

NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

Serial No. N4992

## NAFO SCR Doc. 04/41

# **SCIENTIFIC COUNCIL MEETING – JUNE 2004**

The Canadian Fishery for Yellowtail Flounder in NAFO Divisions 3LNO in 2002 and 2003.

by

W. B. Brodie, D. W. Kulka, and D. Power

Northwest Atlantic Fisheries Center, Science Branch, Department of Fisheries and Oceans P.O. Box 5667, St. John's, Newfoundland, Canada AIC 5XI

## Abstract

The catch of yellowtail flounder by Canadian vessels in NAFO Divisions 3LNO in 2003 was approximately 12,700 tons, the highest by this fleet since 1987. The catch increased from just under 10,000 tons in 2002, when effort was lower because of problems with by-catch of American plaice. Length compositions of yellowtail were similar in both years, with about 40% of the catch numbers coming from lengths in the range 36-39 cm. Much of the Canadian catch in 2002-2003 came from Div. 3N, mostly in areas just north and west of the Southeast Shoal. Otter trawl continues to be the dominant gear in this fishery. CPUE increased in 2003, although it is difficult to compare CPUE with periods prior to 1998, due to the changes in the fishery and the fleet behaviour. Avoidance of by-catch of species under moratorium, such as American plaice and cod, continues to be a major influence on the Canadian fishery for yellowtail flounder.

# Introduction

Yellowtail flounder (*Limanda ferruginea*) is distributed off Newfoundland across much of the shallow portions of the Grand Banks within Northwest Atlantic Fisheries Organization (NAFO) Div. 3L, 3N, 3O and Subdiv. 3Ps (Fig.1), as well as in many inshore areas around the coast. Early research survey work showed that the largest concentrations in Canadian Atlantic waters were located on the south-central part of the Grand Bank in waters less than 100 m (Pitt, 1970; Walsh *et al.*, 2002b). A mixed trawl fishery began in the early-1960s in Div. 3L, 3N and 3O, following drastic declines in the haddock stock and fishery. For much of the period up to 1994, yellowtail flounder was exploited primarily as a part of this mixed fishery with cod (*Gadus morhua*) and American plaice (*Hippoglossoides platessoides*). Following declines in stock abundance, the directed fishery for yellowtail flounder was closed by NAFO Fisheries Commission from 1 January 1994 until 1 August 1998. Since the reopening in 1998, the fishery has increased, following increases in stock abundance. Pitt (1970), Walsh *et al.* (2002a) and Kulka (1999, 2000, 2001, 2002) provide further details on the historical fishery. Canada is allocated 97.5% of the Div. 3LNO yellowtail flounder quota by Fisheries Commission, and one company, Fishery Products International Limited, holds approximately 90% of the Canadian allocation. This paper presents information on the Canadian fishery for yellowtail flounder in 2002 and 2003.

The Canadian fishery for yellowtail flounder in Div. 3LNO, since its reopening in 1998, has been much different than the fishery prior to 1994. The major difference is that the 2 other species which were often part of the mixed fishery, namely cod and American plaice, have remained closed to directed fishing. Thus a major factor in the prosecution of the yellowtail flounder fishery since 1998 has been the avoidance of by-catch of these species. This makes it difficult to compare the fishery from the pre and post-moratorium periods, given that the fleet was operating under very different rules in these periods.

The recent conservation measures for Canadian fleets fishing for Div. 3LNO yellowtail flounder can be summarized as follows (from Kulka, 2002):

- Canadian vessels will be restricted to fishing inside 200 miles in Div. 3LNO.
- A minimum mesh size of 145 mm will be used when directing for Div. 3LNO yellowtail flounder.
- The by-catch protocols will be applied pursuant to Part I, Section A.4(b) of the NAFO Conservation and Enforcement Measures, which states that "In cases where a ban on fishing is in force, incidental catches of the species concerned may not exceed 1,250 kg or 5%, whichever is the greater". The percentage is calculated as the percentage, by weight, for each species of the total catch retained on board.
- The small fish protocols will be applied with a minimum fish size of 30 cm for yellowtail flounder in Div. 3LNO. Areas will be closed for the specified fleet sector for a minimum of 10 days when the number of undersized yellowtail flounder reaches or exceeds 15% of the catch. The fishery can only re-open following a test fishery indicating that small fish is no longer a problem.
- Vessels directing for Div. 3LNO yellowtail flounder will be subject to 100% observer coverage inside 200
  miles in order to facilitate monitoring of conservation measures and collection of data.
- A dockside-monitoring program is to be in place to monitor all landings.

In addition, there were voluntary measures taken by the fleet, including use of rigid sorting grates in the trawls to reduce by-catch (primarily cod), and closure of the fishery during the peak spawning time for yellowtail flounder, approximately 15 June to 31 July.

## Methods

Fishery observers collected geo-referenced (latitude and longitude) information on the catch, effort, size of fish and other details of the capture of yellowtail flounder such as gear configuration and fishing strategies from the 1998-2003 large-vessel yellowtail flounder fishery. Each vessel greater than 100 feet in length (100% of Canadian quota in 2002, 99.2% in 2003) was required to carry an observer on all trips in this fishery. It is estimated that 6,241 fishing sets were prosecuted by 14 vessels in the 2002 directed Canadian fishery, and 6,219 sets by 16 vessels in 2003. The number of tows in each year was derived from the ratio of landed catch to observed catch, applied to the number of observed sets.

Catch information prior to 2003 came from the NAFO statistical database. Additional data for 2002 and 2003 were compiled from a statistical database (ZIF) maintained by the Canadian Department of Fisheries and Oceans.

Potential mapping in SPANS (Anon, 1997; Kulka, 1998) was used to convert the commercial catch and effort to surface maps describing the distribution of the yellowtail flounder fishery in NAFO Div. 3N and 3O. This follows the methodology used in recent papers on this fishery, e.g. Kulka (2002).

A multiplicative model was used to analyze the catch and effort data for this stock as in assessments prior to the moratorium (Brodie *et al.*, 1994), and in recent years (Walsh *et al.*, 2002a). Because data from NAFO Statistical Bulletins exist only from 1974 onward in a format that identifies yellowtail as a main (directed fishery) species, it was decided to use Canada (Newfoundland) trawler data from 1965 to 1993, along with 1998-2003 data obtained from the Statistics Branch of the Department of Fisheries and Oceans in St. John's to derive a standardized catch rate series. It should be noted that for some years, particularly the late-1970s, the Canadian fleet provided the only source of CPUE data for this stock. The historical data used in the model were the same data used to calculate the CPUE series in previous assessments (Walsh *et al.*, 2002a). Factors included in each model were a combination country-gear-tonnage-class category type (CGT), month, NAFO Division and year. Consistent with previous catch rate standardizations individual observations of catch less than 10 tons or effort less than 10 hours fished were eliminated prior to analysis. Subsequently, any remaining categories with less than five data points in total were also eliminated. Plots of residuals from a preliminary run indicated data with higher levels of catch and effort tended to be less variable, therefore a weighted regression was conducted.

# **Description of the Fishery**

# Catch trends

Table 1 shows the catch history of the Div. 3LNO yellowtail flounder stock, by year and country, with the total Canadian catch listed from 1960-2003. The Canadian catch peaked at just over 28,000 tons in 1973, but has not exceeded 18,500 tons since then. The average from 1974 to 2003, excluding the moratorium years of 1994-97, is 10,847 tons. Catches by the Canadian fleet increased steadily from 1998 to 2003 (Table 1), except for a decline in 2002 when by-catch of American plaice necessitated a reduction in effort. The 2003 catch of 12,697 tons is the highest by Canada since 1987.

Canadian catches from 1973 onward are shown in Table 2, by year, division and gear. With the exception of the 1991-1993 period when Canadian vessels pursued a mixed fishery for American plaice and yellowtail in Div 30, the majority of catches has been taken in Div. 3N, by otter trawls. Canadian catches in Div. 3N were relatively stable between 7,700 and 8,700 tons from 2000-2003. The Canadian catch of yellowtail flounder in Div. 3O in 2003 of 4,482 tons was the second highest in this Division, and was similar to the peak value in 1992.

The fishery in both 2002 and 2003 was almost all otter trawl, with small catches by seine in 2002, and a very small amount of gillnet catch in inshore Div. 3L in both years (Table 3). Catches were taken in all months, and temporal patterns were very similar in both years, with peak monthly catches occurring in October. Over 57% of the landed weight was taken in the last 4 months in both 2002 and 2003. In both years, over 86% of the observed catch came from a depth range of 50-70 m. Average tow duration during 2002 was 2.65 hrs covering 14.65 km., compared to 2.47 hrs and 13.9 km in 2003. A significant part of the catch in 2003 (approximately 12%) was taken by a larger vessel class (TC 6) new to the Canadian fishery, which froze yellowtail at sea to be re-processed subsequently at shore-based plants.

The use of sorting grates was widespread in 2002 (present in 67% of observed sets), but declined to only 20% of observed sets in 2003. This likely contributed to an increase in cod by-catch from 2.1% of the observed catch in 2002 to 3.5% in 2003. American place has been the main by-catch in the Canadian fishery for yellowtail flounder since 1998. During 2001 to 2003, it constituted about 10% (range 9.7 to 10.4) of the total catch observed in the yellowtail flounder directed fishery, compared to about 4-6% during 1998 to 2000.

# Length composition

At-sea observers measured in excess of 210,000 yellowtail flounder in each of 2002 and 2003. Observed codend mesh sizes ranged from 145 to 155 mm in 2002 and 2003 with a predominance at 149-152 mm in both years. The length frequencies observed in 2002 and 2003 were very similar, with a mode at 36-37 cm (Fig 1). About 40% of the catch in numbers in each year was between 36 and 39 cm in length. This is virtually identical to the results for 2000 and 2001 (Kulka, 2002). Annual mean lengths in the Canadian fishery since the beginning of 2000 ranged from 37.6 to 38.3 cm. About 2% of the catch in numbers in 2002 and 2003 was less than 30 cm, slightly lower than in 2000 and 2001, and well below the small fish protocol of 15%.

Otoliths were collected in both years, but ageing of samples has not been carried out in recent years, pending the outcome of detailed studies on ageing methodology (Dwyer *et al.*, 2003).

## Spatial pattern

Since the fishery reopened in 1998, much of the distribution of effort by the Canadian fleet has been relatively localized (Kulka, 2002). In 2000-2003, much of the Canadian catch came from the area in central Div. 3N, just to the north and west of the Southeast Shoal (Fig. 2, 3). Other important locations include an area on the Div. 3L/3N border, and an area in Div. 3O just east of 52 degrees longitude. Unstandardized CPUE was in excess of 1 ton/hour in several locations during 2000-2003, including an area on the border between Div. 3L and 3N (Fig. 4, 5).

#### CPUE

Tables 4A and 4B show the results of the CPUE analysis and Fig. 6 shows the standardized series from 1965 to 2003. In the top panel of Fig. 6, the catch per unit of effort declined steadily from 1965 to 1976, then increased marginally to a relatively stable level from 1980-85. The index again declined sharply in 1986 and remained at this relatively low level through to 1990. In 1991 the CPUE declined by almost half to the lowest level observed. The catch rate in 1998, after four years of the stock under moratorium, increased sharply to a level comparable to the late-1960s. Catch rates increased by a further 20% between 1998 and 2000 and were comparable to the highest on record, i.e. at the start of the directed fishery in 1965. CPUE declined in 2001 and 2002, then increased in 2003. Monthly coefficients (Table 4A) indicated that CPUE was highest during the fall period.

Standardizations of the data separately by division (Fig. 6, lower panel) showed that, overall, the historical trends were the same, although the catch rate is generally lower in Div. 30 than in Div. 3N, and that large fluctuations tend to occur more frequently in Div. 30, primarily before 1985. In the period since the resumption of the directed fishery from 1998-2003, catch rates showed opposite trends within each division between 1998 to 1999 (Div. 3N up, Div. 30 down) and again between 2000 to 2001 (Div. 3N down, Div. 30 up). CPUE increased in both areas in 2003, and CPUE in Div. 30 was slightly higher than in Div. 3N.

The fluctuations in the combined index from 1990 to 1993 was due primarily to the switch in effort of the fleet to Div. 3O. A substantial part of the effort labelled 'directed' for one species or the other in this Division was actually effort directed at a mixed fishery for American plaice and yellowtail flounder during 1991-1993. Given this major shift in the fishery from the 1965-90 to 1991-93, some caution must be used in comparison of catch rates between these periods. Nonetheless, it is reasonable to interpret the 1991-93 values for CPUE as an indication that the stock was at a low level. Since the resumption of the fishery in 1998, there has been a by-catch restriction of 5% for both American plaice and cod which directly affected the fishing pattern of the Canadian fleet. The vessels spent additional time searching for good catches of yellowtail flounder with low by-catches of both restricted species, which they found mainly in the central and northern areas of Div. 3N. Once again, caution should be used in comparing post-moratorium catch rates with other fishery periods. However, the overall CPUE since 1998, under the constraint of 5% by-catch limitations, suggests that the stock size is at a relatively high level, in agreement with survey indices (Walsh *et al.*, 2002a; Maddock-Parsons *et al.*, 2003). Data from the Canadian fleet indicate that by-catch of American plaice has been particularly problematic during 2001 to 2003. No attempt has been made to account for this factor in the CPUE analyses.

#### References

Anon, 1997. SPANS. Vers. 7. Prospector Reference Manual. TYDAC Research Inc.

- Brodie, W. B., S. J. Walsh, D. Power, and M. J. Morgan. 1994. An assessment of the yellowtail flounder stock in Divisions 3LNO. *NAFO SCR Doc.*, No. 44, 40 p.
- Dwyer, K. S., S. J. Walsh, and S. E.Campana. 2003. Age determination, validation and growth of Grand Bank yellowtail flounder (*Limanda ferruginea*). ICES Journal of Marine Science, 60: 1123-1138.Kulka D. W. 1998. SPANdex - SPANS geographic information system process manual for creation of biomass indices and distributions using potential mapping. *DFO Atl. Fish. Res. Doc.*, No. 98/60, 28 p.
- Kulka, D. W. 1999. A re-emerging fishery Description of the 1998 yellowtail flounder fishery on the Grand Banks with a comparison to the historic effort. *NAFO SCR Doc.*, No. 61, 38 p.
- Kulka, D. W. 2000. Re-emergence of a traditional fishery in a different form description of the 1998 and 1999 yellowtail flounder fishery on the Grand Banks with a comparison to the historic mixed fishery. *NAFO SCR Doc.*, No. 58, Serial No. N4299, 45 p.
- Kulka, D. W. 2001. Description of the 2000 Yellowtail Flounder Fishery on the Grand Banks with a Comparison to the 1998 and 1999 Fishery. *NAFO SCR Doc.*, No. 71, Serial No. N4449, 23 p.
- Kulka, D. W. 2002. Description of the 2001 Yellowtail Flounder Fishery on the Grand Banks with Comparison to Past Years. *NAFO SCR Doc.*, No. 73, Serial No. N4686.

- Maddock Parsons, D., W. B. Brodie, and K. Dwyer. 2003. Update on Cooperative Surveys of Yellowtail Flounder in NAFO Divisions 3LNO, 1996-2002. *NAFO SCR Doc.*, No. 18, Serial No. N4825.
- Pitt, T. K. 1970. Distribution, abundance, and spawning of yellowtail flounder, *Limanda ferruginea*, in the Newfoundland area of the Northwest Atlantic. J. Fish. Res. Bd. Can., 27(12): 2261-2271.
- Walsh, S. J., W. B. Brodie, M. J. Morgan, D. Power, K. S. Dwyer, and C. Darby. 2002a. Stock assessment and management of the Grand Bank yellowtail flounder stock. *NAFO SCR Doc.*, No. 71, Serial No. N4684, 54 p.
- Walsh, S. J., M. F. Veitch, W. B. Brodie, and W. R. Bowering. 2002b. The distribution and abundance of yellowtail flounder (*Limanda ferruginea*) from the Canadian annual bottom trawl surveys of the Grand Bank, NAFO Divisions 3LNO, from 1984-2001. NAFO SCR Doc., No. 43, Serial No. N4654, 51 p.

| Yea | r Canada              | France | USSR/Rus. | S.Korea <sup>a</sup> | Other <sup>b</sup>  | Total      | TAC                |
|-----|-----------------------|--------|-----------|----------------------|---------------------|------------|--------------------|
| 400 | 0 7                   |        |           |                      |                     |            |                    |
| 196 | 0 7                   | -      | -         | -                    | -                   | 100        |                    |
| 190 | 1 100                 | -      | -         | -                    | -                   | 100        |                    |
| 190 | Z 0/                  | -      | -         | -                    | -                   | 510        |                    |
| 190 | J 100                 | -      | 300       | -                    | -                   | 01C<br>147 |                    |
| 190 | 4 120<br>5 2.075      | -      | 21        | -                    | -                   | 2 1 2 0    |                    |
| 190 | 5 5,075<br>6 4 195    | -      | 2 924     | -                    | - 7                 | 7 026      |                    |
| 190 | 0 4,103<br>7 2,122    | -      | 2,034     | -                    | 20                  | 8 878      |                    |
| 196 | 8 4 180               | 14     | 9 146     | _                    | -                   | 13 340     |                    |
| 196 | 9 10 494              | 1      | 5 207     | _                    | 6                   | 15,540     |                    |
| 197 | 0 22814               | 17     | 3 4 2 6   | _                    | 169                 | 26 4 26    |                    |
| 197 | 1 24 206              | 49     | 13 087    | _                    | -                   | 37 342     |                    |
| 197 | 2 26 939              | 358    | 11 929    | -                    | 33                  | 39 259     |                    |
| 197 | 3 28 492              | 368    | 3 545     | -                    | 410                 | 32 815     | 50 000             |
| 197 | 4 17.053              | 60     | 6,952     | -                    | 248                 | 24,313     | 40.000             |
| 197 | 5 18.458              | 15     | 4.076     | -                    | 345                 | 22.894     | 35.000             |
| 197 | 6 7.910               | 31     | 57        | -                    | 59                  | 8.057      | 9.000              |
| 197 | 7 11.295              | 245    | 97        | -                    | 1                   | 11.638     | 12.000             |
| 197 | 8 15,091              | 375    | -         | -                    | -                   | 15,466     | 15,000             |
| 197 | 9 18,116              | 202    | -         | -                    | 33                  | 18,351     | 18,000             |
| 198 | 0 12,011              | 366    | -         | -                    | -                   | 12,377     | 18,000             |
| 198 | 1 14,122              | 558    | -         | -                    | -                   | 14,680     | 21,000             |
| 198 | 2 11,479              | 110    | -         | 1,073                | 657                 | 13,319     | 23,000             |
| 198 | 3 9,085               | 165    | -         | 1,223                | -                   | 10,473     | 19,000             |
| 198 | 4 12,437              | 89     | -         | 2,373                | 1,836 <sup>b</sup>  | 16,735     | 17,000             |
| 198 | 5 13,440              | -      | -         | 4,278                | 11,245 <sup>b</sup> | 28,963     | 15,000             |
| 198 | 6 14 168              | 77     | -         | 2 049                | 13 882 <sup>b</sup> | 30 176     | 15 000             |
| 198 | 7 13,420              | 51     | -         | 125                  | 2,718               | 16.314     | 15,000             |
| 198 | 8 10.607              | -      | -         | 1 383                | 4 166 <sup>b</sup>  | 16 158     | 15,000             |
| 198 | 9 5 009               | 139    | -         | 3 508                | 1,551               | 10,100     | 5 000              |
| 199 | 0 4.966               | -      | -         | 5,903                | 3,117               | 13,986     | 5,000              |
| 199 | 1 6.589               | -      | -         | 4,156                | 5.458               | 16.203     | 7.000              |
| 199 | 2 6.814               | -      | -         | 3.825                | 123                 | 10.762     | 7.000              |
| 199 | 3 6.747               | -      | -         | -,                   | 6.868               | 13.615     | 7.000              |
| 199 | 4 -                   | -      | -         | -                    | 2.069               | 2,069      | 7.000 <sup>d</sup> |
| 199 | 5 2                   | -      | -         | -                    | 65                  | 67         | 0 <sup>d</sup>     |
| 100 | 6 -                   | _      | _         | _                    | 232                 | 232        | 0 d                |
| 199 |                       | -      | -         | -                    | 232                 | 252        | 0 d                |
| 199 | / I                   | -      | -         | -                    | 007                 | 000        | 1 0 0 0            |
| 199 | 0 3,739               | -      | -         | -                    | 04/                 | 4,386      | 4,000              |
| 199 | 9 5,746               | -      | 96        | -                    | 1,052               | 6,894      | 6,000              |
| 200 | 0 <sup>°</sup> 9,463  | -      | 212       | -                    | 1,486               | 11,161     | 10,000             |
| 200 | 1 <sup>c</sup> 12,238 | -      | 148       | -                    | 1,759               | 14,145     | 13,000             |
| 200 | 2 <sup>c</sup> 9,959  | -      | 103       | -                    | 636                 | 10,698     | 13,000             |
| 200 | 3 <sup>c</sup> 12,697 |        |           |                      |                     |            | 14,500             |
| 200 | 4                     |        |           |                      |                     |            | 14,500             |

Table 1. Nominal catches by country and TACs (tons) of yellowtail in NAFO Divisions 3LNO. Only Canadian catch has been updated for 2003.

<sup>a</sup> South Korean catches ceased after 1992

<sup>b</sup> includes catches estimated from Canadian surveillance reports

<sup>c</sup> provisional <sup>d</sup> no directed fishery permitted

|      | c     | TTER TRA |       |        |             |
|------|-------|----------|-------|--------|-------------|
| YEAR | 3L    | 3N       | 30    | 3LNO   | OTHER GEARS |
| 1973 | 4,188 | 21,470   | 2,827 | 28,475 | 17          |
| 1974 | 1,107 | 14,757   | 1,119 | 16,983 | 70          |
| 1975 | 2,315 | 13,289   | 2,852 | 18,456 | 2           |
| 1976 | 448   | 4,978    | 2,478 | 7,904  | 6           |
| 1977 | 2,546 | 7,166    | 1,583 | 11,295 | 0           |
| 1978 | 2,537 | 10,705   | 1,793 | 15,035 | 56          |
| 1979 | 2,575 | 14,359   | 1,100 | 18,034 | 82          |
| 1980 | 1,892 | 9,501    | 578   | 11,971 | 40          |
| 1981 | 2,345 | 11,245   | 515   | 14,105 | 17          |
| 1982 | 2,305 | 7,554    | 1,607 | 11,466 | 13          |
| 1983 | 2,552 | 5,737    | 770   | 9,059  | 26          |
| 1984 | 5,264 | 6,847    | 318   | 12,429 | 8           |
| 1985 | 3,404 | 9,098    | 829   | 13,331 | 9           |
| 1986 | 2,933 | 10,196   | 1,004 | 14,133 | 35          |
| 1987 | 1,584 | 10,248   | 1,529 | 13,361 | 59          |
| 1988 | 1,813 | 7,146    | 1,475 | 10,434 | 173         |
| 1989 | 844   | 2,407    | 1,506 | 4,757  | 252         |
| 1990 | 1,263 | 2,725    | 668   | 4,656  | 310         |
| 1991 | 798   | 2,943    | 2,284 | 6,025  | 564         |
| 1992 | 95    | 1,266    | 4,633 | 5,994  | 820         |
| 1993 | 0     | 2,062    | 3,903 | 5,965  | 782         |
| 1994 | 0     | 0        | 0     | 0      | 0           |
| 1995 | 0     | 0        | 0     | 0      | 2           |
| 1996 | 0     | 0        | 0     | 0      | 0           |
| 1997 | 0     | 1        | 0     | 1      | 0           |
| 1998 | 0     | 2,968    | 742   | 3,710  | 29          |
| 1999 | 0     | 5,636    | 107   | 5,743  | 3           |
| 2000 | 1,409 | 7,733    | 278   | 9,420  | 43          |
| 2001 | 183   | 8,709    | 3,216 | 12,108 | 130         |
| 2002 | 22    | 7,707    | 2,035 | 9,764  | 195         |
| 2003 | 28    | 8,186    | 4,482 | 12,696 | 1           |

Table 2. Canadian catches of yellowtail flounder by division, from 1973 to 2003. Data from2003 are from preliminary Canadian ZIF statistics and may be slightly different from STATLANT data.

| 3L    |                              | 3                           | 3N                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------|------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| OT    | Gillnet                      | OT                          | Seine                                                                                                                                                                | OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Seine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       |                              |                             |                                                                                                                                                                      | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       |                              | 289                         |                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       |                              | 845                         |                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       |                              | 1128                        |                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1     |                              | 560                         | 57                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       |                              | 3                           |                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|       | 1                            | 41                          |                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 20    | 5                            | 185                         | 23                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       |                              | 1413                        | 22                                                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       |                              | 1249                        |                                                                                                                                                                      | 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       |                              | 1143                        | 32                                                                                                                                                                   | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       |                              | 852                         | 8                                                                                                                                                                    | 331                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 21    | 6                            | 7708                        | 142                                                                                                                                                                  | 2031                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ries: | GN=6<br>OT=9760<br>Seine=188 | 3L=27<br>3N=7850<br>3O=2077 |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|       | 0T<br>1<br>20<br>21<br>ries: | 3L<br>OT Gillnet            | 3L 07<br>OT Gillnet OT<br>289<br>845<br>1128<br>1 560<br>3<br>1 41<br>20 5 185<br>1413<br>1249<br>1143<br>852<br>21 6 7708<br>ries: GN=6 5<br>OT=9760 5<br>Seine=188 | 3L         3N           OT         Gillnet         OT         Seine           289         845         1128           1         560         57           3         1         41           20         5         185         23           1413         22         1249           1143         32         852         8           21         6         7708         142           ries:         GN=6         3L=27         3N=7850           OT=9760         3N=7850         3O=2077 | 3L         3N           OT         Gillnet         OT         Seine         OT           134         289         2         845         1           1128         16         1         560         57         2           1         560         57         2         3         20           1         41         20         20         5         185         23         13           20         5         185         23         13         1413         22         400           1249         1045         1143         32         47         852         8         331           21         6         7708         142         2031         142         2031           rise: GN=6         3L=27         0T=9760         3N=7850         Seine=188         3O=2077 | 3L         3N         3O           OT         Gillnet         OT         Seine         OT         Seine           134         289         2         845         1           1128         16         1         1128         16           1         560         57         2         3           3         20         1         41         20           20         5         185         23         13           1413         22         400         37           1249         1045         1143         32         47         1           852         8         331         5         21         6         7708         142         2031         46           ries:         GN=6         3L=27         0T=9760         3N=7850         Seine=188         3O=2077 |  |

Table 3a. Canadian catches (ZIF data) of yellowtail by Div, month, and gear, 2002.

Table 3b. Canadian catches (ZIF data) of yellowtail by Div, month, and gear, 2003.

|       | 3L   |         | ЗN   | 30   | 3LNO  |
|-------|------|---------|------|------|-------|
|       | от с | Gillnet | OT   | ОТ   | Total |
| Jan   |      |         | 149  | 9    | 158   |
| Feb   |      |         | 122  |      | 122   |
| Mar   |      |         | 70   |      | 70    |
| Apr   |      |         | 1043 |      | 1043  |
| May   |      |         | 1016 | 788  | 1804  |
| Jun   | 1    |         | 615  | 117  | 733   |
| Jul   | 4    | 1       | 30   | 24   | 59    |
| Aug   | 16   |         | 359  | 1041 | 1416  |
| Sep   |      |         | 913  | 1080 | 1993  |
| Oct   | 6    |         | 1553 | 689  | 2248  |
| Nov   | 1    |         | 1703 | 323  | 2027  |
| Dec   |      |         | 613  | 411  | 1024  |
| Total | 28   | 1       | 8186 | 4482 | 12697 |

Table 4A . ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized catch rate series for Yellowtail flounder in NAFO Div. 3LNO (2003 based on preliminary data).

| REGRESSION    | OF MIT               |           | CATIVE |         |         |  |
|---------------|----------------------|-----------|--------|---------|---------|--|
| MILTIDLE P    | MILTIDE P            |           |        |         |         |  |
| MILTIPLE R    | MULTIPLE R SOUARED 0 |           |        |         |         |  |
|               |                      |           |        |         |         |  |
| ANALYSTS OF   | VART                 | ANCE      |        |         |         |  |
|               |                      |           |        |         |         |  |
| SOURCE OF     |                      | SUMS      | OF     | MEAN    |         |  |
| VARIATION     | DF                   | SOUAR     | ES     | SOUARE  | F-VALUE |  |
|               |                      |           |        |         |         |  |
| INTERCEPT     | 1                    | 4.96      | E1     | 4.96E1  |         |  |
| REGRESSION    | 50                   | 8.27      | <br>E0 | 1.65E-1 | 20.925  |  |
| Cntry Gear TC | 3                    | 8.90      | E-1    | 2.97E-1 | 37.532  |  |
| Division      | 2                    | 8.05      | E-1    | 4.02E-1 | 50.897  |  |
| Month         | 11                   | 6 05      | E-1    | 5 50E-2 | 6 952   |  |
| Year          | 34                   | 5 56      | E0     | 1 63E-1 | 20 670  |  |
| 1041          | 51                   | 5.50      | 20     | 1.002 1 | 2010/0  |  |
| RESTDUALS     | 901                  | 7 1 2     | EO     | 7 91E-3 |         |  |
| TOTAL         | 952                  | 6 50      | F1     | /./12 0 |         |  |
| TOTAL         | 222                  | 0.50      |        |         |         |  |
| DECDEC        | STON                 |           | CIENTS |         |         |  |
| <u>REGRED</u> | 5101 0               | WAD       | PEG    | מידיפ   | NO      |  |
| CATECORY      | CODE                 | VAIC<br># | COFF.  | FDD     | . NO.   |  |
| Childori TC(1 | 13125                | T NTT     | 0 137  | 0 119   | 952     |  |
| Division(2    | ) 34                 | 1111      | 0.137  | 0.110   | 552     |  |
| Month(3       | ) 10                 |           |        |         |         |  |
| Vear(A        | ) 65                 |           |        |         |         |  |
| (1)           | 3114                 | 1         | -0 302 | 0 033   | 162     |  |
| ( 1 )         | 3124                 | 2         | -0 235 | 0.033   | 153     |  |
|               | 2124                 | 2         | 0.235  | 0.055   | 100     |  |
| (2)           | 3120                 | 3         | 0.015  | 0.070   | 204     |  |
| (2)           | 25                   | -         | 0.210  | 0.020   | 2017    |  |
| (2)           | 1                    | 5         | 0.231  | 0.020   | 217     |  |
| (3)           | 2                    | 7         | -0.139 | 0.080   | 22      |  |
|               | 2                    | ,         | -0.305 | 0.075   | 20      |  |
|               | 3                    | 0         | -0.222 | 0.061   | 59      |  |
|               | 4                    | 10        | -0.192 | 0.051   | 104     |  |
|               | 5                    | 10        | -0.1/4 | 0.044   | 102     |  |
|               | 0                    | 10        | -0.260 | 0.044   | 1.05    |  |
|               | /                    | 12        | -0.200 | 0.045   | 1.25    |  |
|               | 8                    | 13        | -0.1/4 | 0.045   | 105     |  |
|               | 9                    | 14        | -0.039 | 0.045   | 105     |  |
|               | 11                   | 15        | -0.096 | 0.051   | 64      |  |
| ( 4 )         | 12                   | 17        | -0.050 | 0.058   | 49      |  |
| (4)           | 66                   | 1/        | -0.020 | 0.150   | 11      |  |
|               | 67                   | 18        | -0.096 | 0.150   | 12      |  |
|               | 68                   | 19        | -0.252 | 0.145   | 14      |  |
|               | 69                   | 20        | -0.420 | 0.136   | 20      |  |
|               | 70                   | 21        | -0.404 | 0.122   | 42      |  |
|               | 71                   | 22        | -0.428 | 0.121   | 41      |  |
|               | 72                   | 23        | -0.548 | 0.121   | 45      |  |
|               | 73                   | 24        | -0.437 | 0.121   | 50      |  |
|               | 74                   | 25        | -0.862 | 0.123   | 37      |  |
|               | 75                   | 26        | -0.851 | 0.123   | 38      |  |
|               | 76                   | 27        | -0.928 | 0.131   | 26      |  |
|               | .77                  | 28        | -0.768 | 0.125   | 38      |  |
|               | 78                   | 29        | -0.732 | 0.122   | 51      |  |
|               | ./9                  | 30        | -0.699 | 0.121   | 4'/     |  |
|               | 80                   | 31        | -0.605 | 0.126   | .30     |  |

|                  |        | VAR  | REG.   | STD.  | NO. |
|------------------|--------|------|--------|-------|-----|
| CATEGORY (       | CODE   | #    | COEF   | ERR   | OBS |
| (4)              | 81     | 32   | -0.602 | 0.128 | 30  |
|                  | 82     | 33   | -0.703 | 0.131 | 24  |
|                  | 83     | 34   | -0.516 | 0.130 | 23  |
|                  | 84     | 35   | -0.571 | 0.130 | 28  |
|                  | 85     | 36   | -0.554 | 0.127 | 30  |
|                  | 86     | 37   | -0.870 | 0.128 | 30  |
|                  | 87     | 38   | -0.819 | 0.128 | 30  |
|                  | 88     | 39   | -0.901 | 0.130 | 26  |
|                  | 89     | 40   | -0.922 | 0.141 | 17  |
|                  | 90     | 41   | -0.764 | 0.141 | 16  |
|                  | 91     | 42   | -1.386 | 0.134 | 24  |
|                  | 92     | 43   | -1.254 | 0.136 | 21  |
|                  | 93     | 44   | -0.869 | 0.134 | 23  |
|                  | 98     | 45   | -0.276 | 0.150 | 11  |
|                  | 99     | 46   | -0.193 | 0.144 | 12  |
|                  | 81     | 32   | -0.581 | 0.118 | 30  |
|                  | 82     | 33   | -0.670 | 0.122 | 24  |
|                  | 83     | 34   | -0.532 | 0.120 | 24  |
|                  | 84     | 35   | -0.556 | 0.120 | 28  |
|                  | 85     | 36   | -0.514 | 0.117 | 30  |
|                  | 86     | 37   | -0.846 | 0.119 | 30  |
|                  | 87     | 38   | -0.788 | 0.118 | 30  |
|                  | 88     | 39   | -0.876 | 0.121 | 26  |
|                  | 89     | 40   | -0.878 | 0.132 | 17  |
|                  | 90     | 41   | -0.720 | 0.133 | 16  |
|                  | 91     | 42   | -1.334 | 0.124 | 24  |
|                  | 92     | 43   | -1.186 | 0.128 | 21  |
|                  | 93     | 44   | -0.811 | 0.124 | 23  |
|                  | 98     | 45   | -0.245 | 0.140 | 11  |
|                  | 99     | 46   | -0.171 | 0.134 | 12  |
|                  | 100    | 47   | -0.083 | 0.122 | 24  |
|                  | 101    | 48   | -0.283 | 0.121 | 20  |
|                  | 102    | 49   | -0.364 | 0.123 | 19  |
|                  | 103    | 50   | -0.212 | 0.127 | 34  |
| LEGEND FOR AVOVA | A RESU | LTS: |        |       |     |

CGT CODES: 3114 = Can(NFLD) TC 4 Side Trawler 3124 = " TC 4 Stern Trawler 3125 = " TC 5 " 3126 = TC 6 · DIVISION CODES: 32 = 3L, 34 = 3N, 35 = 30

YEAR CODES: 100=2000, 101=2001, etc.

Table 4B. Standardized catch rate index for Yellowtail flounder in NAFO Div. 3LNO from a multiplicative model utilizing HOURS FISHED as a measure of effort. (2003 based on preliminary data).

#### PREDICTED CATCH RATE

|      | LN TR   | ANSFORM | RETRAN | ISFORMED |       |        | % OF CATCH IN |
|------|---------|---------|--------|----------|-------|--------|---------------|
| YEAR | MEAN    | S.E.    | MEAN   | S.E.     | CATCH | EFFORT | THIS ANALYSIS |
|      |         |         |        |          |       |        |               |
| 1965 | 0.1368  | 0.0139  | 1.143  | 0.134    | 3075  | 2690   | 39.5          |
| 1966 | 0.1168  | 0.0120  | 1.122  | 0.123    | 4185  | 3731   | 32.7          |
| 1967 | 0.0410  | 0.0127  | 1.039  | 0.117    | 2122  | 2042   | 44.0          |
| 1968 | -0.1150 | 0.0096  | 0.891  | 0.087    | 4180  | 4694   | 52.6          |
| 1969 | -0.2836 | 0.0072  | 0.753  | 0.064    | 10494 | 13930  | 30.8          |
| 1970 | -0.2675 | 0.0036  | 0.767  | 0.046    | 22814 | 29745  | 54.4          |
| 1971 | -0.2913 | 0.0034  | 0.749  | 0.044    | 24206 | 32318  | 58.4          |
| 1972 | -0.4112 | 0.0032  | 0.664  | 0.038    | 26939 | 40545  | 53.9          |
| 1973 | -0.2997 | 0.0031  | 0.743  | 0.041    | 28492 | 38357  | 74.4          |
| 1974 | -0.7249 | 0.0037  | 0.485  | 0.030    | 17053 | 35133  | 82.0          |
| 1975 | -0.7139 | 0.0035  | 0.491  | 0.029    | 18458 | 37608  | 72.1          |
| 1976 | -0.7909 | 0.0054  | 0.454  | 0.033    | 7910  | 17423  | 60.5          |
| 1977 | -0.6307 | 0.0042  | 0.533  | 0.034    | 11295 | 21183  | 44.4          |
| 1978 | -0.5949 | 0.0034  | 0.553  | 0.032    | 15091 | 27296  | 61.5          |
| 1979 | -0.5624 | 0.0033  | 0.571  | 0.033    | 18116 | 31719  | 73.0          |
| 1980 | -0.4687 | 0.0048  | 0.627  | 0.043    | 12011 | 19162  | 65.1          |
| 1981 | -0.4653 | 0.0047  | 0.629  | 0.043    | 14122 | 22452  | 73.6          |
| 1982 | -0.5658 | 0.0055  | 0.569  | 0.042    | 11479 | 20188  | 48.2          |
| 1983 | -0.3796 | 0.0050  | 0.685  | 0.048    | 9085  | 13260  | 50.2          |
| 1984 | -0.4341 | 0.0053  | 0.649  | 0.047    | 12437 | 19172  | 54.7          |
| 1985 | -0.4170 | 0.0042  | 0.660  | 0.043    | 13440 | 20357  | 50.6          |
| 1986 | -0.7328 | 0.0045  | 0.481  | 0.032    | 14168 | 29433  | 62.5          |
| 1987 | -0.6822 | 0.0043  | 0.506  | 0.033    | 13420 | 26502  | 66.4          |
| 1988 | -0.7640 | 0.0050  | 0.466  | 0.033    | 10607 | 22738  | 57.1          |
| 1989 | -0.7854 | 0.0080  | 0.456  | 0.041    | 5009  | 10986  | 40.0          |
| 1990 | -0.6273 | 0.0078  | 0.534  | 0.047    | 4966  | 9298   | 45.8          |
| 1991 | -1.2490 | 0.0060  | 0.287  | 0.022    | 6642  | 23138  | 48.0          |
| 1992 | -1.1171 | 0.0063  | 0.327  | 0.026    | 6809  | 20791  | 59.4          |
| 1993 | -0.7324 | 0.0059  | 0.481  | 0.037    | 6747  | 14020  | 68.4          |
| 1998 | -0.1393 | 0.0102  | 0.869  | 0.087    | 3739  | 4303   | 91.3          |
| 1999 | -0.0563 | 0.0085  | 0.945  | 0.087    | 5746  | 6081   | 94.2          |
| 2000 | 0.0509  | 0.0052  | 1.054  | 0.076    | 9423  | 8943   | 99.2          |
| 2001 | -0.1714 | 0.0052  | 0.844  | 0.061    | 12240 | 14509  | 96.5          |
| 2002 | -0.2259 | 0.0056  | 0.799  | 0.060    | 9958  | 12467  | 98.0          |
| 2003 | -0.0754 | 0.0040  | 0.929  | 0.059    | 13820 | 14873  | 91.3          |

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.075



Fig 1. Length frequency of Canadian catches of yellowtail flounder in Div 3LNO in 2002 and 2003.



Fig. 2. Yellowtail flounder fishing grounds, Canadian vessels, 2000-03. Colours depict density of fishing effort (sets per sq. km).



Fig. 3. Yellowtail flounder fishing grounds, Canadian vessels. Colours depict density of fishing effort (sets per sq. km). See Fig. 2 for legend.



Fig. 4. Fishing grounds 2000-2003 combined, Canadian vessels, depicting catch rate (tons per hour, unstandardized) of yellowtail flounder.



Fig. 5. Fishing grounds 2000-2003, Canadian vessels, depicting catch rate (tons per hour, unstandardized) of yellowtail flounder.



A) Div. 3LNO from 1965-1993,1998-2003

B) Div 3N and 3O separately from 1965-1993,1998-2003



Fig. 6. Standardized CPUE  $\pm 2$  s.e. for Yellowtail flounder in Div. 3LNO from 1965-1993 and 1998-2003 (preliminary) under different treatments of the database. From 1991-1993 the fishery was a mixed fishery with American plaice. There was no directed fishery from 1994-1997.