vulnerable shark species are being overexploited.  For this reason, further development and refinement of 
trade-based methods should be pursued as an important complement to ongoing and improved future management 
systems for shark resources.  In the short term, targeting monitoring efforts toward trading centers, particularly when 
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major entrepôts monopolize the flow of the product from numerous locations worldwide, may be the most cost-
effective means of gathering a large amount of meaningful data.  Obtaining accurate trade data on an ongoing basis 
will require the cooperation of both governments and business people, which should thus be encouraged and 
incentivized.  Working from both the fishery and market ends of the supply chain can provide new insights for 
management and facilitate the sustainable utilization of shark resources.   
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Table I.   Hypothesized matches between trade names used in the Hong Kong shark fin market and scientific taxa.  Detailed 
testing and verification of these matches is the subject of a parallel study (Shivji et al., 2002; Clarke et al., in prep).   

 
Trade Name 
 

Trade Name 
in Chinese  

Taxa 

Ya Jian ? ?  Prionace glauca 
Qing Lian ? ?  Isurus oxyrinchus or I. paucas 
Wu Yang ? ?  Carcharhinus falciformis, C.galapagensis,  

C. amboinensis, or C. albimarginatus 
Hai Hu ? ?  Carcharhinus obscurus 
Bai Qing ? ?  Carcharhinus plumbeus 
Ruan Sha ? ?  Galeocerdo cuvier 
Chun Chi %⊕ Sphyrna zygaena, S. lewini, S. mokarran or Sphyrna spp. 
Gu Pian ? ?  Sphyrna mokarran or Sphyrna spp. 
Wu Gu ? ?  Alopias spp . or Isurus paucus 
Sha Qing ? ?  Carcharhinus leucas or Carcharhinus spp .  
Liu Qiu ? ?  Carcharhinus longimanus 
 
 
Table II. Estimates of total traded shark fin weight by shark type (trader’s nomenclature) and fin type for Hong Kong auctions 

held from October 1999 through March 2001 (figures in the Chinese unit of catties:  1 catty = 0.60479 kg).   
 
Trader’s 
Market 
Category 

Dorsal Fins 
mean 
(95% probability 
interval) 

Caudal Fins  
mean 
(95% probability 
interval) 

Pectoral Fins 
mean 
(95% probability 
interval) 

Unidentified Fins 
mean 
(95% probability 
interval) 

Ya Jian 100,900  
(83,880 to 120,000) 

84,640 
(67,440 to 104,300) 

339,900 
(293,500 to 392,700) 

5,465 
(179 to 16,590) 

Qing Lian 18,960 
(15,510 to 22,670) 

20,540 
(17,300 to 24,170) 

53,230 
(44,120 to 63,460) 

1,154 
(0 to 3,470) 

Wu Yang 24,390 
(21,010 to 28,220) 

24,020 
(20,600 to 27,880) 

79,490 
(70,460 to 89,590) 

1,383 
(247 to 3,634) 

Hai Hu 9,966 
(8,118 to 12,140) 

9,451 
(7,528 to 11,690) 

29,380 
(24,590 to 34,810) 

857 
(259 to 2045) 

Bai Qing 14,260 
(11,550 to 17,350) 

10,990 
(8,243 to 14,100) 

28,770 
(21,530 to 37,070) 

42,110 
(32,700 to 52,810) 

Ruan Sha 933 
(557 to 1,455) 

776 
(409 to 1,308) 

2,570 
(1,573 to 3,967) 

277 
(32 to 954) 

Chun Chi 16,510 
(13,770 to 19,700) 

16,060 
(13,400 to 19,280) 

38,790 
(31,440 to 47,400) 

64,450 
(55,210 to 74,730) 

Gu Pian 5,568 
(4,180 to 7,211) 

5,293  
(3,816 to 6,890) 

15,090 
(11,230 to 19,640) 

25,630 
(20,580 to 31,620) 

Wu Gu 19,660 
(16,310 to 23,320) 

19,090 
(15,690 to 22,940) 

51,230 
(42,170 to 61,720) 

2,273 
(1,155 to 4,526) 

Sha Qing 12,530 
(9,862 to 15,490) 

9,951 
(7,224 to 12,980) 

29,540 
(22,130 to 37,890) 

49,450 
(39,740 to 60,220) 

Liu Qiu 11,820 
(9,962 to 13,950) 

10,370 
(8,474 to 12,520) 

31,440 
(26,240 to 37,070) 

605 
(0 to 1,823) 

Other 252,100 
(228,500 to 278,600) 

236,300 
(212,900 to 262,200) 

525,100 
(457,100 to 600,700) 

562,600 
(491,100 to 642,000) 
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Table III. Estimates of total traded shark fin weight by shark type (trader’s nomenclature) and overall for Hong Kong auctions 
held from October 1999 through March 2001 (figures in the Chinese unit of catties:  1 catty = 0.60479 kg).  All 
quantities have been stochastically simulated and thus individual categories may not sum to the total given in the last 
row.   

 
Trader’s 
Market 

Category 

 
Mean Traded 

Weight 

 
95% Probability Interval for 

Mean 

 
Percentage of 
Overall Total 

 
95% Probability Interval for 
Percentage of Overall Total 

Ya Jian 531,000 473,200 to 595,300 18.21 16.58 to 19.95 
Qing Lian 93,880 83,000 to106,400 3.22 2.84 to 3.65 
Wu Yang 129,300 118,400 to 141,600 4.44 4.02 to 4.89 
Hai Hu 49,660 43,210 to 57,090 1.70 1.47 to1.96 
Bai Qing 96,140 82,600 to 110,700 3.30 2.84 to 3.81 
Ruan Sha 4,556 3,028 to 6,627 0.16 0.10 to 0.23 
Chun Chi 135,800 121,900 to 151,400 4.66 4.17 to 5.21 
Gu Pian 51,580 43,750 to 60,340 1.77 1.50 to 2.07 
Wu Gu 92,240 80,990 to 105,000 3.16 2.76 to 3.60 
Sha Qing 101,500 87,880 to 116,600 3.48 3.02 to 3.99 
Liu Qiu 54,230 47,670 to 61,770 1.86 1.63 to 2.12 
Other 1,577,000 1,450,000 to 1,713,000 54.06 51.77 to 56.26 
All 
Categories 

2,916,000 2,748,000 to 2,914,000 NA NA 
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Fig. 1. Directed acyclic graph showing the derivation and relationships between parameters for Model A.  Large 

rectangular boxes represent loops.  Ovals represent stochastic nodes, whereas small rectangles represent 
deterministic nodes, such as fixed priors or data.  Single lines indicate that the ‘parent’ node determines the 
‘child’ node in a stochastic manner.  Double lines indicate that the ‘child’ node is logical and therefore 
calculated from the ‘parent’ node.   
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Fig. 2. Directed acyclic graph showing the derivation and relationships between parameters for Model B.  Please 

see the Figure I caption for explanation of icons.  Parameters ‘r’ and ‘u’ correspond to the gamma 
distribution shape and scale parameters which in turn are input as the mean of a normal distribution for ‘z’, 
the non-zero traded weight.  Parameter ‘g’ determines the probability of observing a zero weight and is 
used to derive ‘y’, a binomial random variable.  The product of ‘z’ and ‘y’, ie ‘x’, is the observed/predicted 
traded weight.   
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Fig. 3. Results for the 313 missing data points produced by Model A.  Separate plots are provided for each of the 

12 shark types and missing data points are sorted in ascending order by median in each plot.   




