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Abstract 

 
This background document describes the assessment-framework used to generate an assessment of, and 
management advice for, the West Greenland shrimp stock in 2002 (Hvingel 2002). 
 
Biomass dynamic models based on the logistic function, with and without an explicit term for cod predation were 
used to describe shrimp population dynamics. Biomass indices from a research survey and standardised commercial 
catch-per-unit-effort series, catch, cod stock size estimates, cod predation estimates and “priors” of model 
parameters provided information to the models. The inadequacy of a model to fully describe population behavior 
and the inevitable errors associated with the observed data series, i.e. observation and process error, were 
incorporated simultaneously using a state-space modeling framework. A Bayesian approach was used to construct a 
"posterior" distribution of likelihoods of possible values of model parameters and derived variables relevant for 
developing management advice.  
 
The model including cod predation proved superior to the basic version, in which the only mortality considered to 
occur was yield to the fishery. 
 
The document discusses practical and theoretical considerations pertaining to the selection and design of the model 
and to the Bayesian estimation methods used, and it also explains how the model results may be extended to the 
construction of management advice. 

 
Introduction 

 
Annual landings of northern shrimp (Pandalus borealis) in the North Atlantic have increased from about 100000 
tons in the early 1980s to more than 350000 tons in 2001 (Skúladóttir, pers. com.). Although shrimp has become one 
of the most important target species in these waters, little progress has been made in developing a standardised 
predictive tool for stock assessment (cf. Stefánsson et al., 1994; Cadrin and Clark, 1999; Savard et al., 1991; 
Hvingel and Kingsley 2000, Koeller et al. 2000, Anon. 2001a+b). 
 
Management advice for most shrimp stocks in the North Atlantic is basically formulated by qualitative assessment 
of trends in various indices of stock condition in response to the catch history (Anon., 2001a+b; Koeller et al. 2000). 
Typically, biomass estimates and length compositions from research surveys, and commercial catch rate series, 
constitute the main data source, but additional observations may also be considered, such aspredator abundance, 
temperature etc. Advice is given as an annual Total Allowable Catch (TAC) or as a statement about the 
sustainability of the current fishing practice as consented by the assessment board. The method of deriving the 
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advice is not explicitly stated and the uncertainty associated with the process is not quantified. Such methods lack 
predictive rigour, including formal statements of uncertainty, and are therefore not suited for quantitative 
comparisons between alternative management options. 
 
A quantitative assessment may be reached through construction of mathematical models describing stock dynamics 
and their links to collected data and ancillary information. Each model represents one hypothesis about "the state of 
nature". From the infinite collection of possible models a subset of the most plausible may be chosen based on 
expert knowledge. An integrated evaluation of inferences about management options from that subset may be 
considered taking into account the "model uncertainty" of the assessment process. Within each model uncertainty 
arises from its inability to fully capture the dynamics of the stock and from having to interpret erroneous data. Thus, 
to capture the full range of assessment uncertainty, three levels of uncertainty need to be considered: 1. model 
uncertainty, 2. process error and 3. observation error.  
 
Following the ideas of Punt and Hilborn (1997) the first step in the construction of an assessment framework is 
specifying the alternative hypotheses. This is done through exploring models within three levels of model 
complexity: 1. the logistic (this paper), 2. the delay-difference (Hvingel and Kingsley, in prep.) and 3. the age-based 
(Hvingel and Kingsley, in prep.). Within these model types different versions can be investigated by including 
predation and environmental effects. Process and observation error is incorporated by using a state-space modelling 
framework (Schnute, 1994) and Bayesian inference (e.g. Gelman et al., 1995) to estimate probability distributions of 
model parameters.  
 
Age-structured population models that account in great detail for age-dependent growth, growth-dependent 
recruitment to the fishery, and age-specific fishing and natural mortality are now the standard tool for the assessment 
of most fish stocks. Such models are critically dependent on accurate annual information on the age and length 
composition of the stock and the catches. But shrimp have no permanent hard parts to accumulate annual layers and 
ages cannot be measured. Modal analysis of length distributions (e.g. McDonald and Pitcher, 1979) seems to be 
inevitably dependent on assumptions about growth rate that are largely unverifiable and leaves large residual 
uncertainty about converting size distributions into age distributions. This is particularly true for the relatively slow-
growing shrimp in northern waters and for the important larger size classes. The use of standard VPA software (e.g. 
The Lowestoft VPA suite: www.cefas.co.uk) to assess shrimp stocks has not been successful (Savard et al., 1991; 
Anon., 2001a+b) 
 
The use of non-age-structured models is an alternative. Such models are usually of the stock-production type 
(Graham, 1935; Schaefer, 1954; Fox, 1970; Pella and Tomlinson, 1969) and describe stock dynamics simply in 
terms of rates of change of total biomass, rather than by the detail of age-specific growth and mortality of 
individuals (see Hilborn and Walters, 1992, chap 8. for a review of production models). However, natural mortality 
is thought to be at least as important as fishing mortality in the dynamics of shrimp stocks, and this limits the 
application of traditional fishery models. Explicit factors of natural mortality, e.g. predation and physical 
environment, should therefore be considered when constructing shrimp stock assessment models.  
 
Predation is an important factor in shrimp stock dynamics. Several fish and marine mammal species prey on shrimp 
(Pedersen and Riget, 1993; Magnússon and Pálsson, 1989; Grunwald, 1998, ref on marine mammals). The Atlantic 
cod (Gadus morhua) co-occurs with northern shrimp, is a bottom-feeding predatory fish, and can attain high 
biomass densities, qualities which give it the potential for being a controlling predator (Lilly et al., 2000; Berenboim 
et al., 2000; Stefánsson et al., 1998). The rapid development of the West Greenland shrimp fisheries during the 
1970s is thought to be connected to a major decline in the cod stock in that area (Carlsson and Smith, 1978); shrimp 
fisheries off the Canadian east coast appear similarly to have thriven after the collapse of the ‘northern’ cod stocks in 
NAFO Divisions 2J and 3KL. Consumption of shrimp by cod is in the Barents Sea is estimated to be about three to 
four times the amount taken by the fishery (which was about 80000 tons in 2001) (Anon., 2001b). Thus predation by 
cod may for several shrimp stocks constitute a dominating component of mortality and is therefore an obvious 
candidate as an explicit natural mortality factor in an assessment model. 
 
The physical environment also affects shrimp populations (e.g. Koeller, 2000; Anderson, 2000) and may be the 
cause of the rapid changes in abundance seen in some stocks (Anderson, 2000; Apollonio et al., 1986). However, at 
this stage of modelling, environmental effects were not considered as explicite variables. 
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The “West Greenland shrimp stock” occurs off West Greenland in NAFO Divisions 0A and 1A–1F. The stock is 
assessed as a single population (Anon. 2001a) and managed by catch control. A trawl fishery for shrimp started in 
inshore areas in 1935. After 1970 an offshore fishery developed and landings increased reaching more than 80000 
tons in 2001 (Table x). This paper is the first article in a planned series of three on shrimp population dynamic 
modelling, with the purpose of developing an assessment model for shrimp  based on the logistic function, using 
the West Greenland stock as an example. The models constitute hypotheses about "the state of nature" intended 
along with the models developed in following papers (Hvingel and Kingsley, in prep.) to enter into an integrated 
shrimp stock assessment and decision framework able to make use of all available information pertaining to the 
dynamics of the stock and to provide realistic estimates of uncertainty of the assessment process. 
 

Method 
 

Modelling framework 
 
The models  were built in a state-space framework (e.g. Schnute 1994). This time series methodologi offers 
straightforward implementation of process and observation error and great flexibility in the matemathical 
construction approximating stock dynamics and data-to-stock relations. The State-space modelling thechnique was 
introduced in fish stoch assessments during the 1990’s (Meyer and Millar, 1999, and references therein).   
 
The state-space conception of a stock dynamic model regards a series of unobserved state values as defining the 
stock trajectory through time. The states are related to each other and to the data by a set of simultaneous, possibly 
stochastic, equations. The models were thus defined in terms of sets of parameters (θ ), the values of which defined 
the stock dynamics of the shrimp stock. 
 
A Bayesian approach was used to construct a "posterior" distribution of likelihoods of possible values of model 
parameters. The posterior gives the probability of a hypothetical set of values for unobserved model parameters ( θ ), 
given the data and a “prior” probability distribution for θ , which defines the information available about θ  before 
the experiment was carried out or the observation made. Bayes (1763) restated a general probability identity in the 
form: 
 

)()|()|( θθθ pdatapdatap ∝ , 
 
where )|( datap θ  is the posterior probability distribution, )|( θdatap  is the likelihood of the data as a function 
of the values of θ , and )(θp  is the estimated or assumed prior probability distribution of the unobservables. 
 
Bayes’s theorem has found limited application in the centuries since it was stated, because integrating the right-
hand side of the relationship has been, for most practical applications, an insurmountable problem.  However, 
the rapid increase in readily available computing power, coupled with the development of sophisticated and 
efficient methods of stochastic integration by sampling, has transformed this situation. 
 
In applying Bayes’s equation to the present problem, the posterior probability distribution of θ  is derived by 
Monte Carlo Markov Chain (MCMC) sampling methods (e.g. Congdon 2001, p. 465-469). The programming 
framework WinBUGS v.1.3, made available by the Medical Research Council and the Imperial College of 
Science, Technology and Medicine in England (www.mrc-bsu.cam.ac.uk/bugs; Gilks et al. 1994; Spiegelhalter 
et al. 2000), provided a means of specifying and analysing Bayesian models, including selection and 
implementation of appropriate algorithms. For numerical integration WinBUGS uses "Metropolis -Hastings 
within Gibbs sampling" (Gilks et al. 1996, see also http://www.mrc -bsu.cam.ac.uk/bugs/).  
 
 
State equations 
 
The basic equation was a generalisation of the logistic model of population growth (Richards 1959; Pella and 
Tomlinson 1969). Its differential form is: 
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where B  is biomass, K is carrying capacity, and r is the intrinsic rate of growth. m is a shape parameter for the stock-
recruitment curve: a value of 2 gives the standard logistic trajectory (often named the “Schaefer production model”; 
Schaefer, 1954). If m takes high values, it implies that density-dependent reductions in population growth do not 
become significant until high stock levels and visa versa . 
 
A discrete form of this model, modified to include fishing mortality and predation by cod, and parameterised in 
terms of MSY (Maximum Sustainable Yield) rather than r (intrinsic growth rate) (cf. Fletcher, 1978) described the 
transition from one state, t, to the next, t+1: 
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Bt is the stock biomass in year t. MSY is the annualised value of the instantaneous maximum sustainable yield rate. 
Ct is the catch taken by the fishery and Vt is the predation by cod, in year t. 
 
Absolute biomass estimates of most population dynamic models are prone to large uncertainty if no explicit 
information is available to scale the biomass indices to real stock size. For management purposes therefore it is 
desirable to work with biomass on a relative scale in order to cancel out the uncertainty of the “catchability” 
parameter (the scaler). This was accomplished by dividing eq. xx throughout by BMSY, the biomass that produces 
MSY. This reparametrisation also had the effect of reducing auto-correlation in the chains of values sampled by the 
Gibbs sampler and thus speed convergence to the posterior distribution (cf. Meyer and Millar, 1999). Finally a term 
for the process error was applied and the state equation took the form: 
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where Pt is the stock biomass relative to biomass at MSY (Pt=Bt/BMSY) in year t. The ‘process errors’, vt are normally, 

independently and identically distributed with mean 0 and variance 2σ .  
 
The basic stock-dynamic model in the absence of fishing and explicit predation has the characteristics that the 
biomass at MSY is equal to: 
 

1
1
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and the MSY itself is given by 
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Data and link functions 
 
Two series of biomass indices were available from the monitoring programme on the West Greenland shrimp stock 
(Table 1). A standardised and combined series of annual comme rcial vessel catch rates 1976 to 2001, CPUEt, 
(Hvingel et al., 2000, Hvingel, 2001) and a biomass index obtained by the Greenland trawl survey for the years 
1988-2001, survt, (Kingsley et al 2000, Kanneworff and Wieland, 2001). These indices were assumed scaled to real 
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biomass by the catchability constants, qc and qs respectively. Lognormal observation error were applied, ω and κ, 
and hence these data took the distributions1: 
 

)),(ln(log~ ωtMSYct PBqNCPUE  for  )1,..,..,2,1( −∈ nt   ,    

)),(ln(log~ κtMSYst PBqNsurv  for  ),..,..3,2( nt ∈    

 
. The error for the final year of the CPUE index was assumed to be 1.5 times the error for the rest of the series, as 
this data point is an interim one based on fishery data until October (the annual assessment takes place in 
November). Likewise the first year of the survey was assigned a 50% larger error than the remaining series to 
account for the learning process: 
 

)5.1),(ln(log~ ωnMSYcn PBqNCPUE   ,   )5.1),(ln(log~ 11 κPBqNsurv MSYs    
 
Total reported catch in NAFO Subarea 1 + Div. 0A 1970-2001 (Hvingel, 2001) was used as yield data (Table 1). 
These data are generally considered very reliable without major discarding problems or misreportings and were 
therefore entered in the model as error-free.  
 
Estimates of annual consumption of shrimp by cod based on stomach sampling were available for the years 1989-92 
(Grunwald, 1998, Table 26). These were reduced by 2,5% to compensate for the difference in size composition 
taken by the fishery and by cod and linked to the equations of shrimp stock dynamics through a Holling type III 
functional response function (Holling, 1959) and a series of cod biomass: 
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where Ot is total consumption in year t, Vmax is the maximum consumption of prey per predator (kg/kg) reached at 
large prey  biomass, and P0.5  is the prey biomass index at which the consumption is half of the maximum.  codt is 
biomass of cod in year t. The error term, τ , is normally, independently and identically distributed with mean 0 and 

variance 2ε . Thus the predation is set to depend simultaneously on the shrimp stock biomass, Pt, and on the biomass 
of the predator, Atlantic cod. This function predicts a sigmoidal response of predation rate to increasing prey 
density, which essentially states that at intermediate shrimp density the consumption per predator increases linearly 
with prey density, but that at low prey density it approaches zero and at high prey density it has an asymptotic 
maximum. Shrimp is not regarded as the primary forage for cod if fishes, e.g. capelin (Mallotus villosus) 
(Bereinboim et al., 2000 and Magnússon and Pálsson, 1991) or Arctic cod (Boreogadus saida) are available. The 
relative abundance of shrimp may therefore be expected to have to reach a certain level for cod to switch to this food 
type.  
 
The cod biomass series 1955-2001, codt, was constructed as follows. Absolute estimates of stock size for West and 
East Greenland stocks combined were available until 1992 when the cod fishery stopped owing to very low stocks 
(Anon., 1996). For the years 1982-92 these estimates could be partitioned in an East and West component using the 
relative East/West Greenland survey-based biomass indices. The series were extended back in time by multiplying 
the total biomass estimates with 0.6 – the calculated average fraction of the total stock occupying West Greenland 
waters from 1982 through 1992. The years 1993 and forward were constructed by converting the survey indices to 
absolute biomasses by applying the mean survey/absolute biomass relation for 1990-92.  
 
Priors 
 
Bayesian statistics perceives a set of observations (data) as updating or correcting a prior model of reality. The prior 
model of reality is summarised in "prior" distributions of model parameter values, which is founded on ancillary 
knowledge, conceptually pre-existing and independent of the study. The prior distribution for a parameter should 

                                                 
1 in these equations, the designation x ~ log N means ‘x is distributed as log-Normal’; i.e. the logarithm of x has a Normal 
distribution 
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incorporate all external information available. If no prior knowledge is available a low-informative "reference" prior 
(Kass and Wasserman, 1996) is used. 
 
Prior probability distributions of parameter values may in data-scarce situations (i.e. in most marine population-
dynamic modelling) often have important influence on the posterior distribution and therefore on the conclusions 
drawn from a model. Selection of appropriate priors is therefore an important phase of building a Bayesian model. 
Distributions of the different parameters in the model interact, and what appears to be a reference prior for one 
variable may through its interactions with other variables act as an undesirably informative prior for them. Some 
guidelines for developing priors are given in Punt and Hilborn, 1997, and Gelman et al., 1995. 
 
The choice of distribution for particular priors may in some cases be a matter of taste. The important issue is that the 
prior has the desired shape for the values covered by the posterior. In practice it is sometimes desirable to truncate 
the distributions in order not to unnecessarily slow down the sampling process. The limits of the distributions were 
in those cases chosen to be generously wide so as not to interfer with the posterior. 
 
qs, qc (catchability coefficients) 
 
The catchability coefficients, qc and qs, scaled the biomass indices of the standardised CPUE and survey series 
respectively to the absolute biomass estimates. Little prior information about these parameters was available. Thus 
Reference priors were used. Because the catchability coefficients interacted with the carrying capacity, K, a uniform 
distribution was not non-informative, and a prior distribution uniform on a log scale from -∞ to ∞ was preferred 
(Punt and Hilborn, 1997; McAllister and Kirkwood, 1997; Gelman et al., 1995). In practice this was approximated 
by using ln(qc)~U(-15,1) and ln(qs)~U(-10,1) (U is the uniform distribution). 
 
MSY (Maximum sustainable yield) 
 
The prior distribution for MSY was given a weakly conservative prior, uniform on a log scale between log(35000) 
and log(1000000). The lower truncation point, at 35000 tons, was considered the most pessimistic estimate of the 
production capability of this stock by comparison with the catch per unit area supported by the shrimp stock off the 
Canadian east coast (Parsons pers. comm.). The upper truncation point was arbitrarily chosen high enough not to 
interfere with the posterior. 
 
m ( the shape parameter)  
 
We had no prior information on the shape-parameter, m, for this stock. A uniform prior for m would not be 
uninformative with respect to the location of BMSY relative to K. To make a reference prior for the ratio BMSY /K, in 
terms of m, an approximate function was used for the conversion. The curve of m as a function of BMSY/K in the 
interval 0.37< BMSY/K <0.63 was approximated by m=aexp(bPMSY

c) with appropriate values of a (0.1817), b 
(5.1174), and c (1.0938).  
 
BMSY/K was then assigned a uniform distribution on the interval 0.37 to 0.63. Values of BMSY/K below approx. 0.37 
(m<1 in eq xx. i.e. beyond the Fox model (Fox, 19xx)) implying that the stock’s rate of increase becomes infinite as 
its size approaches zero, are unrealistic as a characteristic of fish stocks. The upper truncation point was arbitrarily 
chosen to make the prior symmetric around BMSY/K = 0.5. 
 
K (carrying capacity) 
 
The largest catch taken in a year is about 100 thousand tons and this may be taken as a lower bound on K. It was 
hard to come up with an upper limit to K. However, it seemed, at least in this case where little information on K was 
available in the data, to be important to prevent sampling of very high, unrealistic, values. Thus an upper limit was 
constructed as follows: some of the highest densities ever recorded in the survey are around 0.5kg/m2. The total 
distributional area of the stock is about 120 000 km2, much of which has densities well below commercial interest. If 
as much as 10% of the total area had 0.5 kg/m2 it yields some 6 000 thousand tons. This was chosen to provide what 
was thought as a safe upper limit. Instead of using a uniform distribution U(100,6000) the prior was uniform on a 
log scale with limits at 4.6 and 8.7 in order to reduce the tendency of the sampler to wander off to high values. 
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P1 (starting biomass level) 
 
There is usually little information about the historic size of a stock preceding the time series of biomass indices. In 
order to overcome this difficulty, it is commonly assumed that B1 = K, i.e. that the stock was, initially, at carrying 
capacity. However, this assumption may have the effect of imposing an informative prior on K, it is not easy to 
defend in any circumstances, and it is especially questionable when, as in the present case, the stock had already 
been fished for some years before the start of the observations and was subject to predation by a fluctuating cod 
stock. Instead we used the less informative log-Normally distributed prior P1~logN(0.44,0.2) with a mode at about 
1.5 in the model without a predation effect, and  P1~logN(-0.05,0.2) with a mode at approximately 0.9 when 
predation was included – the decreased mode acknowledged the presence of a large cod stock prior to the data 
series. 
 
[P1 was in this case the biomass level of 1955, i.e. 20 years before CPUE based biomass index series began. With a 
low-informative prior for the starting biomass The estimates of annual 1956-75 biomass levels are conceptually 
equal to an iteratively reconstruction constrained on the parameter estimates of the post 1975 series and the catch 
and cod stock size series (table x).  ] 
 

2
ωσ 2

κσ 2
νσ 2

τσ (error terms) 

 
The priors for the error terms associated with the biomass indices were based on an estimated CV of around 10% for 
the CPUE-series (Hvingel et al. 2000) and about 17% for the survey series (Kingsley et al. 2000). The probability 
distribution of their standard deviations therefore had modes at 0.10 and 0.17 respectively, i.e. their precision were 
gamma distributed: )03.0,5.2(~/1 2 Gωσ  and )1125.0,4(~/1 2 Gκσ  (the gamma distribution, G(r,µ), is defined 

by: µrxr-1e-µx/Γ(r) ; x>0). The precision for the series of consumption by cod, V, were given a prior 
)03.0,5.2(~/1 2 Gνσ  as a result of the expected larger uncertainty associated with the construction of the series. 

The mode of this distribution corresponds to a CV of around xx%. The precision of the stock size, P, were given a 
low informative prior )001.0,001.0(~/1 2 Gτσ .   
 
Omax (maximum predation rate) 
 
Omax provides an upper limit to the amount of shrimp consumed by cod. The data itself could not be expected to 
contain much information about this parameter. An informative prior for the largest possible quantity of shrimp (kg) 
eaten pr. kg of cod was therefore constructed using estimates of growth and food conversion coefficients for cod 
feed to satiation in laboratory experiments (Björnsson et al., 2001; Björnsson and Steinarsson, in press). A 
maximum annual weight gain pr. kg fish for each age group was calculated inserting mean weight at age (Anon. 
2000, NWWG) and an estimated average water temperature of 2 oC in the growth model (Björnsson and 
Steinarsson, in press). A food conversion coefficient of 3 (Björnsson et al., 2001) was then applied to convert the 
weight gain to maximum annual shrimp consumption. Assuming an average population structure of 1975-89 (Anon., 
1996) a level for Omax was estimated to 3 kg shrimp/kg cod/year. The prior was given a relatively tight distribution 
of the form Omax~N(3,0.1).  
 
P50  
 
The parameter P50 is the size of the shrimp stock at which 50% of Omax is reached. As Omax is supposed to be 
relatively well determined P50 will have an important effect in setting the predation rate O(P) . A prior for P50 that 
was approximately non-informative with respect to the predation rate was constructed by a formula equivalent to eq. 
x.: 

2
2

max
5.0 )(

p
po
po

priorP −=  

 giving O(P)’sequivalent parameter, o(p), a uniform distribution between 0 and 3, setting omax=3 and simulating P to 
vary between 0 and K by giving p a uniform distribution 0 to 2.  
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Convergence diagnostics 
 
Conclusions based on an MCMC output depend on the assumption that the chain of sampled values for each 
parameter can be considered to be an unbiased random sample from the target distribution, i.e. the posterior. A chain 
is usually serially correlated, and at the start is affected by the initial value assigned to each parameter. Initial values 
are not necessarily, or even usually, random samples from the posterior distributions. To check that the influence of 
the initial value had decayed and that the chain had ‘converged’ to a stationary sampling from a constant distribution 
before data collection began, several diagnostic tools were applied. This was done in S-PLUS 2000 
(www.mathsoft.com/splus) using the Bayesian Output Analysis programme (BOA) v. 0.5.0 by Brian Smith 
(www.public-health.uiowa.edu/boa/), which provides a suite of processing and diagnostic tools for MCMC outputs. 
 
A number of parallel chains with different starting points and with different random number seeds were analysed by 
the Brooks, Gelman and Rubin convergence diagnostic (Gelman and Rubin, 1992; Brooks and Gelman, 1998) to 
evaluate if the samples could be considered to have arisen from the target distribution. A stationarity test 
(Heidelberger and Welch 1983) was applied to individual chains. If evidence of non-stationarity is found this 
process discards iterations from the beginning of the chain until the remaining chain passes the test. Raftery and 
Lewis’s (1992) tests for convergence to the stationary distribution and estimation of the run-lengths needed to 
accurately estimate quantiles was also used. 
 
Model check  
  
In order to check whether the model was a ‘good’ fit to the data, the observations were compared with their 
predicted distributions. Different goodness-of-fit statistics were computed. 
 
Firstly, we calculated the simple difference between each observed data point and its trial value in each MCMC 
sampling step. The summary statistics of the distributions of these residuals indicated by their central tendency 
whether the modelled values were biased with respect to the observations. The dispersion of the residuals was 
compared with both the classical statistical estimate of the SE of the respective observed value and the modelled 
collective estimate of the precision of the observation sequence.[what is this??] 
 
Secondly, the overall posterior distribution was investigated for potential effects of model deficiencies by comparing 
each data point with its posterior predictive distribution (Posterior Predictive Checks; Gelman et al. 1995, 1996). 
Intuitively this is equivalent to running the model backwards to see the data needed to get the suggested result and 
then judge if that is a realistic scenario.  
 
Simulated sets of observed data, datarep, were drawn from the sampling distributions for the observations as outuput 
from the model.  Therefore, datarep has distribution: 
 

∫= θθθ ddataPdataPdatadataP obsrepobsrep )|()|()|(  

 
In this expression the term )|( θrepdataP  represents the sampling of observations from the distributions set up in the 

model to define them, and the term )|( obsdataP θ  represents the sampling of the parameters of those distribution 
from their own posterior distributions. If the model fitted the observed data well, the observed data should, 
collectively, be a ‘likely’ drawing from its simulated distribution, i.e. the observed data and the replicate data should 
look alike. The degree of similarity between the original and the replicate data points were summarised in a vector 
of p-values, calculated as the proportion of N simulations in which a sampling of the posterior distribution for an 
observed value exceeded the value in the input data: 
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where I(x) is 1 if x is true, 0 if x if false. Values close to 0 or 1 in the vector p-value would indicate that the observed 
data point was an unlikely drawing from its posterior distribution. 
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Thirdly, the ‘Conditional Predictive Ordinate’ (Gelfand and Dey, 1994) was calculated as a harmonic mean of the 
likelihood: 
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where N is the number of MCMC samples. This statistic indicated by small values if the relevant data points were a 
poor fit to the model. 
 
Fourthly, to compare the fit of the two models we calculated the deviance (Gilks et al. 1992) as the sample mean of 
the log-likelihoods times –2.  
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and the negative cross-validatory log-likelihood (Gelfan and Dey, 1994):  
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again N is the number of MCMC samples. These statistics both give small values the better the fit of the model. 
 
 

Results and considerations with reference to the modeller 
 

Two models were investigated. In each run BUGS was set up to do 550000 iterations, however only recording every 
50th to compensate for serial correlation within the chains of some of the sampled parameter values. The first 1000 
samples of the recorded chain were discarded for “burn-in” leaving 10000 samples as the final result. Convergence 
diagnostics were calculated for the parameters listed in Table 3 to confirm that the model and sampling set-up was 
appropriate to ensure convergence.  
 
Model 1 (without explicit predation effect) 
 
A Bayesian model, similar to that described above, but omitting all observations, parameters, equations and 
distributions concerning predation on shrimp by Atlantic cod, was fitted to the data series on CPUE, survey and 
catch.  This mo del was similar in concept to that fitted by likelihood methods in Hvingel and Kingsley (2000). The 
run-time for this model was approx. 4 hr’s on a 700 MHz-labtop. The use of a variable shape parameter, m, for the 
stock recruitment curve rather than fixing it at 2 (= the Schaefer model), more than doubled the run-time.  
 
Judged from the generated posterior distribution the data did not contain sufficient information about K to improve 
much on the prior assumption about this parameter (Fig 2). A mode was however evident at around 1 mill. tons but 
the used prior truncated at 6 mill. tons was seen to interfere with the posterior. It is not an uncommon phenomenon 
that logistic population-dynamic models fitted to real fisheries data are unable to differentiate between a large 
unproductive stock and a small productive one but still may produce a reasonably good determination of MSY, 
especially if the fishery has been stable with catches near MSY. Also we had no strong evidence of what the upper 
limit of the carrying capacity might be. So instead of discarding this model right away, we changed the upper 
truncation point of the K prior to an arbitrarily chosen value of 15 million tons. This would still interfere with the 
posterior for K, but increasing the upper limit  further did not seem to influence the posteriors of the other parameters 
in the model significantly.  
 
In this setup the model was able to produce a reasonable simulation of the observed data (Figure 4). The 
probabilities of getting a more extreme observation than the realised ones given in the two data series on stock size 
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were in the range of 0.11 to 0.5 (Table 3) i.e. the observations did not lie in the tails of their posterior distributions. 
For the CPUE series the data point of 1987 were suggested by a low CPO to be a relatively poor fit to the model. 
Minor problems capturing the extremes of 1979, 1982 and 2001 were also indicated by these points having 
relatively large residuals and small CPO’s (Table 3). The survey series was generally less well estimated, the 1991 
and 1994 values showing the largest residual’s and smallest CPO’s.  
 
Some of the parameters showed high linear correlation  (Table 4). The catchabilities (qc and qs) were negatively 
correlated with the parameter for carrying capacity, K, and to some extent with MSY.  MSY and K were only slightly 
positively correlated.  
 
For the parameters m (represented by Bmsy/K), K and P1 the posterior distributions tended to approximate the input 
priors (Fig. 2). The posterior for MSY was positively skewed and showed a mode at 90 000 tons and upper and lower 
quartiles at 82 700 and 187 000 tons giving a more optimistic view of MSY than assumed in the prior. The 
catchabilities, qs and qc, showed marked peaks at 0.045 and 0.00019 respectively but had relatively wide posterior 
distributions. The estimated CV of the observed CPUE series had a median at about 8.4% and for the survey series 
at 14.9%. The process error, ? , had a median of 10.3% (Table 4). 
 
Model 2 (cod predation effect included) 
 
Entering a predation effect in the model only had minor influence on the model diagnostics (Table 3 and 5) - a 
slightly better fit for the CPUE series was however indicated. The probabilities of getting a more extreme 
observation than the realised ones were in the range of 0.12 to 0.5 (Table 5). For the CPUE series it was still the 
peaks in 1979, 1982 and 1987 that had the largest log-residuals and smallest COP’s. Similarly, the greater variability 
of the survey series was still less well captured with the values of 1991 and 1994 being the most obvious deviations. 
Large correlations among parameters still prevailed (Table 6).  
 
However, precision of the key parameters had improved substantially. The mode of the MSY posterior was at 94000 
tons not far from that of model 1 (Fig. 3) but the lower quartile was at 88000 tons and the upper at 111000 tons 
(Table 7) - a decline in inter quartile range of that parameter from 86% to 24%. The posterior of the K parameter 
now had a more peaked distribution with a mode around 740 000 tons (Fig. 3). The catchabilities, qs and qc, were 
larger and also more precisely estimated than in model 1 showing modes at 0.52 and 0.0022 respectively. The 
posterior distribution for Bmsy/K, approximately uniform in the absence of predation, changed to favour values at the 
lower end of its range i.e. values approaching the Fox form of the logistic model (Fox, 1970). The posterior of the 
initial state, P1, still resembled the input prior.   
 
The estimated CV’s of the observed biomass indices, κ and ω, were similar to those estimated in model 1. However, 
the posterior for the process error, ν, had, in line with the observations noted above, decreased significantly fro m 
mode 0.094 to 0.071. The posterior for the CV of the observed cod biomass series, τ, markedly updated the prior 
expectations (Fig. 3) having a mode at 0.28.   
 
The parameter set to be the main determinant of cod predation rate, P50, was markedly updated with a posterior 
showing a mode at 3.63. As expected there was no information in the data about Omax and the posterior copied the 
prior. The estimated median annual consumption by cod 1956-2001 ranged from 200-100 000 tons - the relative 
interquartile range was for most years around 50% (see Fig. 4). 
 
Model selection [this should prob. Go to disc.section] 
 
The goodness of fit statistics (table 3+6) did not provide clear advise on model selection. However, large differences 
in the precision of estimates of central parameters were evident (Fig. 2+3). The process error was reduced by 1/3 by 
the inclusion of the predation effect and the relative IQ-range of MSY and K went down by about 2/3 (Table 4+8). 
This greatly reduces uncertainties in projections of future developments of stock biomass (figure x) - at least during 
the current regime of extreme low cod stock levels where the observation error associated with the cod biomass 
series only give a minor contribution to the variability of the projected shrimp stock sizes.   
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The two models also produced different simulations of likely stock biomass trajectories back in time before 1976 
(Figure x). Having only the time-series of catch available as input data for that period, model 1 predicts a more or 
less constant stock size around the high level of the 1976 value (Figure x). Model 2 using both catch and cod data, 
predicts the shrimp biomass to have been at about half the size during the period of high cod abundance in the 
1960’s as compared to the current 1976-2001 level. This scenario agrees with the general belief that the stock in 
those years was at a lower level (S. E. Horsted, pers. comm.).   
 
The aim of this modelling exercise may be summarised as to define the quadratic function that describes the 
productive potential of the stock at various stock sizes (fig, 5). How well this curve is defined by the data may be 
visualised by plotting the stock size and corresponding production as calculated directly from the observed biomass 
indices. This was done by applying the MCMC sampled catchabilities to the actual index values to obtain biomass 
estimates. Production was calculated by subtracting biomass in the current year from biomass in the next and then 
adding catch and if necessary estimated predation. Although only a minor difference is seen in the estimated median 
stock-recruitment curve the larger variability of the model 1 estimates is obvious (fig.xx). Further model 2 yields 
more points in the high leverage area around the MSY-biomass level.     
 

Results and considerations with reference to assessment and decision making 
 
State of the stock  
 
During the period of the developing offshore fishery (since the early 1970’s) the estimated time series of median 
biomass level, Pt, ranged from about 1.1 to 1.7 and the probability that each successive annual shrimp biomass ratio 
had been greater than the biomass at MSY was calculated to be larger than 0.92, i.e. under this hypothesis (model 2) 
it seemed likely that the stock had been maintained above its MSY level throughout the history of the modern 
fishery. 
 
As mentioned in the methods section biomass is presented as scaled to Bmsy to cancel out the variability in q. For the 
same reasons estimates of mortality caused by cod predation and fishery is scaled to Zmsy (the combined fishing and 
predation mortality that yields MSY). In this case the variability (ratio of the interquartile range to the median) of the 
B-ratio was on average 67% lower than the absolute estimate of B. The Z´-ratio had about 19% lower relative 
interquartile range as compared to the absolute estimates of Z.   
 
Probability distributions of quantities like mortality or other statistics relevant for the assessment/ management 
procedure but not readily available as model parameters, may also be generated by the MCMC sampling process if 
they can be derived from the existing parameters of the model. This is done by adding the appropriate equations to 
the model code. The equations added for generating posteriors of the Z´-ratio were: 
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In the derived biomass vs. mortality perspective (Fig 6) the shrimp stock may be seen as having existed during two 
different regimes: one with high and one with low cod abundance. The trail of the medians of these two parameters 
starts in 1956 and cycles around at a relative high mortality and low biomass level during the years of high cod 
abundance. The cod stock then declines, mortality starts to decrease and shrimp stock biomass increases and begins 
cycling in the left-upper corner of the graph. 
 
Risk of exceeding a reference point 
 
Often reference points of stock or fishery status are defined as guidelines of management - e.g. to comply with the 
concept of “precautionary approach” (FAO, 1996). The probabilities of transgressing the chosen limits in response 
to different management options may also readily be derived within this modelling framework. E.g. what is the risk 
of exceeding the reference points in five years under a given regime of catch and cod predation? This is done by 
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increasing the number of states by the required projection period—in this case to N+5—and then adding the values 
pertaining to the management option under investigation—typically a certain series of annual catch figures. The risk 
is then simply the relative frequency of the MCMC samp led values that exceed the reference points and can be 
calculated by  
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1

1∑ =
−= N

j iji BlimitI
N

risk   , 

 
where limit is the value of the reference point, Bij is the jth sampled value of the state Bi.  I(x) is 1 if x is true, 0 if x if 
false. This function is available in WinBUGS as the “step function” (Spiegelhalter et al. 2000). 
 
NAFO (North Atlantic Fisheries Organisation) define the limit reference points for mortality, Flim, as equal to FMSY. 
If that is exceed the stock is “overfished”. Blim is the spawning stock biomass below which unknown or “low” 
recruitment is expected (Anon., 1998). Not to cross Buffer reference points, Bbuf and Fbuf, are also defined to provide 
a buffer zone to ensure that there is little probability that the limits reference points are crossed. The distance of the 
buffer reference point from the limit reference should reflect uncertainty i.e. distance should be greater the greater 
the uncertainty in the determination of the limits. In this stochastic state-space Bayesian approach to derive fisheries 
advice there is little need for the buffer reference points as the risk of exceeding the limit reference is directly 
calculated and uncertainty associated with the entire process is taken into account.  
 
The limit ref points for the Z-ratio is  1 according to the NAFO convention, i.e. Zlim=1. Defining a limit reference 
point for the biomass ratio for actual use in the assessment needs thorough considerations, which is beyond the 
scope of this paper. For demonstration it was chosen as having a normal distribution with a mean of 0.4 and a 
standard deviation of 0.1: Blim~N(0.4,0.1) in the interval 0.4,inf.  - and then the appropriateness of the terminology: 
reference “point”, of course starts to fade. However using a probability distribution instead of a point estimate 
accommodates the uncertainty associated with the determination of where the border to the dangerous area actually 
lies. 
  
An optional catch series of 85, 90, 100, 110 and 120 thousand tons for the next five years were investigated and the 
following decision table could be created: 
 

Optional Catch ('000 tons) 85 90 100 110 120

Risk(non long term sustainability) 0.03 0.17 0.56 0.79 0.89
      
Risk(Biomass in 2006 < BMSY) 0.00 0.03 0.07 0.17 0.32
      
Risk(Biomass in 2006 < Limit biomass) 0.00 0.00 0.00 0.00 0.01
      
Risk(Mortality in 2006 > Limit mortality) 0.03 0.11 0.33 0.59 0.73
            
  

 
 
The scenario of future shrimp stock development during a period of zero cod may easily be made more realistic in 
terms of uncertainty by entering probability distributions for the expected annual size of the cod stock. These 
probability distrubutions can be based on the assessments results for that stock or e.g. constructed for investigating 
“worst case” senarios. Thus when evaluating future events, premises of various kinds may be entered in the model 
and risk assosiated with management actions can be quantified.  
 

Discussion 
 
No matter the methods used, the fitting of stock-recruitment models based on sigmoidal stock-trajectory curves to 
fisheries data is still constrained by the amount of information about system behaviour that can be extracted from the 
given perturbation history. In the Bayesian framework fundamental absence of information in the data will just yield 
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posteriors as a copy of the input priors and thus not provide any update of the initial hypotheses. For the data to 
carry information on all the parameters of the model it requires that the biomass should vary widely both above and 
below BMSY. If the available data series does not span these conditions, problems in fitting stock-production mo dels 
by any method can be expected (see Hilborn and Walters, 1992, p. 311-319 for further discussion of potential fitting 
problems). 
  
The available time series of indexed stock sizes for the West Greenland shrimp stock does not cover the entire range 
of the stock/production function (Fig 5). It looks as though the stock size has been fluctuating above BMSY for the 
period 1976-2001. However, in the applied parametrisation both the starting point and the location of the maximum 
production of the stock-recruitment function is fixed and thus the suggested regression line in the figure is not as 
speculative as it might look at first sight.  
 
Even though the conditions for estimation of some parameters are not optimal it may still be possible to get good 
estimates of parameters relevant for the management of the stock. Fortunately MSY is the easiest single parameter 
to estimate. If the range of biomass includes BMSY, good estimates of the MSY can be obtained independently of 
other parameters. In some cases, this can be done even if the range of biomass merely approaches BMSY from one 
side or the other as seen in this case. Model 2 yields estimates of production of stock sizes close to BMSY and of a 
larger part of the upper range of possible stock sizes. We conclude that the lack of contrast in the stock dynamics in 
this case is not an impediment for obtaining reasonable estimates of management relevant parameters. However, an 
adaptive management program designed to further explore the production potential of the stock, i.e. investigating 
stock response to higher quotas, would enable us to provide firmer statements about the production potential of the 
stock.  The security of adaptive management is, however, dependent on having confidence in the basic model of 
stock dynamics. 
 
The goodness-of-fit statistics (table 3+6) indicated no difference in the ability of the two models to reproduce the 
observed biomass indices. But even though only minor differences were seen in the shape of the estimated median 
stock-recruitment curve the larger variability of the model 1 estimates was apparent (fig.5). The process error was 
reduced by 1/3 by the inclusion of the predation effect and the relative IQ-range of MSY and K went down by about 
2/3 (Table 4+8). This greatly reduces uncertainties in projections of future developments of stock biomass (fig. 4) - 
at least during the current regime of extreme low cod stock levels where the error contribution from the estimation 
of predation is small.   
 
The two models also produced different simulations of likely stock biomass trajectories back in time before 1976 
when the CPUE-series starts (Figure 4). Having only the time-series of catch available as input data for that period, 
model 1 predicts a more or less constant stock size around that of the 1970-80’s. The late 1960’s mark the end of a 
50-year period of high cod abundance at West Greenland (ref: ICES cod and climate). Model 2 estimates of the 
shrimp stock size during that period to be about one third of the current size –  and in the mechanics of the model this 
is a result of cod predation. There are anecdotal information confirming that the shrimp stock was lower at the time 
(S. E. Horsted, pers. comm.) but no firm holding points to set the actual level.  
 
The posteriors of MSY from the two models covered the same range of values however, the difference in precision 
by including predation was significant (fig. 2+3). The informative prior used for MSY had little influence on the 
posterior. Only minor changes to its the right tail could be noticed by imposing an alternative non-informative 
uniform prior from 0 to 500 000 tons and posteriors of other parameters remained practically unchanged.  
 
The parameter K could not be determined with much precision using model 1. The posterior distribution was 
approxemately uniform between its prior defined upper and lower limits and proved quite sensitive to the formulated 
prior. As indicated in figure x negative production, indicating that K has been exceeded and a density dependent 
stock reduction is taking place, occour at a wide span of stock sizes. An informative prior for q or K would geratly 
improve conditions, however, such prior knowledge were not available. Even trying to specify an upper limit to K 
was a somewhat speculative business. In model 2, K is much tighter defined (figure 3). The estimates of catchability 
are less variable and part of the apparently low or negative production estimated in some years by model 1 (fig. 5) 
may now be accounted for by predation rather than by an intrincic density dependent regulation alone.   
 
The shape parameter, m, was not well determined by either of the models - as could be expected (fig. 2+3). This 
parameter is closely related to the ratio of MSYL to K, and presents similar estimation problems.  To get 
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information on m would require the fishery record to span stock levels from close to carrying capacity to below 
MSYL, and this apparently has not occurred. For model 1, the indeterminance of K precludes estimating m. In 
model 2, where a distict distribution of K could be estimated, low values of m gained a relative larger likelihood i.e. 
the stock recruitment curve was slightly squewed to the right suggesting that the density-dependent reduction of 
production becomes effective at lower stock size (fig.3). 
 
For both models the marginal posterior distributions of the initial biomass P1, tended to approximate the input priors 
whether these were ‘uninformative’ or not (Fig. xx). In our models the initial biomass state was, contrary to typical 
practice when fitting production models, placed several years before data on relative abundance was available. Thus 
a potential strong signal from the data about stock sizes historic to the CPUE-series would be given off as 
information about trends in the entire series of stock development rather than just defining the first state of the 
series. 
 
So the question is not as much whether the data is able to provide an update of the prior for P1, but whether the 
model and the trajectory of biomass states is sensitive to changes in this prior: They were not. E.g. giving P1 a prior 
uniform between zero and 2 only made small changes in the estimates of other parameters. 
 
The shapes of priors are more or less subjectively determined by the modeller and are therefore candidates for 
discussion in the same way as are the reliability of traditional data entries. Overall the model 2 showed low 
sensibility to changes in prior distributions and in particular for the parameters to be used in the assessment i.e. MSY, 
B-ratio, F-ratio,,, .  
 
The model estimated the median annual consumption by cod 1956-2000 in the range of 200 tons to about 100000 
tons, which is in the same order of magnitude as the catches taken by the fishery (Fig 4). Predation by cod on shrimp 
in the waters off West Greenland (Sidorenco, 1962; Grunwald, 1998) and elsewhere in the North Atlantic (Lilly et 
al., 2000 and references therein) has been documented, but little information were available for external validation 
of the model-estimated quantities consumed.  Thus even though there are great incitements for a considerable 
predation effect from cod the mechanics behind the shrimp -cod correlation is not fully known and could for that 
reason also partly be attributed to stock responses to the same environmental conditions (Lilly et al 2000). 
 
In the light of the stomach investigation by Grunwald (1998) the estimates of Omax of 3 kg /kg looks reasonable. 
Grunwald (1998) calculates a daily ration of 0.4-0,9% bodyweight per day 1989-1992. Shrimp made up 12-37% of 
the diet, which implies that an average kilo of cod ate 0.2-1.2 kg of shrimp per year. The stock size corresponding to 
these levels of predation rate yielded estimates of P50 with a median of 3.8 saying that concentrations well above 
estimated carrying capacity is needed for even reaching half the maximum predation rate.  In practice this means 
that we are only dealing with the left half of the sigmodal functional response curve.  
 
The need for including explicit factors of mortality in shrimp assessment models other than fishing mortality as 
responsible of variation in shrimp survival has been stated several times in various workshop or assessment reports 
(e.g. ices work group 1992, pandalid shrimp symp 2000 ACFM 2002). However this advice has so far only been 
implemented in the assessment of shrimp in Icelandic waters.  This partly stems from the fact that predation may 
have a complex mode of operation (e.g. Bax, 1998) and the lack of suitable data.  
 
The attractive fit of the version of the model that includes cod predation appears to be due largely to the coincidence 
of a short-lived resurgence of a cod stock with a steep decline in shrimp CPUE in the very late 1980s.  This is a 
‘one-point correlation’.  While it is universal experience that cod are in very fact serious predators on shrimp and 
unquestionably affect, even control, shrimp stocks, it would be helpful if the coincidence of high cod stocks with 
decline in shrimp density in West Greenland could be confirmed by more than one data point.  Otherwise, it remains 
a question whether this was cause and effect, or simple coincidence. 
 
If the cod predation fit is driven by this coincidence, based on a single occurrence, it follows that the precision with 
which the parameters of the predatory response are estimated may be misleading, derived from a fit to a single point. 
 
For comparison a similar model (Hvingel and Kingsley 2000) was run in the ASPIC (Prager, 1994) estimation 
framework. ASPIC minimises least squares to find best-fitting point estimates given the data, and error is attributed 
to observations only. 25% percentiles are calculated by a bootstrap procedure (Prager, 1994). The MSY point 
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estimate from ASPIC is 130000 tons whereas the comparable mode of the Bayesian MSY posterior is about 95000 
tons. The catchability estimates from ASPIC are also higher. The hypothesis about the “state of nature” arising from 
this estimation framework is one of a small productive stock while the Bayesian model 1 sees the stock as larger and 
less productive. In the ASPIC framework the production model was only able to capture the overall trend in the 
biomass indices (Fig. 4). 
 
It is however difficult to compare parameter estimates from ASPIC with those obtained in the present model, which 
uses more sophisticated likelihood functions and fitting methods. 
 
“Traditional” assessment models framework is often found to lack flexibility in terms of which data can be allowed 
to enter the assessment and in terms of the equations of population dynamics and data links, which dictate a fixed 
general behavioural pattern through time even though it is known that for some individual years it does not comply. 
An alternative approach is to scrap the population dynamic equations and data link functions and use a multi-
indicator system as guidance for a harvest strategy. This was recently introduced as the “Traffic light” approach in 
the management of some Canadian shrimp stocks (Koeller et al. 2000). Even though it is not fully explicitly stated, 
such “synthesis” (Hilborn and Walters, 1992) - type of assessments however still need a model to interpret and 
integrate the comprehensive list of indicators. Going beyond simple averaging of the indicators, which has its 
pitfalls (Hilborn and Walters, 1992; Schnute and Hilborn, 1993), the contours of a very complex mo del seems to 
emerge.  Index-based assessment methods that lack an underlying model have problems in identifying duplications 
and correlations in the set of indicators being synthesised. 
 
Another relevant criticism of the traditional assessment methods is the use of single-species perspectives, and in 
many cases neglecting interaction with the surrounding physical and biological environment. However, even if this 
is the right approach in the eyes of god, moving to full-scale ecosystem models for estimating the production 
potential of a particular element of that system will yield models at least as complex as the implicit “Traffic light” 
model and have immense demands for data and knowledge. A simple model in a state-space Bayesian framework 
may have much to offer in respect of satisfying both the Traffic-light and ecosystem people. In this approach we 
may stay with a relative simple “main effects model” but still have a framework that can accommodate many types 
of data and also take ecosystem effects into account. 
 
The state-space model allows for flexibility of the population dynamic hypotheses. In fact as each state (stock 
condition of a year) is treated as an individual parameter, the transitions from one year to the next might—in an 
extreme case - all follow different hypotheses of population dynamics, and vice versa for the data link functions. In 
practice this flexibility is more likely to translate into minor corrections of the general set of equations e.g. to 
account for an observed atypical recruitment variation, temporary change in discarding practise, a year of extreme 
temperatures etc. All of the collected data that might not find a direct way into the assessment model as traditional 
“input data” might still contribute to our description of stock development as such modifications. 
 
A significant strength of using Bayesian methods in the data-poor area of fish stock assessments, is their ability to 
incorporate knowledge outside the data series of catch, abundance etc.. The Bayesian approach offers a conceptually 
elegant way to incorporate ancillary knowledge in a model as prior distributions of model parameters. If informative 
priors can be constructed, based on extraneous information for one or more of the parameters that are poorly defined 
by the main data series acting through the fitted model, it may significantly boost the ability to estimate. All forms 
of data ranging from the hard quantitative type, as those obtained through extensive surveys or logbook analyses, to 
pure anecdotal information can be accepted. A lot of such information with relevance to stock dynamics, data 
precision or link functions are often available for the assessment. This typically includes, information on stock 
demographics from length frequency or sex distributions, oceanographic or other environmental data, geographical 
distribution, fishing pattern etc. All though this is not explored to its full content in this paper all such information 
may in principle easily be integrated (Hvingel and Kingsley, in prep.).  
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Table 1.  Input data series: catch by the fishery and a standardised index of their catch-per-unit-effort (CPUE), shrimp biomass 
index from research survey, cod biomass and estimated consumption of shrimp by cod. 

 
Catch CPUE Survey Cod Consump.

Year (´000 tons) (index) (index) (´000 tons) (´000 tons)
1955 5 1729.3
1956 5 1662.5
1957 5 1286.1
1958 5 1333.1
1959 5 1294.3
1960 5 1589.2
1961 5 1591.9
1962 5 1459.7
1963 5 1448.6
1964 5 1457.0
1965 5 1348.4
1966 5 1386.9
1967 5 1241.8
1968 5 877.5
1969 5 535.9
1970 8.6 392.7
1971 9.4 334.9
1972 9.7 227.5
1973 12.6 136.8
1974 22.0 85.8
1975 37.9 62.9
1976 50.1 1.232 133.0
1977 42.1 1.155 122.4
1978 34.5 0.913 120.3
1979 35.2 0.826 135.3
1980 46.0 0.994 106.9
1981 44.8 0.948 103.6
1982 44.6 1.212 135.1
1983 46.8 1.043 87.5
1984 43.4 0.983 52.7
1985 54.5 1.036 30.6
1986 63.1 1.090 41.4
1987 63.7 1.364 231.0
1988 60.3 1.016 216.8 307.0
1989 65.7 0.816 199.6 191.6 84.8
1990 69.4 0.779 213.9 57.5 8.5
1991 75.9 0.762 146.3 7.4 1.0
1992 86.8 0.835 202 8.4 2.3
1993 75.6 0.833 232.7 0.8
1994 76.6 0.781 249.5 0.3
1995 70.7 0.851 201.1 0.1
1996 69.2 0.886 211.9 0.8
1997 64.5 0.856 185.3 0.6
1998 66.1 0.970 263.1 0.3
1999 76.5 1.031 251.5 0.5
2000 76.5 1.154 236.1 1.3
2001 83.5 1.200 309.2 5.8  
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Table 2. Stochastic surplus production model of the dynamics of the West Greenland shrimp stock incorporating predation by 
Atlantic cod to be solved using Bayesian inference. “~” means “distributed as”, N(µ,σ2)  is the normal distribution with 
mean µ and variance σ2. Correspondingly, LN is the lognormal distribution, G is the gamma distribution and U is the 
uniform distribution. 

_________________________________________________________________________________ 
 

Observables, data   (t = (1,..,T)) 
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Priors for: 
-Parameters defining stochastic behavior 
(h)  )03.0,5.2(~/1 2 Gωσ  

(i)  )1125.0,4(~/1 2 Gκσ  

(j) )001.0,001.0(~/1 2 Gτσ  

(k) )22.0,5(~/1 2 Gνσ  
 
-Parameters relating biomass indices to real biomass 
(l) ))5.1log(),0554.4(log(~log −eUq s  

(m) ))1log(),0706.3(log(~log −eUqc  
 
-Parameters defining predation rate 
(n) )01.0,3(~max NO  

(o) )27.2),59.0(log(~5.0 LNP  
 
-Parameters of stock production 

(p) 
09382.111737.5exp(18172.0 KPm =  corresponding to:   )63.0,37.0(~ UPK  

(q) )1),90(log(~ LNMSY  

(r) ))6000log(),100(log(~log UK  
 

Joint prior density, p(θ) 

(s) p(θ) = p(K,MSY,m,q,qs,Vmax,P50,
2
ωσ , 2

κσ , 2
τσ , 2

νσ ) p(P1) ∏
=

N

t 2

p(Pt|Pt-1,K,MSY,m, 2
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Sampling distribution, p(data|θ) 

(t)p(data|θ) = ∏
N

1

p(CPUEt, survt codt, Vt|P t, q, qs, 2
ωσ , 2

κσ , 2
νσ )  

Joint posterior probability density, p(θ|data) 
(u) p(θ|data) ∝  p(θ)p(data|θ)          (Bayes Theorem) 

___________________________________________________________________________ 
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Table 3.  Residuals (% of observed value), probability of getting a more extreme observation, conditional predictive ordinate 
(CPO), deviance and the negative cross-validatory log-likelihood (NCL) for estimates of model 1 (se methods section 
for further explanation). 

 
 
 

CPUE-series Survey-series
Year resid.(%) p.extreme CPO resid.(%) p.extreme CPO
1976 -4.7 0.34 1.5
1977 -4.5 0.33 2.0
1978 4.8 0.34 2.5
1979 8.9 0.21 1.3
1980 -1.9 0.43 2.8
1981 5.0 0.32 2.2
1982 -8.5 0.20 0.8
1983 0.7 0.47 3.0
1984 3.7 0.36 2.7
1985 1.2 0.46 3.0
1986 0.5 0.47 2.8
1987 -13.2 0.11 0.1
1988 -1.7 0.43 3.0 11.9 0.25 0.7
1989 5.0 0.33 3.1 4.2 0.40 1.1
1990 4.0 0.36 3.7 -8.0 0.31 0.9
1991 0.7 0.47 4.2 27.4 0.07 0.3
1992 -1.3 0.45 4.0 -0.9 0.48 1.2
1993 1.9 0.43 3.8 -11.4 0.23 0.7
1994 7.9 0.23 2.0 -17.9 0.12 0.3
1995 0.2 0.50 4.0 3.0 0.42 1.1
1996 -1.2 0.45 3.8 0.4 0.48 1.1
1997 2.3 0.42 3.7 14.8 0.20 0.8
1998 0.5 0.47 3.5 -10.0 0.26 0.7
1999 0.1 0.50 3.3 -0.4 0.50 0.9
2000 -5.0 0.31 2.0 12.4 0.24 0.7
2001 -4.2 0.36 1.0 -9.7 0.27 0.5

Dev. mean -44.2 185.5
NCL -21.5 68.9  

 
 

 
Table 4. Significant correlations (p<0.01) among parameters of model 1. 

 
K MSY P[1] P[48] Pmsy q qs ω ν

MSY 0.09
P[1] n.s. n.s.
P[48] -0.21 0.39 0.08
Pmsy n.s. -0.09 n.s. 0.06
q -0.61 -0.26 n.s. -0.09 -0.05
qs -0.61 -0.26 n.s. -0.09 -0.05 1.00
ω 0.04 n.s. n.s. n.s. n.s. n.s. -0.04
ν n.s. n.s. n.s. n.s. n.s. 0.08 0.09 -0.26
κ n.s. n.s. n.s. -0.05 n.s. n.s. n.s. n.s. -0.06  
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Table 5.  Mean, standard deviation and 25, 50, and 75 percentiles of MCMC samples from the posterior distribution for selected 

parameters in model 1. 
 

Parameter Mean  sd 25% Median 75%
K 4456 3596 1723 3212 6121
MSY 146.8 93.3 82.7 121.2 187.0
P[1] 0.803 0.162 0.688 0.787 0.900
P[48] 1.796 0.537 1.477 1.785 2.116
Bmsy/K 0.501 0.075 0.436 0.501 0.566
q 5.6E-04 5.2E-04 2.3E-04 4.0E-04 7.0E-04
qs 0.137 0.127 0.056 0.098 0.171
ω 0.086 0.017 0.074 0.084 0.097
ν 0.104 0.025 0.087 0.103 0.120
κ 0.152 0.026 0.133 0.149 0.167  

 
 
Table 6.  Residuals (% of observed value), probability of getting a more extreme observation, conditional predictive ordinate 

(CPO), deviance and the negative cross-validatory log-likelihood (NCL) for estimates of model 2 (se methods section 
for further explanation). 

 
 

CPUE-series Survey-series
Year resid.(%) p.extreme CPO resid.(%) p.extreme CPO
1976 -7.1 0.25 1.0
1977 -7.6 0.23 1.5
1978 6.1 0.28 2.6
1979 13.1 0.12 0.6
1980 -0.7 0.47 3.3
1981 5.9 0.28 2.4
1982 -10.2 0.15 0.8
1983 -0.6 0.48 3.4
1984 3.9 0.34 3.1
1985 3.4 0.37 3.0
1986 3.8 0.35 2.7
1987 -11.0 0.14 0.4
1988 -2.3 0.41 3.3 11.8 0.25 0.7
1989 2.9 0.37 3.8 2.9 0.43 1.2
1990 -1.1 0.46 4.7 -11.9 0.21 0.7
1991 -0.6 0.46 4.6 26.3 0.08 0.4
1992 -1.5 0.44 4.5 -0.6 0.48 1.2
1993 -0.2 0.50 4.4 -12.7 0.21 0.6
1994 7.6 0.23 2.3 -17.7 0.12 0.4
1995 0.2 0.49 4.4 3.6 0.41 1.1
1996 -0.7 0.46 4.1 1.5 0.46 1.1
1997 4.5 0.34 3.6 17.8 0.16 0.6
1998 1.2 0.46 3.8 -8.9 0.29 0.7
1999 1.2 0.45 3.6 1.4 0.47 0.9
2000 -4.9 0.31 2.4 13.2 0.22 0.7
2001 -5.3 0.32 1.3 -10.2 0.27 0.5

Dev. mean -55.2 186.4
NCL -23.5 69.0  
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Table 7. Significant correlations (p<0.01) among parameters in model 2. 
 

K MSY Omax P1 P48 P50 Pmsy q qs ω ν κ
MSY 0.65
Omax ns ns
P1 0.10 0.12 ns
P48 0.20 0.50 ns 0.20
P50 0.09 0.40 0.07 0.26 0.29
Pmsy ns 0.13 ns ns 0.31 -0.16
q -0.69 -0.62 ns -0.25 -0.44 ns -0.14
qs -0.68 -0.62 ns -0.25 -0.44 ns -0.14 0.99
ω 0.03 ns ns ns -0.05 0.03 ns -0.05 -0.06
ν 0.29 0.36 ns 0.07 0.29 0.16 0.14 -0.32 -0.32 -0.25
κ -0.03 -0.04 ns ns -0.04 ns -0.02 0.03 0.03 0.03 -0.08
τ ns -0.02 ns ns ns ns ns 0.05 0.05 ns -0.09 ns  

 
 
 
Table 8.  Mean, standard deviation and 25, 50, and 75 percentiles of MCMC samples from the posterior distribution for selected 

parameters of model 2. 
 

Parameter Mean  sd 25% Median 75%
K 811.3 548.8 524.5 660.9 884.2
MSY 109 42.4 88.07 95.75 111.3
Omax 2.998 0.1005 2.93 2.998 3.066
P[1] 0.9218 0.1776 0.7951 0.9034 1.032
P[N+1] 1.527 0.27 1.343 1.487 1.671
P50 4.737 1.268 3.894 4.494 5.31
Bmsy/K 2.233 0.2951 2.002 2.265 2.489
q 0.002402 0.000974 0.001756 0.00242 0.003041
qs 0.5907 0.2439 0.4276 0.5911 0.7499
ω 0.08823 0.01653 0.07631 0.08669 0.0983
α 0.06582 0.02624 0.04579 0.06335 0.0827
κ 0.1553 0.02639 0.1367 0.1518 0.1699
τ 0.2243 0.05458 0.1858 0.2141 0.2527  
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Figure 1.  State space model, schematic presentation with two observational series (se text for further explanation). 

 
 
Figure 2.  Prior (broken lines) and posterior (solid lines) probability density distributions of the parameters of 

model 1. 
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Figure 3.  Prior (broken lines) and posterior (solid lines) probability density distributions of the parameters of 

model 2. 
 
 

P1

0.0 0.5 1.0 1.5 2.0 2.5

ν
0.0 0.1 0.2 0.3

B
MSY/K

0.3 0.4 0.5 0.6 0.7

κ
0.0 0.1 0.2 0.3

q
0.000 0.002 0.004 0.006

ω
0.0 0.1 0.2 0.3

MSY ('000 tons)
0 100 200 300

K ('000 tons)
0 1000 2000 3000

qs

0.0 0.5 1.0 1.5

P
2002

0 1 2 3

τ
0.0 0.2 0.4 0.6

O
max

2.5 3.0 3.5

P50
0 2 4 6 8 10



 

 

- 26 - 

Estimated

Observed

Survey

CPUE

Survey

CPUE

Survey

CPUE

ASPIC

1960 1970 1980 1990 2000 2010

S
ur

ve
y 

in
de

x

150

200

250

300

350

400

450

C
P

U
E

 in
de

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Model 2

1960 1970 1980 1990 2000 2010

S
ur

ve
y 

in
de

x

150

200

250

300

350

400

450

C
P

U
E

 in
de

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Model 1

1960 1970 1980 1990 2000 2010

C
P

U
E

 in
de

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
ur

ve
y 

in
de

x

150

200

250

300

350

400

450

Model 2

Year

1960 1970 1980 1990 2000 2010

C
on

su
m

pt
io

n 
('0

00
 to

ns
)

0

20

40

60

80

100

120

140

 
 

Figure 4.  Observed values of biomass indices and consumption and corresponding estimates by model 1 and 2. 
(25% percentiles of the posteriors) and ASPIC, (least squares estimates). Estimates of relative stock 
development in the future and historic to the data series are shown in the scale of the CPUE indices.  
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Figure 5.  Production vs. stock size as predicted from the indices [more explanation here or in text] and a stock-
recruitment curve based on the median of the posteriors of the parameters MSY and m. 

 



 

 

- 28 - 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Z'-ratio

B
-r

at
io

Z'-limit

B-limit

1988

1956

2001
1976

 
Figure 6.  Estimated development of annual median biomass ratio (B/BMSY) and mortality ratio (Z/ZMSY) 1956-2002. 
 
 
 
 
 
 
 
 




