

NOT TO CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

NAFO SCR Doc. 03/55

Serial No. N4873

SCIENTIFIC COUNCIL MEETING – JUNE 2003

An Assessment of the Status of the Redfish in NAFO Divisions 3LN

by

D. Power

Science, Oceans and Environment Branch, Department of Fisheries and Oceans P. O. Box 5667, St. John's, NL, Canada A1C 5X1

Abstract

There are two species of redfish, the deep sea redfish (*Sebastes mentella*) and the Acadian redfish (*Sebastes fasciatus*) that have been commercially fished and reported collectively in fishery statistics in Div. 3LN. Catches averaged about 22 000 tons from 1959 to 1985, increased sharply to a historical high of 79 000 tons in 1987 then declined steadily to about 500 tons in 1996. Catch increased to 850 tons in 1998. A moratorium on directed fishing was implemented in 1998. Catches since then, taken as by-catch in other fisheries, have ranged between 850 tons to 2300 tons with the 2002 catch at 1200 tons. Interpretation of available data remains difficult for this stock. The surveys demonstrate considerable inter-annual variability, the changes frequently being the result of single large catches being taken in different years. Nonetheless, estimates from recent surveys are considerably lower than those from the 1980s indicating a reduced and low stock size. Poor recruitment has persisted in Div. 3L since the early-1980s. The last good recruitment in Div. 3N was the 1986-87 year-classes. It takes about 8-10 years before redfish become fully recruited to a directed fishery. Thus any recovery of the resource in the short or intermediate term is not anticipated.

Introduction

There are two species of Sebastes that have been commercially fished in Div. 3LN, the deep sea redfish (*Sebastes mentella*) and the Acadian redfish (*Sebastes fasciatus*). The external characteristics are very similar, making them difficult to distinguish, and as a consequence they are reported collectively as "redfish" in the commercial fishery statistics.

Nominal Catches and TACs

The average reported catch from Div. 3LN from 1959 to 1985 was about 22 000 tons ranging between 10 000 tons and 45 000 tons (Table 1, Fig. 1). Catch increased sharply from about 21 000 tons in 1985, peaked at a historical high of 79 000 tons in 1987 and declined steadily to about 600 tons in 1997. Catch increased to 850 tons in 1998, the first year under a moratorium on directed fishing, with a further increase to 2 300 tons in 1999 and declined to 1 200 tons in 2002.

From 1980 to 1990 the TAC each year for this stock has been 25 000 tons. The TAC was reduced to 14 000 tons for 1991 and was maintained at that level to 1995. The TAC was reduced again in 1996 at 11 000 tons and maintained at that level in 1997. The NAFO Fisheries Commission implemented a moratorium on directed fishing for this stock in 1998 and has extended it to 2003. In an 8 year period from 1986-1993, TACs were exceeded annually. In some years catch was double (1988) and even triple (1987) the agreed TAC. In the three years prior to the moratorium (1995-1997), there was no sustained effort toward redfish.

Description of the Fishery

In the early-1980s the former USSR, Cuba and Canada were the primary fleets directing for redfish. The rapid expansion of the fishery in 1986 (Tables 1-2) and continued high level in 1987 and 1988 was due to new entrants, primarily EU-Portugal and various non-Contracting parties (NCP), most notably South Korea, Panama and Caymen Islands. These countries began to fish in the regulatory area and accounted for a catch of about 24000 tons. In the period from 1988 to 1994 non-Contracting parties had taken between 1,000 t and 19,000 t annually, however, NCPs did not fish in Div. 3LN since 1994. Since 1995 there has been little directed effort. Recent catches have been the result of by-catch from the Greenland halibut fishery in Div. 3LN.

Fishing pattern changed for the predominant fleets fishing mid-water gear between the 1980s and 1990s. In the early-1980s fishing occurred in the vicinity of the Div. 3N and Div. 3O border and along the slope edge in Div. 3L. In the 1990s the area southwest of the Flemish Cap at the border of Div. 3LNM became prominent. In the years prior to the moratorium in 1998, a number of countries had reduced effort substantially on Div. 3LN. The reasons for the reduced effort was varied amongst the fleets involved. Cuba did not fish from 1993-1997 because of poor yield with the current regulated mesh size of 130 mm. The Baltic countries reduced their fleet between 1995-1997 and directed toward shrimp in Div. 3M. EU/Portugal directed predominantly to Div. 3O redfish since 1994 because of insufficient quota in Div. 3LN and also targeted other species in the NAFO Regulatory Area. Russia reduced its directed effort in 1996 and subsequently targeted other species and redfish in Div. 3O. The Canadian fleet has not fished in Div. 3LN recently because of poor yields.

The most recent pattern of the catches when there was directed effort (Table 3a, b) reveals the fishery occurred during the first half of the year in Div. 3L but mostly from April to September in Div. 3N. Catches for each division by gear since 1990 (Table 4) shows the bottom trawl was the predominant gear in the fishery in the 1980s. Fleets that fished the Div. 3LMN border on the "Beothuk Knoll" probably accounted for most of the mid-water trawl catch.

Commercial Fishery Data

Catch and Effort

There is no new information to include in the catch rate standardization since the last analysis (Power, MS 1997) because catches since 1998 have been taken as by-catch. However, these data were not considered reflective of year to year changes in stock abundance (ANON 1996) are of little value in determining current stock status.

Commercial fishery sampling

Sampling of redfish as by-catch was conducted by Portugal in Div. 3LN (Vargas *et al.*, MS 2003), Spain in Div. 3L (Gonzalez *et al.*, MS 2003) and Russia in Div. 3LN (Vaskov *et. al.*, MS 2003) from the 2002 trawl fishery for primarily for Greenland halibut (Fig. 2). The Portuguese fleet fished >600 m in Div 3L and from 125 m-1 200 m in Div. 3N. The Spanish fleet fished >600 m in Div. 3L, >600 m in Div 3N for the first half of the year but some of the fleet moved to <200 m with large mesh (280 mm) for the skate fishery starting in July. The Russian fleet fished from 300 m-1 800 m in Div. 3LN.

The compilation of annual catch at length as number per thousand suggested catches in Div. 3L were dominated by lengths between 27 cm-32 cm for the Portuguese and Spanish fleets and between 31 cm-33 cm for the Russian fleet, which was sampled for total length. In Div. 3N, catches sampled from Portuguese and Spanish fleets were dominated by lengths between 27 m-32 cm while sampled from the Russian fleet were dominated by lengths between 27 m-32 cm while sampled from the Russian fleet were dominated by lengths between 27 m-32 cm while sampled from the Russian fleet were dominated by lengths between 33 cm-35 cm. The Portuguese sampling also indicated *S. marinus* were caught with lengths dominant between 28 cm-30 cm. Sampling over the past number of years has consistently shown that the dominant lengths in the samples have ranged between 27 cm-33 cm.

Research Survey Data

Abundance Indices

Stratified-random surveys have been conducted by Canada in Div. 3L in various years and seasons from 1978 to 2002 in which strata up to a maximum of 732 m (400 fathoms) were sampled. Although these surveys were conducted at various times of the year throughout the period, they provide an indication of relative abundance and dynamics of the population. The design of the surveys was based on a stratification scheme down to 732 m (400 fathoms) for Div. 3LN (Fig. 3). Recently the stratification scheme has been updated to include depths out to 1 464 m (800 fathoms) but only the autumn surveys since 1996 have had some sampling of stations over 732 m (400 fathoms).

Up until the autumn of 1995 these surveys were conducted with an Engels 145 high lift otter trawl with a small mesh liner (29 mm) in the codend and tows planned for 30 minute duration. Starting with the autumn 1995 survey in Div. 3LN, a Campelen 1800 survey gear was adopted with a 12 mm liner in the codend and 15 minute tows utilizing SCANMAR. Only Campelen data and Engel data were converted into Campelen equivalents are reported in this assessment. A comparison of the generated data with the original Engel data suggested overall trends in abundance were the same except that the relative measure of abundance estimated for the Campelen trawl conversions were higher (Power and Maddock Parsons, MS 1998).

Mean number and calculated mean weight (kg) per Campelen equivalent standard tow continue to show large fluctuations between some adjacent years (Table 5-7, Fig. 4). There are also rather large changes in stratum by stratum density estimates in adjacent years where seasons can be compared. Although it is difficult to interpret year to year changes in the estimates, in general, the spring survey biomass index from 1992 to 1995 suggests the stock was at its lowest level (average 5 000 tons) relative to the time period prior to 1986 for surveys conducted in the first half of the year (winter/spring average 93 000 tons). A similar contrast occurs in the autumn survey biomass index from 1992 to 1995 (average 19 000 tons) relative to a time period prior to 1986 for surveys conducted in the second half of the year (summer/autumn average 248 000 tons). Since 1996 the spring biomass index has fluctuated around a higher biomass level (average 21 000 tons) than the 1992-1995 period (average 5 000 tons). The autumn index also shows a similar increase from 1996 to 2002 (average 21 000 tons) as compared to 1992-1995 (average 19 000 tons). The effect is less apparent because of the relatively large 1995 index (50 000 tons) used in the averaging.

Stratified-random surveys have also been conducted primarily in spring and autumn by Canada in Div 3N from 1991-2002 that also cover to the extent of the stratification (732 m or 400 fathoms). The Campelen trawl and protocol were also utilized on these surveys beginning in the autumn of 1995. These data were also converted into Campelen equivalents where appropriate. Mean number and weight per tow (Table 8-10, Fig. 5) are considerably higher than in Div 3L but there are relatively greater variability in these estimates as well. A consistent pattern of higher autumn estimates is also evident. The source of this variability is not clear but it is likely to be due to availability to the trawl gear rather than real changes in population abundance and therefore the interpretation of these data in terms of year to year trends is difficult. The average survey biomass index for the converted spring data in the 1991 to 1995 period is about 6 000 tons. The average Campelen spring survey biomass index from 1996 to 2002 is about 25 000 tons. This average is highly influenced by three or four large sets that have occurred among the 1998-2000 surveys. However, there does appear to be an increase since 1996. For the autumn series the 1991-1994 average biomass index was 46 000 tons compared to 1995-2002 average of 56 000 tons. The series since 1996 is highly variable.

A comparison of the Canadian and Russian bottom trawl surveys in Div. 3L (Fig. 6) indicate a similar trend of decline in density estimates from 1984 to 1990 and both indices have remained at this relatively low level to 1994. The Canadian indices have shown a gradual increase but is still low compared to the pre-1985 period. The situation is unclear for Div. 3N (Fig. 7). The Russian surveys indicate relatively low mean weight per tow from 1989-1991 with a dramatic rise in 1993. This large increase in 1993 relative to 1991 was highly influenced by the trawling conducted in one stratum (see Vaskov (1994), Table 2) which accounted for 70% of the biomass but only represents about 9% of the area surveyed. There have been no Russian surveys conducted in Div. 3L since 1994 or 3N since 1993 but the Canadian surveys indicate an increase since 1996.

Recruitment

Length distributions in terms of mean number per tow at length from the spring, autumn and summer Canadian surveys in Div. 3L in terms of Campelen units indicate there has been relatively poor recruitment over the time period covered by the surveys (Fig. 8). A pulse of recruitment detected at 7 cm in the 2001 spring survey, corresponding to the 2000 year-class has progressed in each survey to autumn 2002. However, abundance has averaged less than three fish per tow in the 2002 spring and autumn surveys. Therefore recruitment continues to been poor in Div. 3L.

Length distributions from spring and autumn Canadian surveys in Div. 3N from 1991-2002 (Fig. 9) show different compositions compared with Div. 3L for each corresponding seasonal survey, generally being composed of size groups that are smaller. There was a relatively good pulse of recruitment picked up in the 1991 autumn survey in the range of 12-14 cm (1986-1987 year-classes) that could be tracked through to 2002 survey at about 24 cm. There is no indicator of any good year-classes subsequent to this in the surveys.

The 2002 spring and autumn survey catch in Div 3L and Div 3N was dominated by fish less than 30 cm.

Estimation of Stock Parameters

Catch/Biomass ratio

Ratios of catch to Canadian survey biomass index were calculated for Div. 3L and Div. 3N separately. Biomass was averaged over all seasonal surveys conducted in any given year. The results (Fig. 10) indicate that exploitation in Div. 3L was relatively low from 1978-1985. There is no adequate survey information to relate to the period of high catches from 1987-1989 when large catches were taken. Exploitation increased from 1990-1991, peaked in 1992 and declined sharply by 1995 and has remained low to 2000.

In Div. 3N, approximate exploitation was relatively high in 1991 but declined rapidly by 1995 and continued to decline to 1998 and has been low to 2000.

Size at Maturity

Recent size at maturity data for redfish (Power, MS 2001) suggests L_{50} was about 31 cm for females in Div. 3L and 30 cm in Div. 3N. Data for males suggest L_{50} was 24 cm in Div. 3L and 20 cm in 3N.

State of the Stock

Interpretation of available data remains difficult for this stock. The surveys demonstrate considerable interannual variability, the changes frequently being the result of single large catches being taken in different years. Nonetheless, estimates from recent surveys are considerably lower than those from the 1980s indicating a reduced and low stock size. There are indications of some increases in the stock since 1996 due to growth in weight of the relatively strong 1986-87 year-classes and possibly through some immigration of fish from Div. 30 to Div. 3N.

Poor recruitment has persisted in Div. 3L since the early-1980s. The last good recruitment in Div. 3N was the 1986-87 year-classes which are recruiting to the spawning stock biomass.

Estimates of exploitation rate suggest that recent catches have not caused high mortality to the stock. The impact on future gains cannot be measured but any removals from the stock at its present low level is cause for concern, particularly since the majority of the stock is comprised of fish less than 28 cm which for the female portion is less than is the L_{50} for females.

Reference Points under a Precautionary Approach

There is no new information on which to establish reference points with respect to a precautionary approach.

REFERENCES

ANON. MS 1996. NAFO Scientific Council Report. 226 pp

- Gonzalez, F., J.L. del Río, A. Vázquez, H. Murúa and E. Roman. MS 2003. Spanish Research Report for 2002. NAFO SCS Doc. 03/11. Serial No. N4837. 26 p.
- Power, D. MS 1997. Redfish in NAFO Division 3LN. NAFO SCR Doc. 97/64. Serial No. N2898. 37 p.
- Power, D. MS 2001. An assessment of the Status of the Redfish Resource in NAFO Divisions 3LN. NAFO SCR Doc. 01/62. Serial No. N4440. xx p.
- Power, D. and D. Maddock Parsons. MS 1998. Canadian Research Survey Data Conversions for Redfish in Div. 3LN based on Comparative Fishing Trials between an Engel 145 Otter Trawl and a Campelen 1800 Shrimp Trawl. NAFO SCR Doc. 98/71. Serial No. N3063. 21 p.
- Vargas, J., R. Alpoim, E. Santos, and A. M. Ávila de Melo. MS 2003. Portuguese Research Report for 2002. NAFO SCS Doc. 03/07. Serial No. N4815. 54 p.
- Vaskov, A. A. MS 1994. Assessment of redfish stocks in Divisions 3LN and 3M from trawl-acoustic survey, 1993. NAFO SCR Doc. 94/13. Serial. No. N2376. 9p.
- Vaskov, A. A., K. Gorchinsky, T. Igashov, S. Lobodenko, S. Melnikov and N. Shakuro. MS 2003. Russian Research Report for 2002, PartII. NAFO SCS Doc. 03/06. Serial. No. N4807. 32p.

TAC	TOTAL	3N	3L	YEAR
	44,585	10,478	34,107	1959
	26,562	16,547	10,015	1960
	23,175	14,826	8,349	1961
	21,439 ^a	18,009	3,425	1962
	27,362 ^a	12,906	8,191	1963
	10,261 ^a	4,206	3,898	1964
	23,466	4,694	18,772	1965
	16,974	10,047	6,927	1966
	27,188	19,504	7,684	1967
	17,660 ^a	15,265	2,378	1968
	24,750 ^a	22,356	2,344	1969
	14,419 ^a	13,359	1,029	1970
	34,370 ^a	24,310	10,043	1971
	28,933	25,838	3,095	1972
	33,297	28,588	4,709	1973
28,000	22,286	10,867	11,419	1974
20,000	17,871	14,033	3,838	1975
20,000	20,513	4,541	15,971	1976
16,000	16,516	3,064	13,452	1977
16,000	12,043	5,725	6,318	1978
18,000	14,067	8,483	5,584	1979
25,000	16,030	11,663	4,367	1980
25,000	24,280	14,873	9,407	1981
25,000	21,547	13,677	7,870	1982
25,000	19,747	11,090	8,657	1983
25,000	14,761	12,065	2,696	1984
25,000	20,557	16,880	3,677	1985
25,000	42,805	14,972	27,833	1986
25,000	79,031 ^b	40,949	30,342	1987
25,000	53,266 ^b	23,049	22,317	1988
25,000	33,649 ^b	12,902	18,947	1989
25,000	29,105 ^b	9,217	15,538	1990
14,000	25,815 ^b	12,723	8,892	1991
14,000	27,283 ^b	10,153	4,630	1992
14,000	18,599-24,017 b,c	9,077	5,897	1993
14,000	3,828-7,654 ^{b,c}	2,274	379	1994
14,000	1,989	1,697	292	1995
11,000	451	339	112	1996
11,000	630	479	151	1997
Moratorium	899	405	494	1998
Moratorium	2318 ^b	1318	518	1999
Moratorium	1717-4565 ^{b,c}	819	657	2000
Moratorium	1442 ^b	245	653	2001
Moratorium	1216 ^b	327	651	2002
Moratorium				2003

Table 1. Summary of nominal catches (t) of redfish in Divisions 3LN

^a Includes catch that could not be identified by division.

^b Includes estimates of unreported catch.

^c Catch could not be precisely estimated due to discrepancies in figures from available sources.

Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000 ^a	2001 ^a	2002 ^a
Canada (M)	73	37	86	-	-	3	-	-	-	-	-	-	-
Canada (N)	947	362	656	6	-	-	-	20	-	-	33	22	48
EU/Germany	646	1151	1,455	-	-	-	-	-	-	-	-	-	-
Japan	151	84	67	37	82	47	74	69	98	141	107	109	88
EU/Portugal	4,820	5,099	769	-	4	-	37	47	62	177	105	126	103
EU/Spain	837	681	625	29	128	242	1	13	313	191	245	249	262
Russia	7,003	1,032	571	2,407	22	-	-	-	8	5	156	107	126
Lithuania	-	-	-	676	29	-	-	-	-	-	-	-	3
Latvia	-	-	-	2,156	55	-	-	-	-	-	-	-	-
Estonia	-	-	-	-	88	-	-	-	-	-	11	40	21
South Korea	1,061	420	370	586	-	-	-	-	-	-	-	-	-
Others ^b	-	26	31	-	-	-	-	2	13	4	-	-	-
								-					
TOTAL	15538	8892	4630	5897	408	292	112	151	494	518	657	653	651

Table 2a. Nominal reported catches (t) of redfish in Division 3L by country and year since 1990.

^a Provisional

^b Others include France (SPM), EEC-UK.

Table 2b. Nominal reported catches (t) of redfish in Division 3N by country and year since 1990.

Country	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000 ^a	2001 ^a	2002 ^a
Canada (M)	-	-	-	-	110	-	-	-	-	-	-	-	-
Canada (N)	11		1	40	-	-	-	1	7	5	-	18	-
EU/Portugal	1,235	3,275	1,149	255	60	78	199	102	174	339	93	78	120
Japan	4	4	1	-	-	-	-	-	-	-	-	-	-
EU/Spain	416	956	119	7	106	200	106	1	224	772	307	142	136
Russia	359	4,821	3,009	3,212	1,998	1,419	34	375	-	202	404	7	71
Lithuania	-	-	-	1,116	-	-	-	-	-	-	-	-	-
Latvia	-	-	-	1,247	-	-	-	-	-	-	-	-	-
Estonia	-	-	-	1,926	-	-	-	-	-	-	15	-	-
Cuba	2,456	1,378	1,308	1,152	-	-	-	-	-	-	-	-	-
South Korea	4,640	2,276	4,560	122	-	-	-	-	-	-	-	-	-
Others ^b	96	13	6	-	-	-	-	-	-	-	-	-	-
TOTAL	9217	12723	10153	9077	2274	1697	339	479	405	1318	819	245	327

^a Provisional ^b Others include Denmark (GRL), EU/Germany

Year	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	UNK	Total
1990	269	331	297	831	578	1,717	3,061	3,683	1,911	1,611	1,056	193		15,538
1991	328	901	642	821	685	503	613	296	229	692	2,123	1,059		8,892
1992	417	203	137	1,479	1,487	246	15	9	26	30	480	101		4,630
1993	1	9	676	2,721	2,479	2	1	5	1	-	1	1		5,897
1994	-	-	39	171	13	3	1	2	-	19	27	133		408
1995	77	65	25	55	44	15	-	-	-	2	-	9		292
1996	5	16	5	3	9	1	0	0	2	6	17	48		112
1997	18	39	17	4	14	2	25	9	2	4	-	17		151
1998	14	67	84	56	13	24	7	16	20	75	21	97		494
1999	70	80	39	60	54	21	14	30	1	3	29	117		518
2000 ^a	61	127	132	78	71	37	24	9	8	17	17	76		657
2001 ^a	74	82	40	54	41	33	20	14	7	8	5	26	249	653

Table 3a. Nominal reported catches (t) of redfish in Division 3L by month and year since 1990.

^a Provisional

Table 3b. Nominal reported catches (t) of redfish in Division 3N by month and year since 1990.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	UNK	Total
1990	220	366	537	9	1,003	1,679	1,236	1,716	619	754	858	220		9,217
1991	387	91	15	122	312	670	3,241	2,229	1698	2,013	1,085	860		12,723
1992	274	638	87	65	104	2,285	2,352	1,626	432	702	926	662		10,153
1993	228	286	430	2,184	4,095	1,224	164	52	270	12	48	84		9,077
1994	151	53	5	68	595	723	302	-	1	28	310	38		2,274
1995	63	80	1	10	147	313	358	251	338	-	48	88		1,697
1996	-	2	6	7	4	42	58	-	121	68	26	5		339
1997	38	11	0	4	11	151	245	0	0	0	13	6		479
1998	16	22	64	40	6	48	46	33	51	29	24	26		405
1999	21	21	92	67	109	19	39	129	230	143	402	46		1,318
2000 8	° 3	13	27	40	19	287	176	45	43	76	57	33		819
2001 ో	^a 3	3	16	1	5	3	6	14	8	17	9	18	142	245

^a Provisional

Table 4. Nominal reported catches by gear type for redfish in Divisions 3L and 3N since 1990.

				Division 3	3L				Division 3	BN	
		Bottom /	lidwater				Bottom	MW			
	Year	trawl	trawl	Gillnets	Misc.	Total	trawl	trawl	Gillnets	Misc.	Total
_											
	1990	7,851	7,537	136	14	15,538	6,511	2,675	10	21	9,217
	1991	7,322	1,422	71	77	8,892	11,028	1,628	-	67	12,723
	1992	3,538	949	67	76	4,630	8,553	1,518	6	76	10,153
	1993	652	5,245	-	-	5,897	3,532	5,441	-	104	9,077
	1994	361	47	-	-	408	274	1,998	-	2	2,274
	1995	292	-	-	-	292	278	1,419	-	-	1,697
	1996	112	-	-	-	112	339		-	-	339
	1997	138	-	-	13	151	103	375	-	1	479
	1998	493	1	-	-	494	405		-	-	405
	1999	504	-	-	14	518	1,312	5	-	1	1,318
	2000 ^a	647	-	4	6	657	819		-	-	819
_	2001 ^a	650	-	3	-	653	245		-	-	245
	2										

Table 5. Mean number (upper panel) and weight (kg., lower panel) per standard tow from Canadian SPRING surveys in Div. 3L where strata greater than 366 m (200 ftm.) were sampled. Dashes (---) represent unsampled strata. Number of successful sets in brackets. The data from 1980-1995 are Campelen trawl equivalent units (see text). Data from 1996 to present are actual Campelen data. G=GadusAtlantica, W=Wilfred Templeman, A=Alfred Needler.

Stratum	Depth Range (M)	Area (sq. n.) mai	May8-13 1999-Q2 GA 36	Apr17-May25 1985-Q2 W28-30	May11-29 1991-Q2 W105-7	May13-June7 1992-Q2 W120-2	May18-Jun19 1993-Q2 W137-8	May22-Jun10 1994-Q2 W153-54	May27-Jun14 1995-Q2 W168-70	May-June 1995-Q2 W109-191	May-June 1997-Q2 W205-208	May-June 1998-Q2 W223-224	May-June 1999-Q2 W240-241	May-June 2000-Q2 W317-318	May-June 2001-Q2 W368-370	May-June 2002-Q2 W419-424
347	184-274	983	0.0 (4)	3.2 (5)	2.0 (2)	0.0 (4)	0.0 (4)	0.00 (4)	0.0 (4)	0.0 (4)	0.0 (4)	0.0 (4)	0.0 (3)	0.0 (3)	0.0 (3)	0.3 (3)
366	184-274	1394	35.8 (6)	9.8 (6)		0.5 (6)	0.0 (7)	0.20 (5)	0.0 (5)	0.2 (5)	7.5 (6)	0.0 (5)	0.0 (4)	8.0 (2)	1.2 (5)	24.9 (5)
369	184-274	961	0.3 (4)	0.2 (5)	0.0 (2)	0.0 (4)	0.0 (5)	0.33 (3)	0.0 (3)	0.0 (4)	0.0 (4)	0.0 (4)	0.0 (3)	0.0 (2)	1.2 (3)	0.3 (3)
386	184-274	983	2.3 (4)	1,8 (5)	5.3 (3)	0.0 (4)	0.2 (5)	0.00 (4)	0.0 (4)	0.5 (4)	0.2 (4)	0.5 (4)	3.0 (3)	0.0 (2)	0.6 (3)	0.7 (3)
389	184-274	821	55.5 (2)	1.6 (5)	8.3 (3)	0.0 (3)	0.0 (4)	0.00 (3)	2.8 (4)	0.0 (4)	5.3 (3)	0.0 (3)	0.0 (3)	15.5 (2)	24.3 (3)	1.9 (3)
391	184-274	282	11.5 (2)	0.0 (2)	0.0 (3)	3.5 (2)	0.0 (2)	0.00 (2)	5.0 (2)	0.0 (2)	0.0 (2)	0.4 (2)	0.5 (2)	0.0 (2)	2.0 (2)	3.0 (2)
345	275-366	1432	22.0 (4)	4.6 (5)	3.0 (3)	0.0 (6)	0.0 (2)	0.60 (5)	0.0 (5)	0.8 (6)	0.2 (5)	1.1 (6)	0.0 (5)	0.2 (4)	2.6 (5)	6.8 (5)
346	275-366	865	45.0 (2)	18.5 (2)		2.0 (4)	4.0 (6)	2.33 (3)	0.7 (3)	1.5 (4)	9.0 (3)	0.3 (3)	3.6 (3)	1.0 (3)	1.5 (3)	5.2 (3)
368	275-366	334	59.5 (2)	27.0 (2)		11.5 (2)	11.0 (4)	9.50 (2)	6.5 (2)	22.3 (3)	7.0 (2)	13.1 (2)	8.8 (2)	21.4 (2)	25.0 (2)	25.1 (2)
387	275-366	718	54.7 (3)	18.0 (6)	59.7 (3)	8.3 (3)	5.3 (2)	1.33 (3)	12.0 (3)	9.8 (3)	15.5 (2)	34.B (3)	18.3 (3)	129.5 (2)	8.9 (2)	12.1 (2)
388	275-366	361	18.5 (2)	28.5 (2)	32.3 (3)	2.5 (2)	2.0 (3)	0.00 (2)	9.5 (2)	5.0 (3)	14.0 (2)	16.2 (2)	11.0 (2)	27.0 (2)	5.0 (2)	23.4 (2)
392	275-366	145	63.0 (3)	18.0 (2)	4.0 (2)	4.0 (2)	1.5 (2)	0.00 (2)	61.5 (2)	69.0 (2)	93.5 (2)	107.5 (2)	6.5 (2)	30.2 (2)	6.0 (2)	207.0 (2)
729	367-549	186		26.0 (2)	20.5 (2)	68.0 (2)	36.5 (2)	19.0 (2)	67.0 (2)	688.5 (2)	53.5 (3)	169.0 (2)	356.0 (2)	1481.8 (2)	480.3 (2)	147.7 (2)
731	367-549	216	640.0 (2)	77.0 (2)	37.5 (2)	30.5 (2)	24.0 (3)	40.0 (2)	34.0 (2)	278.7 (3)	54.5 (2)	123.2 (2)	761.5 (2)	196.7 (2)	257.8 (2)	66.1 (2)
733	367-549	468	85.7 (3)	916.3 (3)	19.5 (2)	51.5 (2)	21.3 (2)	19.5 (2)	10.5 (2)	441.5 (3)	320.0 (2)	157.6 (2)	259.0 (2)	239.7 (2)	224.8 (2)	75.0 (2)
735	367-549	272	73.0 (2)	62.5 (2)		68.5 (2)	19.0 (2)	58.5 (2)	27.0 (2)	164.4 (3)	204.4 (2)	1340.0 (2)	306.6 (2)	193.0 (2)	399.6 (2)	189.4 (2)
730	550-731	170	512.0 (2)	6963.5 (2)	169.5 (2)	96.0 (2)	203.5 (2)	29.5 (2)	68.5 (2)	282.3 (2)	3.9 (2)	185.0 (3)	236.0 (2)	1239.2 (2)	1206.4 (3)	303.5 (2)
732	550-731	231	192.5 (2)	113.5 (2)	318.5 (2)	180.5 (2)	365.0 (2)	44.5 (2)	46.0 (2)	43.5 (2)	56.4 (2)	129.5 (2)	87.0 (2)	75.5 (2)	295.1 (2)	111.0 (2)
734	550-731	228	2065.0 (2)	291.0 (2)	236.0 (2)	120.0 (2)	19.0 (2)	39.0 (2)	95.0 (2)	295.3 (2)	68.2 (2)	191.9 (2)	26.3 (2)	41.0 (2)	116.1 (2)	110.7 (2)
736	550-731	175		425.0 (Z)		56.0 (Z)	34.5 (Z)	21.0 (2)	36.0 (2)	61.7 (Z)	69.0 (2)	16.0 (2)	27.4 (2)	99.0 (2)	177.1 (2)	153.2 (2)
Upper (95% CI)		336.1	1496.1	136.3	37.4	105.6	10.2	12.4	87.9	36.1	258.0	220.7	188.2	105.0	43.8
Weighte	id mean (b	y area)	96.4	168.9	30.6	15.3	15.0	6.5	9.8	53.9	28.8	58.6	47.5	78.1	65.6	32.6
Lower	95% CI }		-143.4	-1158.4	-75.0	-6.8	-75.5	2.7	7.1	19.9	21.6	-140.8	-125.7	-31.9	25.2	21.3
ABUN	DANCE(millions)	144.0	260.8	34.5	23.6	23.2	10.0	15.1	83.3	44.5	90.4	73.4	120.6	101.2	50.3
					Campelen	Trawl Equ	ivalent 1988	5-1995	4111111		Campelen	Trawl 1996	6-Present			
347	184-274	983	0.0 (4)	0.0 (5)	0.0 (2)	0.0 (4)	0.0 (4)	0.0 (4)	0.0 (4)	0.00 (4)	0.0 (4)	0.0 (4)	0.0 (3)	0.0 (3)	0.0 (3)	0.0 (3)
366	184-274	1394	3.6 (6)	0.2 (6)		0.1 (6)	0.0 (7)	0.1 (5)	0.0 (5)	0.00 (5)	0.6 (6)	0.0 (5)	0.0 (4)	0.1 (2)	0.1 (5)	0.3 (5)
369	184-274	961	0.2 (4)	0.1 (5)	0.0 (2)	0.0 (4)	0.0 (5)	0.0 (3)	0.0 (3)	0.00 (4)	0.0 (4)	0.0 (4)	0.0 (3)	0.0 (2)	0.1 (3)	0.0 (3)
386	184-274	983	1.6 (4)	0.1 (5)	0.2 (3)	0.0 (4)	0.1 (5)	0.0 (4)	0.0 (4)	0.02 (4)	0.0 (4)	0.0 (4)	0.1 (3)	0.0 (2)	0.0 (3)	0.0 (3)
389	184-274	821	15.0 (2)	0.0 (5)	0.4 (3)	0.0 (3)	0.0 (4)	0.0 (3)	0.7 (4)	0.00 (4)	0.8 (3)	0.0 (3)	0.0 (3)	2.7 (2)	0.1 (3)	0.1 (3)
391	184-274	282	1.6 (2)	0.0 (2)	0.0 (3)	0.5 (2)	0.0 (2)	0.0 (2)	0.4 (2)	0.00 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
345	275-366	1432	7.5 (4)	2.8 (5)	0.1 (3)	0.0 (6)	0.0 (2)	0.2 (5)	0.0 (5)	0.19 (6)	0.0 (5)	0.5 (6)	0.0 (5)	0.0 (4)	0.2 (5)	0.2 (5)
346	275-366	865	16.8 (2)	14.5 (2)		0.5 (4)	0.6 (6)	0.6 (3)	0.3 (3)	0.09 (4)	0.8 (3)	0.1 (3)	0.8 (3)	0.0 (3)	0.2 (3)	0.1 (3)
368	275-366	334	10.7 (2)	4.9 (2)		4.2 (2)	3.1 (4)	0.9 (2)	0.4 (2)	3.03 (3)	0.7 (2)	1.4 (2)	1.0 (2)	2.4 (2)	2.4 (2)	2.3 (2)
387	275-366	718	11.4 (3)	3.9 (6)	11.6 (3)	2.4 (3)	2.0 (2)	0.2 (3)	1.6 (3)	2.37 (3)	2.2 (2)	5.5 (3)	3.4 (3)	15.5 (2)	0.9 (2)	0.5 (2)
288	275-366	361	1.9 (2)	7.1 (2)	2.8 (3)	0.4 (2)	0.5 (3)	0.0 (2)	1.0 (2)	0.40 (3)	2.1 (2)	2.5 (2)	2.0 (2)	2.8 (2)	0.0 (2)	0.9 (2)
392	275-366	145	13.0 (3)	2.1 (2)	0.5 (2)	1.5 (2)	0.6 (2)	0.0 (2)	5.0 (2)	7.28 (2)	23.6 (2)	14.5 (2)	0.9 (2)	3.5 (2)	0.5 (2)	32.5 (2)
729	367-549	185		6.5 (2)	4.4 (2)	14.6 (2)	7.5 (2)	3.7 (2)	9.9 (2)	140.25 (2)	10.4 (3)	36.8 (2)	101.0 (2)	534.5 (2)	115.9 (2)	31.6 (2)
731	367-549	216	166.2 (2)	14.6 (2)	5.8 (2)	6.8 (2)	6.7 (3)	9.0 (2)	5.8 (2)	43.53 (3)	10.4 (2)	28.3 (2)	225.9 (2)	42.6 (2)	53.8 (2)	10.6 (2)
733	367-549	468	24.7 (3)	458.6 (3)	6.1 (2)	16.8 (2)	6.0 (Z)	5.5 (2)	1.6 (2)	79.86 (3)	67.2 (2)	42.6 (2)	60.8 (2)	54.2 (2)	36.8 (2)	13.2 (2)
735	367-549	2/2	21.1 (2)	19.1 (2)		18.1 (2)	3.4 (2)	1.5 (2)	4.4 (2)	17.80 (3)	37.4 (2)	443.9 (2)	97.9 (2)	36.9 (2)	74.9 (2)	30.3 (2)
730	550-731	1/0	159,4 (2)	3654.4 (2)	42.7 (2)	34.2 (2)	72.4 (2)	9.2 (2)	18.7 [2]	88.44 (2)	1.4 (2)	77.2 (3)	101.8 (2)	506.3 (2)	459.3 (3)	99.2 (3)
732	550-731	231	51.8 (2)	45.3 (2)	5r.5 (2)	62.1 (2)	91.1 (2)	12.6 (2)	15.3 (2)	12/7 (2)	16.0 (2)	37.7 (2)	29.0 (2)	23.9 (2)	91.4 (2)	25.3 (2)
734	550-731	228	1296.4 (2)	116.8 (2)	44.1 (2)	43.1 (2)	7.7 (Z)	11.6 (2)	29.7 (2)	85.49 (Z)	27.0 (2)	69.3 (2)	8.6 (2)	21.3 (2)	29.7 (2)	24.9 (2)
736	550-731	1/5	403.4	129.6 (2)	44.0	15.6 (2)	11.7 (2)	5.4 (2)	12.0 (2)	16.22 (Z)	19.4 (2)	6.2 (2)	11.3 (2)	37.2 (2)	63.4 (2)	46.7 (2)
upper (95% CI)		193.9	778.0	11.6	11.9	27.7	22	2.6	20.0	9.3	96.0	69.5	66.9	32.7	10.6
weighte	id mean (b	y area)	41.2	82.8	5.6	4.8	4.2	1.5	21	10.9	6.0	17.9	13.8	23.4	16.9	2.9
Lower [50% CT)		-111.6	-012.3	-0.5	-23	-19.5	U.r	1./	1.8	2.1	-60.3	-41.9	-20.1	1.2	1.2
BIOW	ASS(ton:	s)	61502	127888	6267	7404	6461	2302	3284	16825	9277	27596	21314	36150	26158	9110

3L Spring

Table 6. Mean number (upper panel) and weight (kg., lower panel) per standard tow from Canadian WINTER and SUMMER surveys in Div. 3L where strata greater than 366 m (200 ftm.) were sampled. Dashes (---) represent unsampled strata. Number of successful sets in brackets. The data from 1985-1993 are Campelen trawl equivalent units (see text). G=GadusAtlantica, W=Wilfred Templeman, A=Alfred Needler.

	Depth	Area	Jan10-Feb11	Jan22-Feb27	Jan17-25	Aug16-29	Sep4-10	Sep18-26	Jul26-Sep3	Jul 7-Aug25	Aug7-19	Aug4-11	Aug5-15
	Range	(sq. n.)	1985-Q1	1986-Q1	1999-Q1	1978-03	1979-Q3	1981-Q3	1984-Q3	1985-Q3	1990-Q3	1991-Q3	1993-Q3
Stratum	(M)	mi	W22-24	W42-44	W 90	G 12	G 25	G 55	W16-18	W32-34	W98	W109	G 223
34/	184-214	385	0.0 (5)	12.0 (4)	0.8 (4)	303.0 (3)	0.0 (2)	10.8 (4)	0.0 (6)	0.0 (3)	1.8 (4)	0.0 (3)	0.0 (3)
366	184-214	1394	0.0 (5)	12.0 (2)	5.2 (5)	885.3 (3)	63.5 (2)	81.5 (6)	03.6 (11)	0.2.(5)	10.5 (4)	0.3 (3)	0.0 (2)
296	194-214	501	0.0 (5)	2.0 (3)	5.0 (4)	230.7 (3)	12.5 (2)	40.5 (4)	27.2 (9)	17.2.(5)	9.4.(7)	0.3 (6)	0.0 (3)
180	184-274	821	10.5 (4)	2.3 (/) 6.0 (4)	0.0 (4)	2.39.7 (3)	12.3 (4)	7.0 (3)	27.5 (0)	4.3.40	21.2 (2)	2.3 (3)	5.7 (3)
394	184-274	292	0.0 (2)	0.0 (4)	4.0.(5)	0.0 (2)	43.0 (2)	10.5 (2)	40(2)	0.0 (2)	24.6	5 3 (3)	0.7 (3)
345	275-366	1432	8.0 (2)	10.7 (3)	14.(5)	96.5 (2)	133.0 (4)	74.0 (5)	36.7 (7)	52.0 (7)	16.2 (6)	4.5 (4)	4.3 (3)
346	275-366	865	12.5 (4)	16.3 (4)	23.7 (3)	330.0 (2)	223.8 (4)	857 (3)	221 7 (6)	77 3 /3)	201.9 (7)	25.3 (4)	12.3 (3)
348	275.366	334	8.0 (2)	10.3 [4]	25.0 (2)	4307.5 (2)	238.7 (3)	1028.0 (2)	3418.5 (2)	265.5 (2)	1392.6 (7)	339.8 (4)	57.3 (3)
287	275-366	718	87.5 (4)	13.0 (4)	110 7 (3)	936.5 (2)	942.0 (5)	2068.0 (2)	3678.3 (3)	1524.7 (2)	278.2 (10)	173.6 (5)	104.7 (3)
388	275-366	361	28.0 (3)	30.0 (3)	24.0 (2)	2824.5 (2)	5037.0 (3)	891.5 (2)	167.0 (2)	323 5 (2)	201 7 (7)	737 (3)	23.0 (3)
392	275-366	145	6.5 (2)	12.3 (3)	4.5 (2)		1556.0 (3)	1129.0 (2)	2321.5 (2)	121.5 (2)	166.3 (9)	315.7 (3)	65.0 (3)
729	367-549	186	2767.0 (2)	2150.0 (2)	165.5 (2)		816.0 (3)	1714.0 (2)	374.0 (2)	968.0 (2)	258.4 (7)	196.5 (2)	405.0 (3)
731	367-549	216	84.3 (3)	21960 (a)	90.0 (2)	626.5 (2)	676.3 (3)	309.5 (2)	205.0 (2)	207.5 (2)	142.7 (6)	208.0 (3)	309.7 (3)
733	367-549	468	1519.7 (3)	353.5 (2)	77.0 (2)	1070.0 (2)	1884.7 (3)	1993.0 (2)	376.8 (4)	1313.5 (2)	397.2 (9)	486.0 (4)	394.7 (3)
735	367-549	272	10.0 (2)		223.5 (2)	935.5 (2)	664.7 (3)	1147.0 (2)	567.3 (3)	221.0 (2)	484.2 (6)	93.0 (3)	76.3 (3)
730	550-731	170	634.0 (2)		89.5 (2)	1604.0 (2)	511.3 (3)	662.0 (2)	83.5 (2)	269.5 (2)	145.8 (4)	175.7 (3)	77.7 (3)
732	550-731	231	325.0 (2)		57.5 (2)	110.5 (2)	74.0 (2)	70.0 (2)	72.5 (2)	40.0 (2)	49.9 (9)	79.3 (3)	140.3 (3)
734	550-731	228	152.0 (2)	354.5 (2)	114.5 (2)	1571.0 (2)	659.7 (3)	1009.0 (2)	436.3 (3)	719.0 (2)	214.6 (5)	47.3 (3)	28.7 (3)
736	550-731	175			185.5 (2)	261.5 (2)	418.7 (3)	116.5 (2)		25.5 (2)	75.8 (6)	12.7 (3)	17.0 (3)
Upper (95% CI)		244.5	371.2	57.0	1086.0	1068.5	1156.5	860.6	370.1	218.8	81.5	77.1
Weighte	d mean (b	y area)	142.9	74.7	32.8	634.0	479.5	482.2	465.7	237.4	135.0	66.5	48.5
Lower {	95% CI }		41.3	-221.9	8.5	182.0	-109.5	-192.0	70.8	104.7	51.3	51.5	19.9
ABUN	DANCE	millions	217.2	100.9	50.6	950.1	686.2	744.6	707.9	366.6	208.5	102.7	74.9
			Winter			Summer							
347	184-274	983	0.0 (5)	0.3 (4)	0.1 (4)	64.8 (3)	0.0 (2)	1.6 (4)	0.0 (6)	0.0 (3)	0.4 (4)	0.0 (3)	0.0 (3)
366	184-274	1394	0.0 (5)	0.4 (2)	0.2 (5)	70.5 (3)	3.9 (2)	28.3 (6)	2.9 (11)	4.1 (5)	2.6 (4)	0.1 (3)	1.3 (2)
369	184-274	961	0.0 (5)	0.0 (3)	0.0 (4)	0.0 (3)	0.6 (2)	5.3 (4)	0.1 (7)	0.2 (6)	1.0 (4)	2.8 (4)	0.0 (3)
386	184-274	983	0.0 (5)	0.4 (7)	2.6 (4)	69.3 (3)	9.5 (2)	8.3 (4)	10.0 (8)	11.3 (5)	0.3 (7)	0.3 (3)	0.0 (3)
389	184-274	821	1.0 (4)	0.4 (4)	0.0 (3)	0.1 (3)		2.8 (3)	8.0 (6)	0.8 (4)	1.3 (3)	0.2 (3)	0.3 (3)
391	184-274	282	0.0 (2)	0.0 (3)	0.1 (5)	0.0 (2)	9.8 (2)	0.3 (2)	0.1 (2)	0.0 (2)	0.3 (5)	1.2 (3)	0.2 (3)
345	275-366	1432	0.9 (3)	0.2 (3)	0.1 (5)	50.7 (2)	70.6 (4)	33.9 (5)	22.2 (7)	32.2 (7)	8.0 (6)	2.1 (4)	0.9 (3)
346	275-366	865	5.6 (4)	1.6 (4)	3.4 (3)	146.0 (2)	81.0 (4)	54.5 (3)	119.8 (6)	47.6 (3)	120.0 (7)	9.5 (4)	2.6 (3)
368	275-366	334	1.7 (2)		5.0 (2)	1556.2 (2)	77.5 (3)	261.8 (2)	1366.3 (2)	126.5 (2)	545.1 (7)	112.1 (4)	12.0 (3)
387	275-366	718	49.0 (4)	6.8 (4)	55.2 (3)	292.8 (2)	352.5 (5)	928.5 (3)	1341.2 (3)	501.9 (3)	88.4 (10)	47.1 (5)	24.7 (3)
388	275-366	361	5.7 (3)	5.0 (3)	2.9 (2)	568.3 (2)	1059.1 (3)	233.1 (2)	50.9 (2)	96.1 (2)	42.6 (7)	10.1 (3)	5.3 (3)
392	275-366	145	1.4 (2)	3.2 (3)	2.1 (2)		430.0 (3)	249.9 (2)	783.6 (2)	34.6 (2)	31.3 (9)	105.5 (3)	8.1 (3)
729	367-549	185	987.5 (2)	754.7 (2)	80.5 (2)		277.4 (3)	608.4 (2)	162.1 (2)	419.2 (2)	132.4 (7)	69.3 (2)	108.0 (3)
731	367-549	216	24.7 (3)		19.4 (2)	339.3 (2)	288.2 (3)	95.2 (2)	87.9 (2)	95.0 (2)	54.6 (6)	68.0 (3)	93.3 (3)
733	367-549	468	670.3 (3)	152.7 (2)	27.9 (2)	553.3 (2)	819.9 (3)	912.4 (2)	214.8 (4)	759.1 (2)	233.8 (9)	211.0 (4)	112.8 (3)
735	367-549	272	4.2 (2)		45.9 (2)	616.4 (2)	291.2 (3)	464.3 (2)	319.9 (3)	147.7 (2)	320.5 (6)	38.7 (3)	16.2 (3)
730	550-731	170	313.6 (2)		47.9 (2)	709.5 (2)	268.3 (3)	319.5 (2)	43.3 (2)	140.7 (2)	\$1.3 (4)	92.1 (3)	32.2 (3)
732	550-731	231	152.2 (2)		31.3 (2)	57.6 (2)	36.7 (2)	36.8 (2)	37.4 (2)	22.4 (2)	25.3 (9)	36.5 (3)	59.5 (3)
734	550-731	228	82.0 (2)	191.9 (2)	62.5 (2)	1084.6 (2)	368.8 (3)	500.2 (2)	258.7 (3)	429.6 (2)	122.3 (5)	27.0 (3)	13.3 (3)
736	550-731	175			53.7 (2)	95.6 (2)	160.4 (3)	53.3 (2)		14.9 (2)	40.5 (6)	5.6 (3)	8.0 (3)
Upper (95% CI)		87.4	135.9	24.1	330.9	249.0	374.5	381.9	195.9	96.0	31.0	22.2
Weighte	d mean (b	iyarea)	59.4	27.1	11.8	207.6	159.2	169.3	182.7	104.3	60.1	24.3	13.5
Lower (95% CI }		31.4	-81.8	-0.5	84.4	69.3	-35.9	-16.5	12.7	24.2	17.7	4.8
BIOM/	ASS(ton:	s)	90245	36568	18202	311163	227788	261384	277711	161038	92840	37572	20838
3L W	inter 8	Sumn	ner										

Table 7. Mean number (upper panel) and weight (kg., lower panel) per standard tow from Canadian AUTUMN surveys in Div. 3L where strata greater than 366 m (200 ftm.) were sampled. Dashes (---) represent unsampled strata. Number of successful sets in brackets. The data from 1985-1994 are Campelen trawl equivalent units (see text). Data from 1996 to present are actual Campelen data. G=GadusAtlantica, W=Wilfred Templeman, A=Alfred Needler, T=Teleost.

			Oct-Nov	New	Oct-Nov	Nee-Dec	Nov	Nov-Dec	Nov-Dec	Oct-Mon	Sep-Mor	Oct-Dec	Nue-Dec	Nov-Dec	Nue-Dec	Nov-Dec	Nuc-Dec
	Depth	Area	1985-Q4	1985-Q4	1996-Q4	1991-04	1992-04	1993-G4	1984-04	1995-Q4	1996-Q4	1997-04	1998-04	1999-G4	2000-04	2001-04	2002-04
	Range	(sq. m.)	WT37-09	AM 72	W101	W114-5	W129-30	10/145-6	W161-2	W178-6	W196-8	III213-17	W231-3	HI247-8	W321-3	III373-6.T357	W428-31
Stratum	(M)	mai			· ·		G225			T23	T-41	T57-8	T75-6		T38,42-3	358,381,A398	T411-15
347	184-274	983	0.0 (5)	0.0 (4)	0.0 (2)	0.0 (4)	0.0 (2)	0.0 (4)	0.0 (8)	0.0 (4)	0.0 (3)	0.0 (3)	0.0 (3)	0.0 (3)	0.3 (3)	2.0 (3)	0.0 (3)
366	184-274	1394	30.9 (9)	20.0 (4)	0.0 (6)	1.2 (21	1.8 (24)	0.2 (14)	0.1 (10)	0.6 (5)	1.6 (5)	18.8 (5)	4.8 (3)	4.6 (5)	3.0 (2)	14.8 (5)	38.8 (5)
369	184-274	961	0.0 (6)	7.7 (3)	0.0 (4)	1.8 (9)	0.0 (8)	0.1 (7)	0.0 (3)	14.5 (3)	0.0 (2)	3.0 (3)	0.0 (2)	2.1 (3)	0.0 (2)	2.3 (3)	0.0 (3)
386	184-274	983	0.6 (5)	18.5 (4)	15.3 (4)	0.0 (3)	0.0 (3)	0.0 (3)	0.0 (3)	4.3 (4)	0.0 (3)	5.3 (3)	0.3 (5)	1.3 (3)	0.7 (3)	1.3 (3)	16.9 (3)
389	184-274	821	23.4 (5)	2.0 (4)	4.7 (3)	0.0 (3)	3.7 (3)	0.0 (3)	0.0 (3)	3.3 (3)	8.3 (3)	0.7 (3)	0.0 (2)	10.0 (3)	26.0 (3)	31.3 (3)	0.0 (3)
391	184-274	282	11.5 (2)	16.5 (2)	0.0 (2)	0.0 (3)	0.0 (3)	1.0 (3)	2.3 (3)	3.7 (2)	0.4 (2)	0.0 (2)	1.2 (2)	4.0 (2)	3.5 (2)	19.0 (2)	6.8 (2)
345	275-366	1432	8.7 (9)	5.5 (4)	1.0 (5)	0.3 (4)	0.3 (4)	0.0 (3)	0.0 (8)	0.7 (7)	0.9 (5)	0.0 (5)	0.5 (3)	0.6 (5)	0.6 (3)	5.6 (5)	7.8 (5)
346	275-366	865	86.4 (5)	24.7 (3)	61.3 (3)	9.7 (15	4.4 (14)	6.4 (11)	0.3 (7)	1.0 (3)	1.0 (3)	2.3 (3)	0.5 (5)	2.1 (3)	5.7 (3)	23.3 (3)	11.2 (3)
368	275-366	334	286.0 (2)	29.0 (2)	79.5 (2)	42.3 (6)	26.7 (10)	17.0 (8)	1.2 (12)	38.0 (2)	0.3 (3)	26.5 (2)	64.0 (3)	132.4 (2)	90.0 (2)	24.4 (2)	64.4 (2)
387	275-366	718	508.3 (4)	11.0 (2)	92.7 (3)	15.4 (5)	12.0 (3)	2.3 (3)	5.1 (9)	12.7 (3)	8.3 (2)	18.6 (2)	31.6 (3)	66.2 (2)	28.0 (2)	26.0 (2)	37.2 (2)
388	275-366	361	75.0 (2)		78.0 (2)	29.0 (3)	24.3 (3)	9.7 (3)	7.1.(7)	8.0 (2)	14.0 (2)	23.7 (2)	27.0 (2)	126.5 (2)	21.0 (2)	96.9 (2)	34.6 (2)
382	275-366	145	1164.0 (2)	322.0 (2)	25.5 (2)	14.3 (3)	5.7 (3)	8.3 (3)	7.0 (3)	38.6 (2)	40.4 (2)	12.5 (2)	59.5 (2)	33.5 (2)	511.0 (2)	165.4 (2)	18.2 (2)
729	367-549	186	2143.5 (2)	1197.0 (2)	182.5 (2)	127.7 (3)	241.5 (3)	149.3 (3)	681.8 (9)	145.0 (2)	214.7 (2)	1006.0 (2)	550.0 (2)	329.0 (2)	131.1 (2)	767.5 (2)	450.7 (2)
731	367-549	216	400.0 (2)		235.5 (2)	44.7 (3)	182.7 (3)	27.7 (3)	42.9 (7)	123.2 (2)	138.0 (1)	135.0 (2)	287.4 (2)	2421.7 (2)	152.5 (2)	114.6 (2)	51.1 (2)
733	367-549	468	566.3 (3)	-	204.5 (2)	285.7 (3)	176.3 (3)	19.7 (3)	39.3 (9)	1625.5 (2)	22.4 (3)	41.0 (2)	123.7 (2)	270.0 (2)	607.2 (2)	547.6 (2)	85.2 (2)
735	367-549	272	188.5 (2)	127.5 (2)		119.0 (3)	192.7 (3)	79.0 (3)	16.9 (11)	28.5 (2)	139.3 (2)	181.5 (2)	198.5 (2)	154.7 (2)	263.8 (2)	282.5 (2)	241.3 (2)
730	550-731	170	31.0 (2)	-	-	273.5 (2)	55.0 (2)	261.0 (3)	18.7 (3)	72.1 (2)	21.2 (2)	26.0 (2)	645.3 (2)	204.3 (2)	101.5 (2)	79.6 (2)	229.1 (2)
732	550-731	231	32.0 (2)	-	154.0 (2)	35.5 (2)	161.0 (2)	16.5 (2)	80.7 (3)	67.7 (2)	10.8 (2)	359.0 (2)	19.5 (2)	151.5 (2)	17.5 (2)	148.0 (2)	53.9 (2)
734	550-731	228	420.5 (2)		36.0 (2)	15.0 (2)	87.5 (2)	62.0 (2)	35.7 (3)	58.4 (2)	61.7 (2)	616.4 [2]	95.1 (2)	132.5 (2)	37.8 (2)	38.2 (2)	61.3 (2)
736	550-731	175	173.5 (2)	22.5 (2)	222.0 (2)	43.5 (2)	40.5 (2)	25.0 (3)	22.0 (7)	73.3 (2)	78.8 (2)	317.5 (2)	105.6 (2)	94.0 (2)	261.9 (2)	235.1 (2)	106.2 (2)
737	732-914	227	-		-					41.5 (2)	5.5 (2)	2.0 (2)	0.5 (2)	2.0 (2)	0.0 (2)	0.5 (2)	
741	732-914	223	-		-						2.5 (2)	0.5 (2)	16.2 (2)	3.6 (2)	1.0 (2)	1.0 (2)	
745	732-914	348	-		-						0.0 (2)	17.0 (2)	4.0 (2)	4.5 (2)	0.0 (2)	2.0 (2)	
748	732-914	159									17.0 (2)	1.0 (2)	4.0 (2)	0.5 (2)	1.0 (2)		
Upper {	95% CI }		235.9	58.8	60.9	52.0	42.7	20.3	32.1	892.7	19.5	237.7	90.8	598.7	89.5	246.7	55.0
Weighte	id mean (t	oy area (155.9	43.4	42.8	28.1	29.4	13.3	18.0	82.1	15.2	52.9	41.6	85.0	53.7	63.3	39.3
Lower (95% CI)		75.9	28.0	24.6	4.1	16.0	6.3	3.6	-728.5	6.5	-131.9	-7.5	-428.6	17.9	-120.2	23.5
ABUN	DANCE	millions	240.7	57.0	63.5	43.3	45.3	20.6	27.7	129.4	21.3	88.7	69.8	142.5	90.0	106.0	60.7
					Campelen	Trawl Equi	valent 1986-	1994			Ca	empelen Tra	awl 1995-Pr	resent			
347	184-274	983	0.0 (5)	0.0 (4)	0.0 (2)	0.0 (4)	0.0 (2)	0.0 (4)	0.0 (8)	0.0 (4)	0.0 (3)	0.0 (3)	0.0 (3)	0.0 (3)	0.1 (3)	0.0 (3)	0.0 (3)
366	184-274	1394	4.8 (9)	1.4 (4)	0.0 (6)	0.1 (21	0.3 (24)	0.1 (14)	0.0 (10)	0.1 (5)	0.0 (5)	0.4 (5)	0.3 (5)	0.3 (5)	0.0 (2)	0.3 (5)	0.8 (5)
369	184-274	961	0.0 (6)	1.0 (3)	0.0 (4)	0.2 (9)	0.0 (8)	0.0 (7)	0.0 (3)	1.8 (3)	0.0 (2)	0.5 (3)	0.0 (3)	0.1 (3)	0.0 (2)	0.1 (3)	0.0 (3)
386	184-274	983	0.4 (5)	0.9 (4)	0.4 (4)	0.0 (3)	0.0 (3)	0.0 (3)	0.0 (3)	0.7 (4)	0.0 (3)	1.2 (3)	0.0 (3)	0.1 (3)	0.2 (3)	0.1 (3)	1.9 (3)
389	184-274	821	2.0 (5)	0.7 (4)	0.6 (3)	0.0 (3)	0.1 (3)	0.0 (3)	0.0 (3)	0.6 (3)	0.3 (3)	0.0 (3)	0.0 (3)	0.7 (3)	3.1 (3)	2.9 (3)	0.0 (3)
391	184-274	282	3.7 (2)	4.6 (2)	0.0 (2)	0.0 (3)	0.0 (3)	0.5 (3)	0.6 (3)	1.3 (2)	0.0 (2)	0.0 (2)	0.1 (2)	1.2 (2)	0.1 (2)	6.7 (2)	0.1 (2)
345	275-366	1432	2.8 (9)	3.8 (4)	0.5 (5)	0.1 (4)	0.2 (4)	0.0 (3)	0.0 (8)	0.1 (7)	0.2 (5)	0.0 (5)	0.0 (5)	0.0 (5)	0.0 (3)	0.1 (5)	0.2 (5)
346	275-366	865	44.1 (5)	13.0 (3)	29.6 (3)	2.4 (15	0.8 (14)	1.6 (11)	0.1 (7)	0.2 (3)	0.2 (3)	0.2 (3)	0.0 (2)	0.2 (3)	0.2 (3)	0.9 (3)	0.2 (3)
368	275-366	334	112.2 (2)	6.8 (2)	14.4 (2)	7.2 (6)	4.7 (10)	1.4 (8)	0.1 (12)	5.3 (2)	0.0 (3)	2.2 (2)	6.3 (2)	19.3 (2)	16.2 (2)	1.0 (2)	7.5 (2)
387	275-366	718	193.3 (4)	2.8 (2)	29.3 (3)	5.1 (5)	2,3 (3)	0.6 (3)	0.9 (9)	1.8 (3)	0.6 (2)	1.7 (2)	4.6 (2)	10.9 (2)	4.0 (2)	2.2 (2)	4.2 (2)
388	275-366	361	22.5 (2)		4.6 (2)	2.4 (3)	3.8 (3)	2.3 (3)	1.0 (7)	1.3 (2)	2.2 (2)	2.4 (2)	4.1 (2)	23.4 (2)	1.5 (2)	2.3 (2)	2.4 (2)
382	275-366	145	342.7 (2)	87.3 (2)	2.8 (2)	1.0 (3)	0.6 (3)	1.6 (3)	1.9 (3)	3.1 (2)	4.4 (2)	2.2 (2)	10.4 (2)	7.0 (2)	171.8 (2)	43.9 (2)	2.2 (2)
729	367-549	186	855.8 (2)	378.9 (2)	63.7 (2)	32.0 (3)	72.0 (3)	42.9 (3)	179.2 (9)	25.0 (2)	35.5 (2)	246.2 (2)	165.2 (2)	68.6 (2)	30.1 (2)	219.1 (2)	111.1 (2)
731	367-549	216	203.5 (2)		82.4 (2)	8.8 (3)	41.5 (3)	5.4 (3)	7.3 (7)	17.5 (2)	24.8 (1)	22.2 (2)	75.2 (2)	658.4 (2)	35.1 (2)	25.0 (2)	8.3 (2)
733	367-549	468	255.4 (3)		50.7 (2)	77.0 (3)	53.7 (3)	4.6 (3)	8.8 (9)	702.6 (2)	4.1 (3)	7.5 (2)	25.9 (2)	83.5 (2)	193.1 (2)	212.2 (2)	17.5 (2)
735	367-549	272	89.8 (2)	46.1 (2)		25.9 (3)	63.4 (3)	7.2 (3)	2.6 (11)	4.5 (2)	29.0 (2)	28.9 (2)	36.9 (2)	36.7 (2)	49.7 (2)	58.6 (2)	48.1 (2)
730	550-731	170	16.0 (2)			175.4 (2)	27.9 (2)	122.0 (3)	7.0 (3)	24.2 (2)	8.9 (2)	9.7 (2)	239.2 (2)	98.5 (2)	43.8 (2)	27.6 (2)	102.3 (2)
732	550-731	231	17.5 (2)		86.0 (2)	16.0 (2)	53.6 (2)	4.2 (2)	24.6 (3)	15.1 (2)	4.1 (2)	95.1 (2)	6.7 (2)	55.5 (2)	6.0 (2)	51.7 (2)	14.9 (2)
734	550-731	228	265.9 (2)		17.7 (2)	9.6 (2)	33.4 (2)	18.1 (2)	12.3 (3)	20.0 (2)	23.6 (2)	152.2 (2)	34.0 (2)	68.0 (2)	14.9 (2)	16.4 (2)	23.2 (2)
736	550-731	175	78.3 (2)	12.1 (2)	106.1 (2)	18.3 (2)	11.4 (2)	6.0 (3)	6.7 (7)	16.8 (2)	32.5 (2)	79.0 (2)	24.2 (2)	38.5 (2)	84.5 (2)	59.5 (2)	32.2 (2)
737	732-914	227								13.1 (2)	2.6 (2)	0.9 (2)	0.1 (2)	1.1 (2)	0.0 (2)	0.3 (2)	
741	732-914	223			_						0.5 (2)	0.2 (2)	7.3 (2)	1.7 (2)	0.4 (2)	0.4 (2)	
745	732-914	348									0.0 (2)	5.9 (2)	1.1 (2)	1.7 (2)	0.0 (2)	0.8 (2)	
748	732-914	159									6.3 (2)	0.5 (2)	2.4 (2)	0.4 (2)	0.4 (2)		
Upper (95% CI)		105.3	18.9	22.2	15.3	12.8	8.1	8.7	388.2	5.1	57.2	25.9	165.3	29.5	107.3	13.4
Weighte	d mean (b	by area (63.6	13.0	14.0	8.8	8.7	3.9	4.6	31.8	3.2	11.7	11.1	23.2	14.9	17.0	7.6
Lower(95% CI)	-	21.9	7.2	5.7	2.4	4.6	-0.3	0.6	-324.6	0.7	-33.9	-3.7	-119.0	0.2	-73.2	1.9
BIOM	ASS(ton	ន)	99233	17119	20743	13665	13424	6011	7173	50078	4691	19544	18522	38961	24917	28569	11793
3L A	utumn																

Table 8. Mean number (upper panel) and weight (kg., lower panel) per standard tow from Canadian SPRING surveys in Div. 3N where strata greater than 366 m (200 ftm.) were sampled. Dashes (---) represent unsampled strata. Number of successful sets in brackets. The data from 1991-1995 are Campelen trawl equivalent units (see text). Data from 1996 to present are actual Campelen data. G=GadusAtlantica, W=Wilfred Templeman, A=Alfred Needler.

	Depth Range	Area (sq. n.)	May 1991-Q2	May 1992-Q2	May 1993-Q2	May 1994-Q2	May 1995-Q2	May 1996-Q2	May-Jun 1997-Q2	May-Jun 1998-02	May-Jun 1999-Q2	May-Jun 2000-Q2	May-Jun 2001-Q2	May 2002-Q2	May 2003-Q2
Stratum	(M)	mi	WT106	WT119-20	WT136-7	WT153	WT168-69	WT189	WT205-6	WT221-2	WT239-240	WT315-18	WT367-69	WT421-424	WT479-481
359	093-183	421	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	3.4 (2)	0.0 (2)	180.5 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
377	093-183	100	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.5 (2)	0.5 (2)	1.5 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	1.0 (2)
382	093-183	647	0.5 (2)	0.0 (3)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	1.5 (2)	1.0 (2)	0.5 (2)	0.0 (2)
358	185-274	225	68.0 (2)	34.0 (2)	1473.0 (2)	68.0 (2)	3.5 (2)	152.0 (2)	128.4 (2)	1680.9 (2)	99.0 (2)	23.0 (2)	498.5 (2)	13.6 (2)	792.5 (2)
378	185-274	139	8.0 (3)	42.0 (2)	1.0 (2)	0.5 (2)	2.5 (2)	62.0 (2)	9.8 (2)	15.5 (2)	148.5 (2)	2.7 (2)	3.6 (2)	79.4 (2)	385.0 (2)
381	185-274	182	0.5 (2)	1.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	8.4 (2)	0.4 (2)	0.0 (2)	5.5 (2)	0.5 (2)	1.8 (2)	1.5 (2)	16.0 (2)
357	275-366	164	212.5 (2)	593.0 (2)	395.5 (2)	210.5 (2)	159.5 (2)	197.3 (2)	218.2 (2)	3096.6 (2)	6973.4 (2)	3412.4 (2)	622.9 (2)	1179.1 (2)	524.0 (2)
379	275-366	106	56.5 (2)	15.5 (2)	13.5 (2)	59.5 (2)	42.5 (2)	569.0 (2)	127.0 (2)	195.1 (2)	459.5 (2)	507.1 (2)	312.0 (2)	255.2 (2)	208.6 (2)
380	275-366	116	8.0 (2)	0.0 (2)	13.5 (2)	10.5 (2)	21.5 (2)	47.5 (2)	72.0 (2)	9.5 (2)	41.0 (2)	4.1 (2)	5.3 (2)	18.8 (2)	63.5 (2)
723	367-549	155	261.0 (2)	510.5 (2)	270.0 (2)	129.0 (2)	112.0 (2)	252.3 (2)	292.8 (2)	364.5 (2)	401.5 (2)	6421.5 (2)	954.0 (2)	978.7 (2)	511.0 (2)
725	367-549	105	229.0 (2)		89.5 (2)	43.0 (2)	48.5 (2)	455.0 (2)	490.4 (2)	130.8 (2)	317.2 (2)	764.0 (2)	293.8 (2)	289.7 (2)	187.4 (2)
727	367-549	160	24.5 (2)	15.5 (2)	50.0 (2)	46.0 (2)	94.0 (2)	166.1 (2)	242.7 (2)	141.0 (2)	88.0 (2)	336.4 (2)	112.4 (2)	309.2 (2)	84.5 (2)
724	550-731	124	517.5 (2)	103.5 (2)	166.0 (2)	57.5 (2)	184.5 (2)	120.6 (2)	170.3 (2)	488.4 (2)	142.7 (2)	322.2 (2)	805.3 (2)	2401.4 (2)	521.5 (2)
726	550-731	72	385.0 (2)	75.0 (2)	86.0 (2)	31.5 (2)	163.0 (2)	208.6 (2)	472.5 (2)	1039.0 (2)	565.0 (2)	366.0 (2)	469.9 (2)	109.2 (2)	378.5 (2)
728	550-731	156	66.5 (2)	75.5 (2)	965.0 (2)	34.3 (3)	109.0 (2)	62.4 (2)		94.7 (2)	356.8 (2)	185.3 (2)	285.0 (2)	173.0 (2)	188.5 (2)
Upper (95% CI)		173.0	129.4	1767.0	96.3	136.5	169.1	197.9	2491.3	5168.5	2916.7	403.1	1620.7	
Weighte	ed mean (b	y area)	79.8	81.0	221.4	32.3	43.0	103.0	103.2	401.5	536.4	642.4	217.4	279.1	
Lower (95% CI)		-13.4	32.6	-1324.1	-31.8	-50.6	36.8	8.5	-1688.3	-4095.6	-1631.8	31.7	-1062.6	
ABUN	DANCE(million	31.5	30.8	87.5	14.5	17.0	40.7	38.6	158.6	211.9	253.8	85.9	110.3	80.4
			Ca	ampelen Tra	awl Equivale	nt 1991-19	95 (IIIIIIIII	4000	Campelen	Trawl 1996	-Present				
359	093-183	421	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.4 (2)	0.0 (2)	2.9 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
377	093-183	100	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.1 (2)	0.1 (2)	0.1 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.2 (2)
382	093-183	647	0.2 (2)	0.0 (3)	0.0 (2)	0.0 (2)	0.0 (3)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.3 (2)	0.3 (2)	0.3 (2)	0.0 (2)
358	185-274	225	1.2 (2)	1.3 (2)	104.0 (2)	2.5 (2)	0.3 (2)	7.5 (2)	8.7 (2)	253.8 (2)	5.1 (2)	1.8 (2)	45.7 (2)	0.7 (2)	208.7 (2)
378	185-274	139	0.9 (3)	2.4 (2)	0.2 (2)	0.1 (2)	0.3 (2)	8.6 (2)	1.3 (2)	2.3 (2)	16.1 (2)	0.2 (2)	0.1 (2)	14.8 (2)	43.6 (2)
381	185-274	182	0.1 (2)	0.2 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.2 (2)	0.0 (2)	0.0 (2)	0.6 (2)	0.1 (2)	0.0 (2)	0.3 (2)	2.6 (2)
357	275-366	164	19.1 (2)	23.7 (2)	35.1 (2)	18.1 (2)	16.7 (2)	30.6 (2)	21.0 (2)	572.9 (2)	1299.0 (2)	549.0 (2)	84.6 (2)	167.5 (2)	72.3 (2)
379	275-366	106	5.4 (2)	1.3 (2)	1.7 (2)	4.9 (2)	4.2 (2)	65.4 (2)	16.7 (2)	24.2 (2)	70.5 (2)	82.3 (2)	50.1 (2)	36.1 (2)	35.6 (2)
380	275-366	116	0.2 (2)	0.0 (2)	1.1 (2)	0.4 (2)	2.3 (2)	4.6 (2)	9.4 (2)	1.1 (2)	6.2 (2)	0.4 (2)	0.5 (2)	2.0 (2)	8.4 (2)
723	367-549	155	29.7 (2)	47.1 (2)	60.7 (2)	16.3 (2)	14.9 (2)	32.6 (2)	32.2 (2)	97.9 (2)	114.6 (2)	1376.9 (2)	141.1 (2)	178.0 (2)	91.3 (2)
725	367-549	105	26.9 (2)		15.2 (2)	6.3 (2)	5.9 (2)	78.2 (2)	76.5 (2)	25.6 (2)	89.3 (2)	167.1 (2)	50.5 (2)	49.9 (2)	36.4 (2)
727	367-549	160	3.4 (2)	1.7 (2)	5.9 (2)	8.1 (2)	15.1 (2)	19.3 (2)	47.9 (2)	24.5 (2)	22.0 (2)	64.9 (2)	22.8 (2)	40.3 (2)	13.2 (2)
724	550-731	124	81.6 (2)	18.6 (2)	69.5 (2)	19.1 (2)	30.1 (2)	37.5 (2)	24.7 (2)	204.4 (2)	54.8 (2)	126.5 (2)	231.4 (2)	622.8 (2)	161.8 (2)
726	550-731	72	87.8 (2)	22.9 (2)	18.8 (2)	7.9 (2)	21.1 (2)	71.4 (2)	120.6 (2)	358.8 (2)	168.2 (2)	133.4 (2)	123.1 (2)	28.4 (2)	130.0 (2)
728	550-731	156	20.2 (2)	20.2 (2)	421.3 (2)	9.6 (3)	29.2 (2)	12.7 (2)		26.8 (2)	106.6 (2)	62.2 (2)	89.8 (2)	40.4 (2)	44.7 (2)
Upper {	95% CI)		26.1	10.3	340.8	5.4	11.0	27.2	28.0	198.0	956.5	526.4	55.7	385.4	
Weighte	ed mean (b	y area }	11.1	7.0	40.8	4.1	6.5	15.2	15.1	80.5	101.7	130.8	39.0	55.3	
Lower (95% CI)		-4.0	3.7	-259.3	2.9	2.0	3.1	2.3	-37.0	-753.1	-264.7	22.3	-274.8	
BIOM	ASS(ton:	5)	4375	2662	16112	1860	2572	5987	5651	31806	40182	51692	15415	21849	17414

3N Spring

	Depth	Area	Aug		Awa					
	Range	(sq. n.)	1991-Q3		1993-Q3					
Stratum	(M)	mi	W109		G233					
359	093-183	421	205.8	(4)	1.0	(3)				
377	093-183	100	0.0	(2)	4.7	(3)				
382	093-183	647	0.0	(3)	0.0	(3)				
358	185-274	225	979.7	(3)	25736.0	(4)				
378	185-274	139	26.7	(3)	16.7	(3)				
381	185-274	182	5.7	(3)	6.0	(4)				
357	275-366	164	2607.0	(2)	1408.7	(3)				
379	275-366	106	7880.0	(2)	2304.0	(3)				
380	275-366	116	3471.5	(2)	793.5	(2)				
723	367-549	155			3159.8	(4)				
725	367-549	105	427.0	(3)	1356.3	(3)				
727	367-549	160	109.0	(4)	2699.0	(3)				
724	550-731	124			1317.0	(4)				
726	550-731	72	73.5	(2)	545.5	(2)				
728	550-731	156	16.8	(4)	164.7	(3)				
Upper (95% CI)		1536.0		7088.9					
Weighte	ed mean (b	y area)	789.6		2665.2					
Lower (95% CI)		43.3		-1758.6					
ABUN	DANCE(millions	281.7		1052.9					
359	093-183	421	4.6	(4)	0.2	(3)				
377	093-183	100	0.0	(2)	0.9	(3)				
382	093-183	647	0.0	(3)	0.0	(3)				
358	185-274	225	115.4	(3)	2069.1	(4)				
378	185-274	139	3.7	(3)	2.2	(3)				
381	185-274	182	1.0	(3)	1.0	(4)				
357	275-366	164	517.7	(2)	224.9	(3)				
379	275-366	106	1086.4	(2)	431.4	(3)				
380	275-366	116	814.8	(2)	135.2	(2)				
723	367-549	155			765.1	(4)				
725	367-549	105	135.0	(3)	402.3	(3)				
727	367-549	160	33.7	(4)	845.9	(3)				
724	550-731	124			461.8	(4)				
726	550-731	72	32.6	(2)	225.7	(2)				
728	550-731	156	7.0	(4)	60.8	(3)				
Upper (95% CI)		599.1		636.0					
Weighte	d mean (h	warea)	133.5		328.6					

21.1

129808

-332.0

47624

Lower (95% CI)

BIOMASS(tons)

3N Summer

Table 9. Mean number (upper panel) and weight (kg., lower panel) per standard tow from Canadian SUMMER surveys in Div. 3N where strata greater than 365 m (200 ftm) were campled. Dashes (---) represent upsampled strate. Number of successful sets in brackets. The data

Table 10. Mean number (upper panel) and weight (kg., lower panel) per standard tow from Canadian AUTUMN surveys in Div. 3N where strata greater tha 366 m (200 ftm.) were sampled. Dashes (---) represent unsampled strata. Number of successful sets in brackets. The data from 1991-1994 are Campelen trawl equivalent units (see text). Data from 1996 to present are actual Campelen data. G=GadusAtlantica, W=Wilfred Templeman, A=Alfred Needler.

	Depth	Area	Oct-Nov 1991-Q4	Oct-Nev 1992-Q4	Nov 1993-Q4 W144-5	Oct-Dec 1994-Q4	Sep-Oct 1995-Q4 W174-27	Nov-Dec 1996-Q4 6353	Oct-Dec 1997-Q4 W313-317	Sep-Oct 1998-Q4 W336-230	Sep-Oct 1999-Q4	Sep-Oct 2000-Q4 W320-333	Sep-Oct 2001-Q4 W373-73	Oct 2002-Q4 W/427-8
Stratum	(M)	(ad: it.)		11120-0	11111-3	11110-01		T41-42	11212-217	T76	112-10-211	T338-9	T357	T411-12
359	093-183	421	0.0 (2)	0.0 (2	0.0 (2)	4.0 (2)	1.0 (2)	0.00 (2)	0.0 (2)	0.0 (2)	0.0 (2)	22.5 (2)	0.0 (2)	0.0 (2)
377	093-183	100	-	0.0 (2	0.5 (2)	0.5 (2)	2.0 (2)	0.00 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
382	093-183	647	0.0 (3)	0.0 (2	0.0 (2)	0.0 (2)	0.0 (2)	3.11 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
358	185-274	225	9350.0 (2)	30425.0 (2)	17.5 (2)	350.0 (2)	0.5 (2)	4.40 (2)	11.4 (3)	6664.5 (2)	356.0 (2)	1961.3 (2)	15464.8 (2)	1256.3 (2)
378	185-274	139	183.5 (2)	1.5 (2	4.5 (2)	5.0 (2)	1.0 (2)	3.00 (2)	48.4 (2)	18.5 (2)	0.0 (2)	23.1 (2)	884.5 (2)	288.6 (2)
381	185-274	182	4.5 (2)		3.0 (2)	0.0 (2)	425.8 (2)	74.83 (2)	144.0 (2)	2.5 (2)	0.5 (2)	17.0 (2)	4.0 (2)	550.0 (2)
357	275-366	164	3521.5 (2)	5207.5 (2	262.5 (2)	3687.5 (2)	733.8 (2)	17.09 (2)	184.2 (2)	9965.5 (2)		11134.9 (2)	9508.9 (2)	2211.1 (2)
379	275-366	106		123.0 (2)	270.5 (2)	100.5 (2)	548.9 (2)	25.78 (2)	7864.8 (2)	2540.8 (2)	5852.7 (2)	1831.2 (2)	259.3 (2)	377.7 (2)
380	275-366	116	179.5 (2)		10.5 (2)	0.0 (2)	10297.8 (2)	858.22 (2)	3610.7 (2)	12.8 (2)	356.0 (2)	42.5 (2)	95.3 (2)	331.9 (2)
723	367-549	155	146.0 (2)		1832.5 (2)	1212.0 (2)	329.8 (2)	48.50 (2)	930.0 (2)	805.5 (2)	304.5 (2)	1725.3 (2)	2196.9 (2)	1252.9 (2)
725	367-549	105		1672.5 (2	270.5 (2)	477.5 (2)	293.8 (2)	136.50 (2)	1345.6 (2)	1216.0 (2)	410.5 (2)	323.1 (2)	346.0 (2)	925.1 (2)
727	367-549	160			208.0 (2)	136.0 (2)	791.0 (2)	420.00 (2)	1027.4 (3)	654.6 (2)	267.2 (2)	301.2 (2)	194.6 (2)	677.0 (2)
724	550-731	124	29.0 (2)	· · · · ·	532.0 (2)	802.5 (2)	243.1 (2)	157.00 (2)	18.0 (2)	255.3 (2)	948.5 (2)	276.0 (2)	126.5 (2)	346.2 (2)
726	550-731	72			65.5 (2)	207.0 (2)	322.0 (2)	906.00 (2)	9.5 (2)	22.7 (2)	311.1 (2)	172.4 (2)	28.9 (2)	62.7 (2)
728	550-731	156				8.5 (2)	120.9 (2)	339.56 (2)	23.0 (2)	17.5 (2)	250.0 (2)	55.3 (2)	62.8 (2)	159.5 (2)
752	732-914	134	·	· · · · ·		-		· · · · ·		1.9 (2)	,	0.5 (2)	0.0 (2)	
756	732-914	106								1.0 (2)		0.0 (2)	0.0 (2)	
760	732-914	154								0.0 (2)		0.4 (2)	2.6 (2)	
Upper	(95% CI)		7884.4	38182.7	1042.7	2427.2	7503.4	673.1	3693.1	7078.8	1568.3	4759.1	15344.2	2017.1
Weight	ted mean (b	y area)	1267.7	4136.6	182.1	373.3	770.0	133.7	676.9	1163.9	389.2	884.0	1726.0	465.2
Lower	(95% CI)		-5349.1	-29909.5	-678.5	-1680.6	-5963.4	-405.8	-2339.3	-4751.0	-790.0	-2991.0	-11892.2	-1086.7
ABU	NDANCE(millior	378.9	1085.2	68.0	147.5	304.2	52.8	267.4	522.9	145.0	397.2	775.5	183.8
		Ca	mpelen Trav	vl Equivalent	1991-1994			Campelen	Trawl 1995	-Present				
359	093-183	421	0.0 (2)	0.0 (2	0.0 (2)	0.3 (2)	0.0 (2)	0.67 (2)	0.0 (2)	0.0 (2)	0.0 (2)	3.0 (2)	0.0 (2)	0.0 (2)
377	093-183	100		0.0 (2	0.2 (2)	0.1 (2)	0.3 (2)	0.00 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
382	093-183	647	0.0 (3)	0.0 (2	0.0 (2)	0.0 (2)	0.1 (2)	0.00 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)	0.0 (2)
358	185-274	225	390.4 (2)	3206.1 (2	1.3 (2)	26.8 (2)	39.9 (2)	4.98 (2)	14.2 (2)	1018.9 (2)	41.1 (2)	365.5 (2)	1519.7 (2)	175.4 (2)
378	185-274	139	48.4 (2)	0.3 (2	0.8 (2)	0.3 (2)	0.5 (2)	0.38 (2)	5.6 (2)	4.7 (2)	0.0 (2)	7.0 (2)	128.7 (2)	35.2 (2)
381	185-274	182	0.1 (2)		1.1 (2)	0.0 (2)	0.0 (2)	1.48 (2)	0.8 (3)	0.7 (2)	0.0 (2)	0.3 (2)	0.0 (2)	113.7 (2)
357	275-366	164	414.7 (2)	727.5 (2	23.8 (2)	405.3 (2)	1230.7 (2)	175.2 (2)	581.5 (2)	1714.5 (2)		1887.8 (2)	1751.5 (2)	473.4 (2)
379	275-366	106	. (1)	16.9 (2	30.2 (2)	10.8 (2)	59.1 (2)	3.96 (2)	1405.5 (2)	500.4 (2)	1099.0 (2)	336.8 (2)	65.2 (2)	53.8 (2)
380	275-366	116	41.9 (2)		0.4 (2)	0.0 (2)	117.5 (2)	1.13 (2)	27.5 (2)	2.3 (2)	75.0 (2)	7.2 (2)	15.4 (2)	50.1 (2)
723	367-549	155	38.8 (2)		293.8 (2)	302.3 (2)	197.1 (2)	66.11 (2)	217.4 (3)	156.7 (2)	76.2 (2)	501.0 (2)	466.4 (2)	278.9 (2)
725	367-549	105		491.0 (2)	69.1 (2)	97.7 (2)	46.9 (2)	24.23 (2)	447.9 (2)	479.9 (2)	87.8 (2)	81.6 (2)	94.3 (2)	223.0 (2)
727	367-549	160			39.4 (2)	28.6 (2)	35.9 (2)	8.85 (2)	230.1 (2)	165.0 (2)	51.3 (2)	56.9 (2)	45.7 (2)	164.3 (2)
724	550-731	124	20.8 (2)		220.9 (2)	294.6 (2)	46.2 (2)	96.44 (2)	8.6 (2)	111.9 (2)	419.9 (2)	107.8 (2)	41.3 (2)	157.1 (2)
726	550-731	72			26.0 (2)	86.4 (2)	113.4 (2)	273.0 (2)	4.0 (2)	7.4 (2)	117.4 (2)	85.2 (2)	8.7 (2)	22.8 (2)
728	550-731	156				3.1 (2)	61.0 (2)	32.97 (2)	6.7 (2)	6.6 (2)	106.5 (2)	23.4 (2)	30.5 (2)	62.0 (2)
752	732-914	134				_			_	0.9 (2)		0.3 (2)	0.0 (2)	
756	732-914	106								0.2 (2)		0.0 (2)	0.0 (2)	
760	732-914	154										0.3 (2)	1.3 (2)	
Upper	(95% CI)		110.5	4050.9	144.9	158,1	910.5	158.2	717.7	1115.0	172.1	870.7	1543.6	449.4
Weight	ted mean (b	y area)	81.0	468.8	35.4	62.2	102.9	28.5	129.4	208.6	88.9	168.1	231.5	96.8
Lower	(95% CI)		51.5	-3113.2	-74.1	-33.6	-704.7	-101.1	-458.9	-697.8	5.7	-534.4	-1080.6	-225.9
BIOM	ASS(top)	5)	24221	122990	13222	24584	40650	11277	51116	93703	33125	75544	103997	38235
5101	5-55 (10115	,	24221	122000	10222	24304	40000	112/1	31110	20100	33123	10044	100007	30235

3N Autumn

Fig. 1: Nominal catches and TACs of redfish in Div. 3LN (2000-2002 are provisional).

Fig. 2. Length compositions (per mille) of redfish taken as bycatch in Portuguese, Russian and Spanish trawl fisheries in Div 3LN in 2002.

Fig. 3. Stratification chart for Div. 3LN surveys.

Figure 4. Stratified mean number and weight (kg) per tow in Div. 3L for 1978-2000 from various Canadian surveys where strata greater than 366m were covered. Surveys up to spring 1995 used an Engel trawl (data plotted in Campelen equivalents) and those from autumn 1995 onward used a Campelen trawl. First and second quarter surveys in left panel, third and fourth quarter surveys in right panel.

Figure 5 Stratified mean number and weight (kg) per tow in Div. 3N for 1991-2002 Canadian surveys where strata greater than 366m were covered. Surveys up to spring 1995 used an Engel trawl (data plotted in Campelen equivalents) and those from autumn 1995 onward used a Campelen trawl. First and second quarter surveys in left panel, third and fourth quarter surveys in right panel.

Figure 6. Stratified mean weight (kg) per tow in Div. 3L from Canadian and Russian surveys.

Figure 7. Stratified mean weight (kg) per tow in Div. 3N from Canadian and Russian surveys.

Fig. 8. Length frequency distribution from stratified-random research surveys to Div. 3L from 1978-2002. Plotted are mean number per standard tow in Campelen equivalent units. X-axis is forklength in centimetres.

Fig. 9. Length frequency distribution from stratified-random research surveys to Div. 3N from 1991-2002. Plotted are mean number per standard tow in Campelen equivalent units. X-axis is forklength in centimetres.

Fig. 10.4 Catch/Biomass ratios for Div. 3L (Upper Panel) and Div. 3N (Lower Panel) Plotted are average survey biomass between spring and autumn for year in which catch was taken.