NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Fisheries Organization

Serial No. N4742

NAFO SCR Doc. 02/120

SCIENTIFIC COUNCIL MEETING – SEPTEMBER 2002

Are Density-dependent Effects on Elasmobranch Maturity Possible? (Elasmobranch Fisheries – Oral)

by

Katherine A. Sosebee NEFSC, Woods Hole, MA 02543

Abstract

Fecundity and size at first maturity of elasmobranchs are believed to be limited by body-size making density-dependent effects on these life history traits unlikely. To examine the potential for density-dependent effects on size at first maturity, female spiny dogfish *(Squalus acanthias)* off the northeast coast of the United States were examined to determine both the presence of free embryos, fertilized eggs, or ovarian eggs, and the number of free embryos in each female in relation to maternal body size during 1998-2002. Severe biomass declines of the adult female portion of the population preceded and continued throughout the study period. Since the period of high abundance in the late-1980s, size at first maturity has declined from 75 cm to 66 cm and the median size at maturity (L₅₀) has declined from 85 cm to 79 cm; however, the relationship between number of free embryos and maternal length has not changed.

Introduction

Spiny dogfish (*Squalus acanthias*) are distributed on both sides of the Atlantic Ocean as well as in the Pacific Ocean (Collette and Klein-MacPhee, 2002). Distribution in the northwest Atlantic extends from Newfoundland to North Carolina and they are considered to represent a single unit population (NEFSC, 1994). The biology of the species has been studied for more than 50 years in all areas where dogfish are found (Kaganovskaia 1933; Holden and Meadows 1964; Jensen, 1966; Ketchen, 1972; Ketchen, 1975; Jones and Geen, 1977; Nammack, 1982; Nammack *et al.*, 1985; McFarlane and Beamish 1987). The last study on reproduction of spiny dogfish in the Northwest Atlantic was conducted in the late 1980s (Silva, 1993). At that time, the biomass of the stock was increasing from low levels in the 1970s (NEFSC, 1998, Rago *et al.*, 1998). A stock assessment conducted in 1997 determined that the biomass of large females (>80 cm) was 50% of the 1989 peak (NEFSC, 1998).

Owing to the large size of dogfish free embryos relative to adult length, life history theory suggests a limited capability for density-dependent effects on fecundity and maturity (Holden, 1973). Holden (1973) suggests that density-dependent effects on fecundity are more likely because these effects contribute more to lifetime fecundity than density-dependent effects on size at first maturity or size at 50% maturity. A comparison of the highly exploited Scottish-Norwegian stock of spiny dogfish to the lightly exploited Newfoundland stock suggested an increase in fecundity with lower abundance (Templeman, 1944; Holden and Meadows, 1962). Studies of dogfish stocks off the waters of British Columbia showed little change in fecundity in relation to stock abundance (Bonham *et al.*, 1949; Ketchen, 1972; Jones and Geen, 1977). However, most of the exploitation had occurred prior to any of the studies. Silva (1993) demonstrated for the Northwest Atlantic stock that decreases in fecundity at size occur with increases in abundance. Holden (1973) also suggests that size at maturity is invariant while age at maturity will depend on growth rate. However, Silva (1993) demonstrated that total female length at 50% maturity (L₅₀) did increase with an increase in abundance. This paper presents the results of a study initiated in 1998 to estimate maturity and fecundity of spiny dogfish in the waters off the northeastern United States and southwest Nova Scotia, and to determine if there have been any density-dependent changes associated with the decline in the abundance of mature females.

Methods

Spiny dogfish females 65 cm or greater in total length (10 cm below the previously estimated size at first maturity) were examined on the bottom trawl surveys conducted by the Northeast Fisheries Science Center (NEFSC) from 1998-2002. The trawl surveys are conducted in three seasons: winter (February), spring (March-April), and autumn (September-October) (Azarovitz, 1982). The spring and autumn surveys cover the region from Cape Hatteras, NC, through the Gulf of Maine. The winter survey covers the region from Cape Hatteras, NC, to Georges Bank.

Each female was examined for the presence of free embryos, fertilized uterine eggs (candled embryos), and ovarian eggs. Immature females were classified as those with small ovaries containing either no eggs or small, non-developing eggs. A female was determined to be mature if large, well-developed eggs were present in the ovaries or if embryos were present in the uterus. If free embryos were present and time permitted, the embryos were counted for fecundity analysis. Candled embryos and ovarian eggs were not used in the fecundity analyses because they were prone to rupture.

Maturity Analysis

The proportions of mature females at 1-cm length intervals were determined for each year. A logistic model (Dixon, 1985) was fit to the data by using the probit procedure:

$$P = \frac{1}{1 + e^{-(\mathbf{a} + \mathbf{b}x)}}$$

where

P = proportion mature at length, x = total length in cm, 2 = parameters to be estimated.

Model fits were subjected to Π^2 goodness-of- fit tests. Approximate 95% confidence limits were estimated by using the SAS probit procedure (SAS, 1995). Linear regressions were used to compare the abundance of females >=65 cm collected during the NEFSC spring bottom trawl surveys to correspond with the sizes used in the maturity analysis and a linear regression was performed. A three-year moving average was used for the abundance of females because the survey estimates exhibit high variability (NEFSC, 1998).

Fecundity Analysis

Fecundity estimates used the counts of free embryos following the methods of Silva (1993) and the mean and standard deviation by 5-cm size class were calculated for each year. Overall means by size class and year were also calculated. A weighted mean was calculated by using the three-year moving average of female abundance from the NESFC spring survey as the weighting factor to determine the average number of free embryos per female in the population. A three-year moving average was used for the abundance of females because he survey estimates exhibit high variability (NEFSC, 1998). Analysis of covariance was performed on log-transformed length and numbers of free embryos to determine if there was a difference in slope by year.

Results

Of the 7,481 females examined throughout the study, 1,291 contained free embryos (Table 1). Examined females were collected throughout the US waters of the northwest Atlantic, with the distribution of collections remaining similar in all years of the study (Fig.1).

Maturity Analysis

The estimated length at 50% maturity declined from 82.2 cm in 1998 to 79.1 cm in 2002 (Table 2). All logistic regressions fit the data well (p. >0.05). The regressions by year with the raw data illustrate the change in L_{50} over time (Fig. 2). The decline in L_{50} is significant with the confidence limits for 1998 and 1999 not overlapping those for 2000-2002. The relationship between L_{50} and abundance is weak and non-significant ($r^2 = 0.25$, p = 0.18) (Fig. 3);

however, removal of the 1985-1986 data point greatly increases the significance of the regression ($r^2 = 0.87$, p <0.001).

Fecundity Analysis

Free embryos were found in females in all seasons and most areas (Fig. 4). However, concentrations appeared in the Mid-Atlantic and in the inshore waters of Cape Cod Bay that persisted over time.

The smallest female containing free embryos, was 66 cm. The mean number of free embryos per female increased three-fold from the smallest length interval (65-69 cm) to the largest interval (105-109) (Table 3). Analysis of covariance revealed that there was no significant difference in slopes among years (Fig. 5; p= 0.2113). The overall mean number of free embryos/female was 4.4 with the yearly means ranging from 4.6 in 1998 to 4.3 in 1999. The weighted means varied from 2.0 (2000) to 3.6 (1999) during the time of the study.

Discussion

The size at first maturity declined from 75 cm in the late-1980s to 66 cm in the late-1990s. This may be a related to the reduction in mature female biomass that occurred over the last decade. The change in L_{50} is also related to the declining abundance of reproductive females in the population. The relationship between female abundance and L_{50} , although weak, does indicate that there may be some density- dependent changes occurring. Silva (1993) found density-dependent changes occurring in the growth rates of juveniles and in the number of embryos by size. Silva (1993) concluded that these changes were responses to the increase in biomass that occurred in the 1980s. What appears to have occurred in my study is a return to the conditions of the late-1970s and early-1980s when L_{50} was 80 cm (Nammack, 1982; Nammack *et al.*, 1985). The reduction in L_{50} appears to have halted in the last three years, possibly indicating that there is a lower limit to the size at which reproduction can occur in this species. However, the abundance of reproductive animals appears to have stabilized which may have reduced the need for further density-dependent changes.

The mean number of free embryos per female has been reduced from 6.6 (Nammack, 1982) to 4.4 (this study). The mean number of free embryos per female weighted by abundance has also declined from 5.3 (re-computed from Nammack, 1982) to a low of 2.0 in 2000. This is likely due to the truncation of the size structure in the population with fewer females greater than 85 cm (Fig. 6). There are few females large enough to contain more than 4-5 fully developed embryos (Fig. 6). In previous studies, examined females contained up to 16 embryos, but the largest number of embryos found in this study was 12.

There does not appear to be evidence of density-dependent changes in fecundity occurring at this time. The number of free embryos per length grouping has not increased with female abundance. There was no evidence of change in the regression parameters of number of free embryos on maternal length. This could be a slower density-dependent change than that of size at maturity and has not yet been detected.

Based on my study density dependent effects on spiny dogfish maturity are possible, but fecundity at length may be invariant. This is contradictory to the suggestion made by Holden (1973). Changes in the growth rate of the population may not be occurring at this time. If the biomass of mature females continues to decline in this population, further density-dependent changes may be detected, but it is not clear how fast or to what extent they may continue to occur.

Acknowledgements

The author would like to thank P. Rago and R. Mayo for reviews of this manuscript. The author is also indebted to the many scientists and crew of the Albatross IV who participated in the research cruises to collect the data.

References

- Azarovitz, T. R. 1981. A brief historical review of the Woods Hole Laboratory trawl survey time series. *In*: Doubleday, W.G. and D. Rivard, (eds.), Bottom trawl surveys. Can. Spec. Publ. Fish. Aquat. Sci.58: 62-67.
- Bonham, K. F., F.B. Sanford, W. Clegg, and G.C. Bucker. 1949. Biological and vitamin A studies of dogfish (Squalus acanthias) landed in the State of Washington. Wash. Dep. Fish. Biol. Rep. 49A: 83-114.
- Collette, B. and G. Klein-MacPhee (ed.). 2002. Bigelow and Schroeder's fishes of the Gulf of Maine. 3^d ed. Smithsonian Institution Press.
- Dixon, W. J. (ed.). 1985. BMDP Statistical Software. University of California Press. 725 p.
- Holden, M. J. 1973. Are long-term sustainable fisheries for elasmobranches possible? *In*: Fish stocks and recruitment, Rapp. P. V. Reun. Cons. Int. Explor. Mer (164): 360-367.
- Holden, M. J. and P.S. Meadows. 1962. The structure of the spine of the spur dogfish (*Squalus acanthias* L.) and its use for age determination. J. mar. biol. Ass. U.K. 42: 179-197.
- Holden, M. J. and P. S. Meadows. 1964. The fecundity of the spurdog (*Squalus acanthias* L.). J. Cons. Perm. Int. Explor. Mer. 28(3): 418-424.
- Jensen, A. C. 1966. Life history of the spiny dogfish. Fish. Bull. 65(3): 527-554.
- Jones, B. C. and G. H. Geen 1977. Reproduction and embryonic development of spiny dogfish (*Squalus acanthias*) in the Strait of Georgia, British Columbia. J. Fish. Res. Board Can. 34: 1286-1292.
- Kaganovskaia, S. M. 1933. A method of determining the age and catch composition of the spiny dogfish (*Squalus acanthias* L.). Vestn. Dal'nevost. Fil. Akad. Nauk SSSR. 13:130-141 (Transl. From Russian by Fish. Res. Board Can., Transl. Ser. No. 281, 1960).
- Ketchen, K. S. 1972. Size at maturity, fecundity, and embryonic growth of the spiny dogfish (*Squalus acanthias*) in British Columbia waters. J. Fish. Res. Board Can. 29: 1717-1723.
- Ketchen, K. S. 1975. Age and growth of dogfish, *Squalus acanthias*, in British Columbia waters. J. Fish. Res. Board Can. 32: 43-59.
- McFarlane, G. A. and R. J. Beamish. 1987. Validation of the dorsal spine method of age determination for spiny dogfish. In. R.C. Summerfelt and G.E. Hall (eds.) The age and growth of fish, p. 287-300. Iowa State University Press, Ames.
- Nammack, M. F. 1982. Life history and management of spiny dogfish (*Squalus acanthias*) off the Northeastern United States. MA Thesis. The College of William and Mary, Virginia. 63 p.
- Nammack, M. F., J. A. Musick, and J. A. Colvocoresses. 1985. Life history of spiny dogfish off the Northeastern United States. Trans. Am. Fish. Soc.114: 367-376.
- NEFSC. 1994. Report of the 18th Northeast Regional Stock Assessment Workshop: Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NOAA/NMFS/NEFSC: Woods Hole, MA. NEFSC Ref. Doc. 94-22.
- NEFSC. 1998. Report of the 26th Northeast Regional Stock Assessment Workshop: Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NOAA/NMFS/NEFSC: Woods Hole, MA. NEFSC Ref. Doc. 98-04.

Rago, P. J., K. A. Sosebee, J. K. T. Brodziak, S. A. Murawski, E. D. Anderson. 1998. Implications of recent increases in catches on the dynamics of Northwest Atlantic spiny dogfish (*Squalus acanthias*). Fish. Res.39: 165-181.

SAS Institute Inc. 1995. Logistic regression Examples Using the SAS System, Version 6, First Edition. Cary, N.C.: SAS Institute Inc. 163 p.

Silva H. M. 1993. Population dynamics of spiny dogfish, *Squalus acanthias*, in the NW Atlantic. Amherst, MA: University of Massachusetts. Dissertation.

Templeman. 1944. The life history of the spiny dogfish, (*Squalus acanthias*) and the vitamin A values of dogfish liver oil. Res. Bull. Dev. Fish. Resourc. Newfoundld. 15:102 p.

Table 1. Number of female spiny dogfish examined by year and season (T = total number examined, FE = Number with free embryos).

		1998	1999	2000	2001	2002	Total
Winter	· T	246	552	497	726	301	2322
	FE	59	132	84	110	42	427
Spring	T	283	926	786	582	557	3134
	FE	60	167	96	69	70	462
Autumn T		391	505	416	713		2025
	FE	115	162	51	73		401
Total	T	920	1983	1699	2021	858	7481
	FE	234	461	231	252	112	1291

Table 2. Parameter estimates (?and) associated with the logistic regression of female spiny dogfish maturity data collected from 1998-2002. The degrees of freedom (DF, number of length intervals), goodness-of-fit ($P>\Pi^2$) and L_{50} are also given.

Parameters	1998	1999	2000	2001	2002
?	-26.4	-29.2	-27.7	-26.2	-25.5
$SE_{?}$	1.71	1.29	1.33	1.15	1.70
?	0.321	0.363	0.349	0.330	0.322
SE?	0.0210	0.0162	0.0168	0.0147	0.0216
DF	39	35	35	36	37
$P>\Pi^2$	0.7565	0.8767	0.8656	0.9739	1.0000
L_{50}	82.2	80.5	79.3	79.4	79.1

Table 3. Numbers of free embryos per female spiny dogfish at 5 cm size intervals. Sample means (top), standard deviations (middle), and sample sizes (bottom) are presented. The weighted mean and the range in number of free embryos is shown at the bottom of the table.

Year							
Length class	1998	1999	2000	2001	2002	Average	
65-69	-	2.00	-	-	3.00	2.50	
		-			-	0.71	
		1			1	2	
70-74	3.00	4.67	-	3.00	-	4.25	
	-	1.86		-		1.75	
	1	6		1		8	
75-79	3.62	3.28	3.38	3.12	2.67	3.29	
	1.50	0.95	0.92	0.99	0.58	1.03	
	13	53	8	17	3	94	
80-84	3.73	3.96	3.81	3.95	3.57	3.87	
	1.34	1.15	1.28	1.10	0.75	1.19	
	77	170	36	42	21	345	
85-89	4.46	4.31	4.14	4.12	4.42	4.31	
00 07	1.39	1.27	1.29	1.36	1.29	1.31	
	81	141	35	50	48	355	
90-94	5.60	5.75	5.71	5.53	5.37	5.61	
	1.83	1.36	1.72	1.42	1.36	1.52	
	35	48	17	17	27	144	
95-99	6.90	6.08	6.33	6.25	5.50	6.24	
	1.63	1.89	1.53	1.54	2.33	1.79	
	13	13	3	12	8	49	
100-104	9.50	8.00	_	5.00	5.00	7.10	
	1.91	-		-	2.83	3.00	
	4	1		1	4	10	
105-109	9.67	-	_	_	_	9.67	
	2.08					2.08	
	3					3	
All sizes	4.63	4.27	4.30	4.30	4.50	4.39	
	1.92	1.43	1.55	1.52	1.53	1.59	
	227	433	98	140	112	1010	
Weighted	3.07	3.65	2.00	2.87	2.52		
Range	1-12	1-10	1-9	1-9	1-9	1-12	

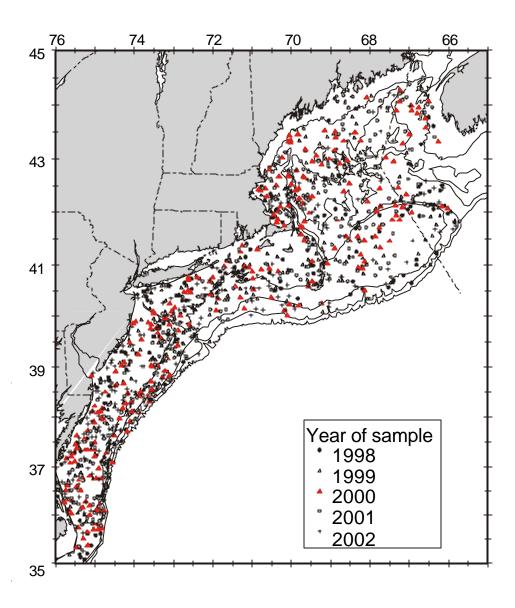


Figure 1. Location of female spiny dogfish sampled for maturity during 1998-2002 by year, all seasons combined.

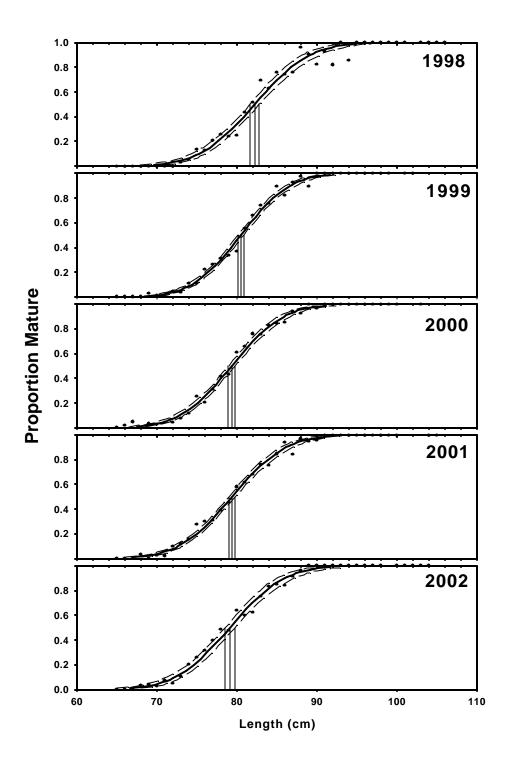


Figure 2. Proportion of mature female spiny dogfish as a function of fish length. Fitted logistic lines are plotted by year. The dashed lines are approximate 95% confidence intervals. The dropped lines indicate the value of L_{50} and its confidence limits.

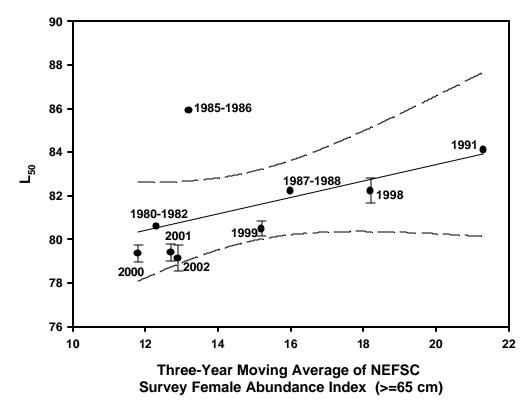


Figure 3. L_{50} regressed against three-year moving average of female abundance >= 65 cm from NEFSC spring survey. Data from 1980-1982 are the recomputed estimates from Silva (1993) and the 1985-1986, 1987-1988, and 1991 date are from Silva (1993).

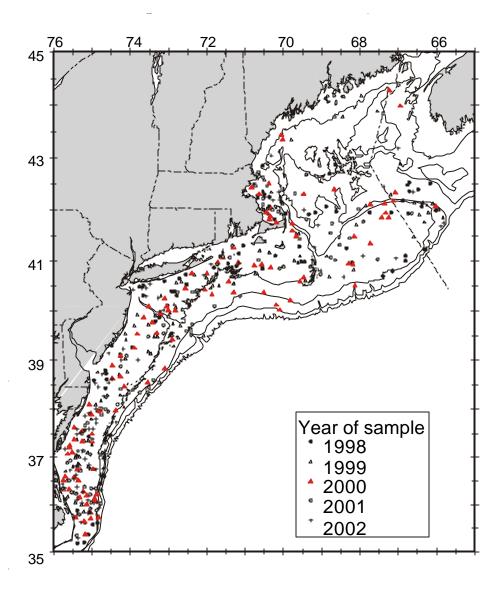


Figure 4. Location of female spiny dogfish containing free embryos during 1998-2002 by yea all seasons combined.

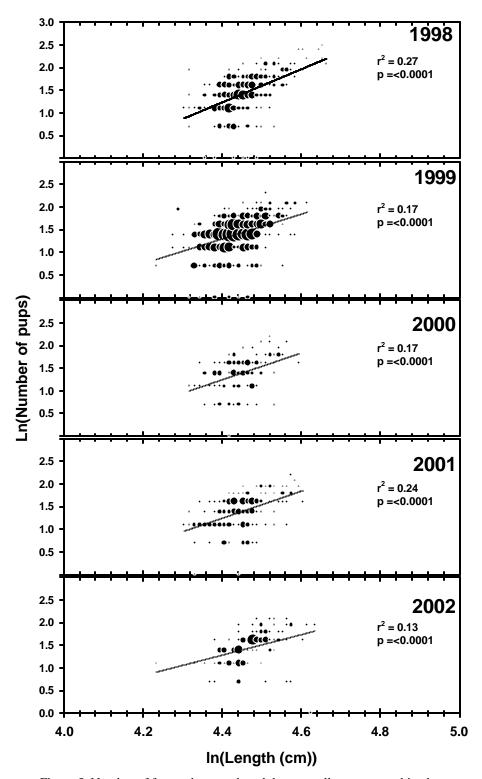


Figure 5. Number of free embryos at length by year, all seasons combined on natural logarithm scale. The size of the dots are proportional to the number of observations. A linear regression is plotted for each year.

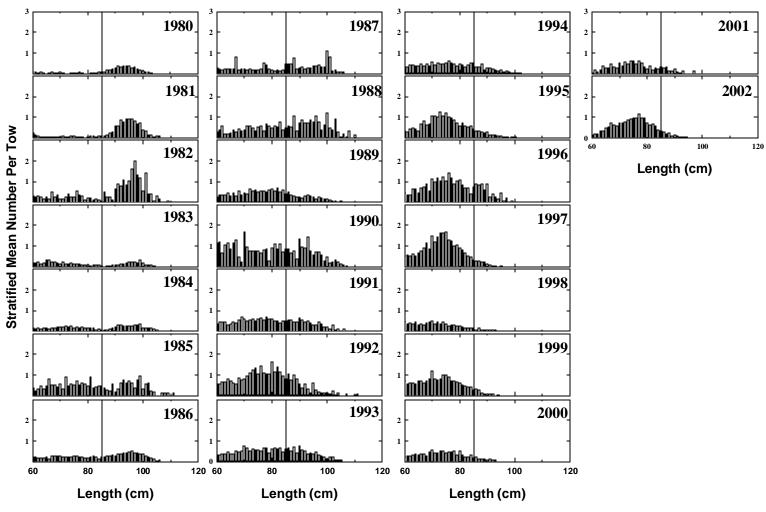


Figure 6. Length frequency composition of female spiny dogfish (> 60 cm) from NEFSC spring surveys, 1980-2002. The vertical line designates the location of the 85 cm length interval.