# NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)



Serial No. N5148 NAFO SCR Doc. 05/62

#### SCIENTIFIC COUNCIL MEETING – JUNE 2005

The Canadian Fishery for Greenland Halibut in SA 2 + Divisions 3KLMNO, with Emphasis on 2004

by

W. B. Brodie and D. Power

Science Branch, Department of Fisheries and Oceans P. O. Box 5667, St. John's, Newfoundland, Canada AlC 5Xl

#### Abstract

The Canadian catch of Greenland halibut in 2004 in NAFO Subarea 2 and Divisions 3KLMNO was reported to be about 4 900 tons, a decrease of 2 100 tons from 2003. There was a decrease in otter trawl catches, primarily in Div. 2H, from the high level in 2003. Catches in the gillnet sector were similar in 2003 and 2004, although there was more deepwater catch in 2004. As in previous years, much of the catch in 2004 came from Div. 3K, and almost 75% of the catch was taken in June to August. The catch at age in 2004 was dominated by the 1997-98 year-classes, which accounted for 60% of the catch numbers and 47% of the catch weight in the Canadian fishery. Mean weights at age in 2004 were similar to previous years. After a gradual increase from 1992 to 2001, CPUE from Canadian otter trawlers has declined since then.

## Review of the Canadian fishery prior to 2004

The Canadian fishery for Greenland halibut in Subareas 2 and 3 began in the early 1960s, using gillnets in the deepwater bays of eastern Newfoundland, particularly Trinity Bay. As catches declined here, the effort moved progressively northward in the other bays along the east and northeast coast of Newfoundland. In later years, vessels moved further offshore to the deep channels, such as the area in the central part of Div. 3K known as Funk Island Deep, and eventually to the continental slope. Canadian catches increased from fairly low levels in the early 1960s to almost 32 000 tons in 1980 then declined steadily to between 2900 and 6300 tons in each year from 1993-99 (Table 1). This declining trend was mainly a result of low catch rates and reduced effort, as fishers pursued other species such as snow crab which were more profitable. However, in 2000, the Canadian catch in NAFO Subarea 2 and Div. 3KLMNO increased to about 10 600 tons, more than two and a half times the catches in 1998 and 1999. Reasons for this increased catch and effort include a switch of some effort by fishers in Div. 3KL from snow crab to G.halibut, combined with improved catch rates for Greenland halibut in most of the traditional fishing areas (Brodie and Power, 2000). However, catches declined by more than 2 000 tons from 2000 to 2001, then declined by a similar amount to about 6 300 tons in 2002. Catches in 2003 were just under 7 000 tons.

Canadian catches have been taken mainly by gillnet (Table 1), and most of these gillnet catches are from Div. 3K. This fishery has been conducted mainly by small vessels (<20 m) fishing in the deepwater channels near the Newfoundland and Labrador coast as well as in the deepwater bays, using an average mesh size of about 150 mm. However, Canadian gillnet catches taken during recent years also include those from a substantial fishery along the deep edge of the continental slope. In an attempt to reduce the catch of young Greenland halibut in this deepwater fishery, gillnet mesh size for Greenland halibut in the Canadian zone in depths >731 m (400 fm) is regulated to be no less than 191 mm, except in Div. 2J. Other restrictions on numbers of nets also exist, as indicated in the table below, which shows the current regulations in the Canadian gillnet fishery for Greenland halibut (J. Perry, DFO - pers. Comm.).

| Area      | Depth            | Number of Nets | Min. Mesh Size |
|-----------|------------------|----------------|----------------|
| 2GH + 3KL | 293 - 549 meters | 125            | 152 mm         |
| 2GH + 3KL | 549 - 732 meters | 200            | 152 mm         |
| 2GH + 3KL | > 732 meters     | 500            | 191 mm         |
| 2J        | > 732 meters     | 500            | 152 mm         |
| 3NO       | > 732 meters     | 500            | 191 mm         |

Gillnet catches during the 1990s ranged from 2 400 to 6 700 tons, averaging about 4 200 tons. Catches in 2000 from this sector then increased to 9 300 tons, similar to the levels seen in the late 1980s, but since then have declined steadily to 2 700 tons in 2003, which was the lowest level since 1994. Since early 2002, an area in the Funk Island Deep region of Div. 3K (see Fig. 4) was closed to gillnetting in order to reduce by-catch of snow crab, and was partly responsible for the decline in gillnet catch.

Canadian otter trawl catches peaked at about 8 000 tons in 1982, but from 1993 to 1999, catches by this fleet were less than 1 050 tons annually. Otter trawl catches increased sharply from less than 100 tons in 1998 and 1999, to around 1 800 tons in 2001-02, then doubled to just over 3 700 tons in 2003, which is the highest level since 1985 (Table 1). Much of the otter trawl catch in the recent period occurred in the slope area around the boundary between Div. 3K and 3L, although the increase in 2003 was due to an increase in effort in Div. 2H (Brodie and Power, 2004). This fishery is conducted mainly by large vessels (>30 m in length), and minimum codend mesh size has been regulated to be 145 mm for several years.

Catches from Subarea 2 were very low prior to the mid-1970s, then increased to a peak around 9 000 tons in 1982 (Table 2). From 1991 to 2001, catches from Subarea 2 have been in the range of 1 000 to 2 500 tons per year, and were stable around 1 300 tons during 1999-2001. The catch in SA 2 increased to almost 3 000 tons in 2003, due to higher catches in Div. 2GH. Most of the catch from Subarea 2 has come from Div. 2J, although catches in 1993-96 and 2003 were higher in Div. 2GH combined compared to Div. 2J. The catch in Div. 2GH declined from values around 1 400 tons in 1994-95 to less than 325 tons per year from 1999 to 2001, before increasing to a level near 2 200 tons in 2003, which is the highest catch from Div. 2GH since 1983. In most years, Div. 3K has produced the largest Canadian catches, peaking around 18 000 tons in 1979-80. Peak catches of around 13 000 tons in Div 3L occurred in 1966-67 and 1980. Catches in Div. 3M and 3N have been negligible, and catches in Div. 3O increased from similar low levels to a few hundred tons per year from 1993-2001, peaking at 567 tons in 2000.

#### The Canadian fishery in 2004

The total reported catch in the Canadian fishery for this stock of G. halibut in 2004 was just under 4 900 tons, which was the lowest since 1999, and represented a decrease of about 2 000 tons from 2003. Most of this decline occurred in the otter trawl fleet, mainly in Div. 2H, and the catch by this gear in 2004 was similar to the 2002 level (Table 3). Declines in quotas in 2004, under the first year of the NAFO FC rebuilding plan for this stock, were a major factor in the decline in otter trawl catches. Catches by gillnet in 2004 were similar to 2003, although the proportion caught in shallow water in 2004 was much lower (Tables 3b and 3c).

Breakdowns of the catch by gear, Division, depth range and month are shown in Tables 3 and 4. As in most years (although unlike 2003) gillnet was the dominant gear in 2004. In 2004 the gillnet catches in the shallow zone were lower than in the deep zone, contrasting to 2001 and 2003. These gillnet catches are referred to in Tables 3 and 4 as GN<400 and GN>400, with the '400' referring to depth in fathoms (731 m). Longline catches, which had not exceeded 130 tons per year since the early 1970s, increased to 650 tons in 2002, mostly in Div. 2GH, but dropped to just over 400 tons in 2004. Catches in Div. 3K dropped to 1 800 tons in 2004, about 1 000 tons less than in 2002-03. Catches in Div. 3L in 2004 were similar to levels in 1996-99.

Figures 1-3 show the location of most of the Canadian catch of Greenland halibut in 2001 and 2003-04. These data were aggregated by 10-minute squares from logbook records. In 2003, the plotted data account for almost 92% of the total Canadian catch, however in 2004, only about 60% of the catch data had positional information associated with it at this time. Most of the missing positional data are from otter trawl in Div. 2H, although a substantial portion of gillnet catches is also not available. Assuming the plotted data are representative, the spatial distributions of the 2003 and 2004 fisheries were quite similar (Fig. 2 and 3), with the major difference being the switch in the proportion of gillnet catch between shallow and deep water, as noted above. A major difference from 2002 onward was the reduction in catch from the central Div. 3K (Funk Island Deep) area, due to the area closed to gillnetting (as noted in previous sections, and shown in Fig. 4). Figure 4 also shows the location of the 2003 catch by the 4 major gear types (2 gillnet categories, otter trawl, and longline). Most of the otter trawl fishery in 2004 was located in 2 relatively small areas: one around the slope edge at the border between Div. 3K and 3L, similar to the fishery in 2000-2002; and the second on the slope edge in the central part of Div. 2H, as in 2003. The spatial distribution of the deepwater gillnet fishery in 2004 was similar to recent years. With the closure of the Funk Island Deep area, the shallow water gillnet catches were more concentrated towards the slope area in Div. 3K in 2002-04 compared to 2001 and earlier (Brodie and Power, 2002, 2003, 2004). In 2004, about 74% of the catch occurred in the summer, June to August, similar to recent years. Temporal patterns for gillnet and otter trawl fisheries in 2004 were similar to those seen in 2002 and 2003. Figures 5-6 show the temporal and spatial patterns for the deepwater gillnet and otter trawl fisheries in 2004. The major fishing areas did not change by season.

As in previous years, by-catches in the gillnet fishery include cod and snow crab, particularly in the GN<400 sector, while American plaice and witch flounder were included in by-catches in the otter trawl fishery. By-catches of Greenland halibut in the Canadian shrimp fishery have been described in separate papers (e.g. Orr *et al.*, 2002).

#### Catch at age

Details on the catch at age for previous years can be found in Bowering and Brodie (2000), and Brodie and Power (2001, 2002, 2003, 2004). Ages 6-8 dominated the Canadian catch in most years, both in the otter trawl and shallow water gillnet fisheries. The deep water gillnet fishery was comprised mainly of larger, older individuals.

Sampling data collected in 2004 by observers at sea and by port samplers, were available from Div. 2HJ, 3KLO. The following table shows the number of length measurements by Division and gear type, and the number of otoliths (in italics).

|                | 2GI   | IJ  | 31    | X.   | 31   | L   | 30  |   |
|----------------|-------|-----|-------|------|------|-----|-----|---|
| Gill net < 400 | 235   |     | 2387  | 1350 | 4909 |     | -   |   |
| Gill net > 400 | 2652  | 56  | 7196  |      | 986  | 155 | 666 | - |
| Longline       | -     |     | -     |      | -    |     | -   |   |
| Otter trawl    | 13748 | 302 | 9310  | 1028 | 3583 | 233 | -   |   |
| Totals         | 16635 | 358 | 18893 | 2378 | 9478 | 388 | 666 | - |

The otolith samples from the fixed gear sectors have been combined. The relatively large number of measurements from the otter trawl catch is due to the requirement for these large vessels to have a high percentage of observer coverage. As in past years, the exact catch location of some port samples from the fishery operating on the boundary of Div. 3K and 3L was not known, and these samples have been assigned as Div. 3K. There were no samples collected from the longline catches in 2004, but in general, sampling of catches for length frequencies was improved in 2004 over 2003. This is reflected in the 49% increase in the total number of length measurements in 2004. Areas for improvement include otolith sampling in Subarea 2, and sampling of longline catches.

Age compositions are presented for both gillnet components (GN<400 and GN>400) as well as for otter trawl (Table 5). The longline catches were assigned the same age composition as the total combined gillnet gear catch

at age. The predominant age in the otter trawl, in all areas except Div. 2J, and GN <400 sectors was 7 (1997 year-class), while age 8 (1996 year-class) was most abundant in the catches of deepwater gillnets. Ages 7 and 8 were also dominant in fisheries in recent years. Overall, the catch at age in 2004 was dominated by the 1997 and 1998 year-classes, which accounted for 61% of the catch numbers and 47% of the catch weight. In 2003, age 7 accounted for 43% of the catch in numbers and 29% of the catch in weight. As was the case in 2000-2003, age 8 was second highest in the catch numbers, followed by age 6. Almost equal numbers of ages 6 and 8 were caught by otter trawlers in 2004, and there was no major differences in the age compositions of this gear in all areas (Table 5), although catches in Div. 2GH tended toward larger fish. Mean weights at age were calculated using the same length-weight relationship used for Greenland halibut catch at age in 1998-2003, which was the Divisions-combined, year = 1997 (from Gundersen and Brodie, 1999). Weights at age in 2004 were very similar to those from 2003 (Brodie and Power 2004), and the sum of products was about 6% lower than the catch weight.

### **CPUE**

Catch and effort data from the Canadian otter trawl fishery directed for Greenland halibut during the period 1975 to 1999 were obtained from ICNAF/NAFO Statistical Bulletins. These data were combined with provisional 2000-2002 NAFO STATLANT 21B data and 2003-2004 data from logbook (ZIFF) records. The catch/effort data were analysed with a multiplicative model (Gavaris, 1980) to derive a standardized catch rate index based on an hours-fished measure of effort. *Ln* (CPUE) was the dependent variable in the models. Independent variables (category types) were: (1) a combination country-gear-tonnage-class category type (CGT), (2) month, (3) NAFO Division and (4) Year. Consistent with previous catch rate standardizations (e.g. Power, 2004), individual observations with catch less than 10 tons or effort less than 10 hours were eliminated prior to analysis. Subsequently, within each dependent variable, categories with arbitrarily less than five observations were also eliminated, with the exception of the variable "year", which is the purpose of the standardization. Residual plots for all runs did not indicate model misspecification. The advantage of running the Gavaris model is that the derived index is retransformed into the original units of fishing effort and can be computed for any chosen combination of the main factors.

The model resulted in a significant regression (P<0.05) explaining 56% of the variation in catch rates (Table 6). Based on the regression coefficients, over the entire time series, Canadian catch rates were better in late summer, and highest in Div. 2H. The standardized catch rate index (Table 7, Fig. 7) shows much between-year variability. Initial CPUE increased rapidly, probably as a result of captains learning a relatively new fishery. Catch rates then showed period of stability from 1978 to 1984, during which time the highest catch rates were realized. CPUE declined by about two-thirds from 1984 to 1992 although there were some sporadic increases over this period. The 1992 value was the lowest in the series (excluding the first point in 1976). Between 1992 and 2001 catch rates increased gradually, doubling over this period. Catch rate declined sharply in 2002, with slight decreases in 2003 and 2004 and again in 2003. The 2004 value is the sixth lowest in the 29-year series, and was similar to the estimates in 1993-94. The percentage of otter trawl catch with reported hours fished effort utilized in the analysis, after the selection criteria were applied, ranged from 10% in 1976 to 99% in 2000-2002, and averaged 87% since 1995.

#### References

- BOWERING, W. R., and W. B. BRODIE. 2000. Calculation of catch-at-age for commercially caught Greenland halibut in NAFO Subarea 2 and Divisions 3KLMNO during 1975-99 with particular emphasis on construction of the catch-at-age matrix since 1989. NAFO SCR Doc. 00/24.
- BRODIE, W. B., and D. POWER. 2001. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2000. NAFO SCR Doc. 01/65, Ser. No. N4443, 13 p.
- BRODIE, W. B., and D. POWER. 2002. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2001. NAFO SCR Doc. 02/39, Ser. No. N4650, 12 p.
- BRODIE, W. B., and D. POWER. 2003. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2002. NAFO SCR Doc. 03/36, Ser. No. N4854, 14 p.
- BRODIE, W. B. and D. POWER. 2004. The Canadian fishery for Greenland halibut in SA2 + Div. 3KLMNO, with emphasis on 2003. NAFO SCR Doc. 04/33, Ser. No. N4983, 14p.
- GAVARIS, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.
- GUNDERSEN, A. C., and W. B.BRODIE. 1999. Length-weight relationships of Greenland halibut in NAFO Divisions 2GHJ and 3KLMNO, 1990-97. NAFO SCR Doc. 99/31, Ser. No. N4087.

ORR, D. C., P. VEITCH, and D. SULLIVAN. 2002. An update of information pertaining to northern shrimp (*Pandalus borealis* Kroyer) and groundfish in NAFO Divisions 3LNO. NAFO SCR Doc. 02/160, Ser. No. N4789, 55 p. POWER, D. 2004. Standardized Catch Rate Indices for Greenland Halibut in SA2+3KLMNO. NAFO SCR Doc. 04/37, Ser. No. N4988.

Table 1. Canadian catch of G.halibut, by gear type, from 1960-2004.

Table 2 Canadian catch of Ghalibut, by Division, from 1960-2004.

|              |               |                 |           |              |              | Canada         | _            |            |              |              | DIMSION      |              |     |         |            | Canada         |
|--------------|---------------|-----------------|-----------|--------------|--------------|----------------|--------------|------------|--------------|--------------|--------------|--------------|-----|---------|------------|----------------|
| YEAR         | GILNET        | LONGLINE        | MSC       | UNSP C       | TTRAVVL      | TOTAL          | YEAR         | 2G         | 2H           | 2J           | 3K           | 3L           | ЗМ  | 3N      | 30         | TOTAL          |
| 1960         |               |                 |           | 660          |              | 660            | 1960         |            |              |              | 610          | 50           |     |         |            | 660            |
| 1961         |               |                 |           | 741          |              | 741            | 1961         |            |              |              | 613          | 128          |     |         |            | 741            |
| 1962         | 1             |                 |           | 586          |              | 586            | 1962         |            |              |              | 479          | 107          |     |         |            | 586            |
| 1963         |               | 5               |           | 771          |              | 776            | 1963         |            |              |              | 592          | 184          |     |         |            | 776            |
| 1964         |               |                 |           | 1757         |              | 1757           | 1964         |            |              |              | 870          | 887          |     |         |            | 1757           |
| 1965         | 057           | 404             | 45        | 8082         | 400          | 8082           | 1965         |            |              |              | 2129         | 5953         |     | 47      |            | 8082           |
| 1966         | 257           | 194             | 15        | 15640        | 120          | 16226          | 1966         |            |              | 7            | 3691         | 12518        |     | 17      | _          | 16226          |
| 1967         | 93            | 144             | 95        | 15478        | 798          | 16608          | 1967         |            |              | 7            | 2892         | 13705        |     | 1       | 3          | 16608          |
| 1968<br>1969 | 9980          | 94<br>850       | 69        | 12766<br>412 | 493<br>245   | 13353<br>11556 | 1968<br>1969 |            |              | 53           | 3672<br>7140 | 9597<br>4413 |     | 31<br>1 | 2          | 13353<br>11556 |
| 1970         | 9818          | 371             | 119       | 318          | 240<br>85    | 10711          | 1970         |            |              |              | 5937         | 4769         |     | 5       | 4          | 10711          |
| 1971         | 8947          | 153             | 55        | 180          | 75           | 9410           | 1971         |            |              |              | 4160         | 5248         |     | 2       |            | 9410           |
| 1972         | 8775          | 34              | 22        | 50           | 75<br>71     | 8952           | 1972         |            |              |              | 4736         | 4216         |     | _       |            | 8952           |
| 1973         | 6546          | 35              | 70        | 102          | 95           | 6848           | 1973         |            |              | 5            | 3602         | 3233         |     | 1       | 7          | 6848           |
| 1974         |               | 49              | 16        | 8            | 184          | 5757           | 1974         |            |              | 19           | 2817         | 2909         |     | 9       | 3          | 5757           |
| 1975         | 7510          | 3               | 53        | 1            | 247          | 7814           | 1975         |            |              | 22           | 3245         | 4540         |     | 7       |            | 7814           |
| 1976         | 8500          | 6               | 41        |              | 767          | 9314           | 1976         | 62         | 168          | 153          | 4779         | 4144         | 1   | 7       |            | 9314           |
| 1977         | 15038         | 33              | 36        |              | 2866         | 17973          | 1977         |            | 72           | 419          | 10751        | 6725         | 1   | 2       | 3          | 17973          |
| 1978         | 20622         | 46              | 83        |              | 3951         | 24702          | 1978         |            | 14           | 1255         | 15875        | 7548         | 1   | 5       | 4          | 24702          |
| 1979         | 24550         | 116             | 116       |              | 5183         | 29965          | 1979         |            | 34           | 3163         | 18165        | 8578         | 2   | 17      | 6          | 29965          |
| 1980         | 27703         | 128             | 57        |              | 3946         | 31834          | 1980         |            | 217          | 1157         | 17658        | 12742        | 14  | 43      | 3          | 31834          |
| 1981         | 17927         | 55              | 43        |              | 6155         | 24180          | 1981         | 10         | 41           | 862          | 14379        | 8833         |     | 49      | 6          | 24180          |
| 1982         | 11038         | 69              | 59        |              | 8143         | 19309          | 1982         | 15         | 5155         | 3942         | 6031         | 4105         |     | 55      | 6          | 19309          |
| 1983         | 9911          | 58              | 73        |              | 7085         | 17127          | 1983         |            | 2578         | 2238         | 7679         | 4618         |     | 12      | 2          | 17127          |
| 1984<br>1985 | 11100<br>7422 | <i>2</i> 7<br>2 | 100<br>42 |              | 6070<br>4847 | 17297<br>12313 | 1984<br>1985 |            | 1913<br>1758 | 2796<br>3101 | 7496<br>4395 | 5078<br>3023 |     | 12      | 2<br>1     | 17297<br>12313 |
| 1986         | 6293          | 7               | 20        |              | 1896         | 8216           | 1986         |            | 82           | 2476         | 2886         | 2769         |     | 35<br>2 | 1          | 8216           |
| 1987         | 10849         | 22              | 115       |              | 2465         | 13451          | 1987         |            | 6            | 4143         | 4740         | 4561         |     | 1       | '          | 13451          |
| 1988         | 7715          | 70              | 53        |              | 629          | 8467           | 1988         | 45         | 27           | 1867         | 4591         | 1921         | 2   | 12      | 2          | 8467           |
| 1989         | 10956         | 16              | 35        |              | 988          | 11995          | 1989         | .0         | 190          | 2635         | 6342         | 2809         | 6   | 10      | 3          | 11995          |
| 1990         | 6732          | 18              | 15        |              | 2402         | 9167           | 1990         | 57         | 171          | 2798         | 4075         | 2020         | 38  | 4       | 4          | 9167           |
| 1991         | 3440          | 36              | 9         |              | 3254         | 6739           | 1991         |            | 50           | 3008         | 2215         | 1291         | 157 | 11      | 7          | 6739           |
| 1992         | 4470          | 30              | 1         |              | 2502         | 7003           | 1992         | 428        | 230          | 476          | 3882         | 1951         | 4   | 10      | 22         | 7003           |
| 1993         | 3863          | 4               | 5         |              | 1034         | 4906           | 1993         | 557        | 403          | 214          | 2398         | 880          |     | 19      | 435        | 4906           |
| 1994         | 2378          |                 |           |              | 575          | 2953           | 1994         | 1045       | 210          | 203          | 1032         | 258          |     | 1       | 204        | 2953           |
| 1995         | 2602          | 1               |           |              | 632          | 3235           | 1995         | 1006       | 453          | 709          | 754          | 197          |     |         | 116        | 3235           |
| 1996         |               | 1               |           | 1            | 1043         | 6179           | 1996         | 688        | 639          | 1058         | 2567         | 888          |     |         | 339        | 6179           |
| 1997         | 5202          | 61              |           |              | 1017         | 6280           | 1997         | 370        | 619          | 1513         | 2659         | 935          |     |         | 184        | 6280           |
| 1998         | 3963          | 108             | 4         |              | 46           | 4121           | 1998         | 358        | 418          | 1234         | 1374         | 633          |     | 1       | 103        | 4121           |
| 1999         | 3870          | 65              | _         | 4.4          | 81           | 4016           | 1999         | 65         | 103          | 1094         | 1940         | 683          | 4   |         | 131        | 4016           |
| 2000         | 9271          | 18              | 5<br>14   | 14           | 1285         | 10593          | 2000         | 45<br>83   | 81<br>251    | 1152         | 5845<br>2000 | 2901         | 1   | 1<br>9  | 567        | 10593          |
| 2001<br>2002 | 6395<br>3854  | 123<br>652      | 14        |              | 1833<br>1784 | 8365<br>6290   | 2001<br>2002 | 63<br>374  | 251<br>360   | 1030<br>1030 | 3999<br>2933 | 2666<br>1466 | 15  | 9       | 347<br>112 | 8365<br>6290   |
| 2003         |               | 596             |           |              | 3710         | 6290<br>6974   | 2002         | 258        | 360<br>1897  | 730          | 2873         | 964          | ı   |         | 252        | 6974           |
| 2004         |               | 403             |           |              | 1832         | 4869           | 2003         | 200<br>147 | 1050         | 891          | 1844         | 794          |     | 1       | 202<br>142 | 4869           |
| 204          | 2004          | 403             |           |              | 1032         | 4009           | 2004         | 14/        | iw           | 091          | 1044         | 194          |     | ı       | 142        | 4009           |

Table 3a. Summary of Canadian catches of G.halibut in 2002 by area and gear.

|       | GN <400 | GN >400 | Longline | Otter trawl | Can (N) |
|-------|---------|---------|----------|-------------|---------|
|       |         |         |          |             |         |
| 2GH   | 154     | 7       | 573      |             | 734     |
| 2J    | 389     | 597     | 9        | 35          | 1030    |
| 3K    | 1304    | 830     | 28       | 771         | 2933    |
| 3L    | 56      | 424     | 8        | 978         | 1466    |
| 3МО   | 93      |         | 34       |             | 127     |
| Total | 1996    | 1858    | 652      | 1784        | 6290    |

Table 3b. Summary of Canadian catches of G.halibut in 2003 by area and gear.

|       | GN <400 | GN >400 | Longline | Otter trawl | Total Can |
|-------|---------|---------|----------|-------------|-----------|
|       |         |         |          |             |           |
| 2G    |         |         | 253      | 5           | 258       |
| 2H    |         | 52      | 160      | 1685        | 1897      |
| 2J    | 263     | 271     |          | 196         | 730       |
| 3K    | 1462    | 539     | 2        | 870         | 2873      |
| 3L    | 5       |         | 5        | 954         | 964       |
| 30    |         | 76      | 176      |             | 252       |
| Total | 1730    | 938     | 596      | 3710        | 6974      |

Table 3c. Summary of Canadian catches of G.halibut in 2004 by area and gear.

|       | GN <400 | GN >400 | Longline | Otter trawl | Total Can |
|-------|---------|---------|----------|-------------|-----------|
|       |         |         |          |             |           |
| 2G    |         |         | 144      | 3           | 147       |
| 2H    | 52      |         | 131      | 867         | 1050      |
| 2J    | 262     | 533     |          | 96          | 891       |
| 3K    | 173     | 1231    | 38       | 402         | 1844      |
| 3L    | 208     | 116     | 6        | 464         | 794       |
| 3N    |         |         | 1        |             | 1         |
| 30    |         | 59      | 83       |             | 142       |
| Total | 695     | 1939    | 403      | 1832        | 4869      |

Table 4. Breakdown of Canadian catches of G.halibut in SA 2 + Div 3KLMNO in 2004 by area, gear, and month.

|      |             | Jan | Feb | Mar | Apr | May | Jun | Jul  | Aug  | Sep | Oct | Nov | Dec | Total |
|------|-------------|-----|-----|-----|-----|-----|-----|------|------|-----|-----|-----|-----|-------|
|      | GN<400 fm   |     |     |     |     |     |     |      | 41   | 11  |     |     |     | 52    |
| 2GH  | Otter trawl |     |     |     |     |     | 106 | 332  | 385  | 11  | 47  |     |     | 870   |
| 20   | Longline    |     |     |     |     | 37  | 24  | 54   | 54   | 59  | 7   |     | 40  | 275   |
|      | Total       |     |     |     |     | 37  | 130 | 386  | 480  | 70  | 54  |     | 40  | 1197  |
|      | i otta      |     |     |     |     | O,  | 100 | 000  | 100  |     | 01  |     |     | 1101  |
|      | GN<400 fm   |     |     |     |     | 10  | 43  | 107  | 13   |     |     |     | 89  | 262   |
| 2J   | GN⊳400 fm   |     |     |     |     | 19  | 244 | 245  | 25   |     |     |     |     | 533   |
|      | Otter Trawl |     |     |     | 63  | 28  |     |      | 2    |     | 2   |     | 1   | 96    |
|      | Total       |     |     |     | 63  | 57  | 287 | 352  | 40   |     | 2   |     | 90  | 891   |
|      |             |     |     |     |     |     |     |      |      |     |     |     |     |       |
|      | GN<400 fm   |     |     |     |     |     | 11  | 93   | 61   | 8   |     |     |     | 173   |
| 3K   | GN⊳400 fm   |     |     |     |     | 2   | 284 | 492  | 399  | 54  |     |     |     | 1231  |
|      | Otter Trawl |     |     |     | 80  | 83  | 54  | 68   | 24   | 4   | 5   |     | 84  | 402   |
|      | Longline    |     |     |     |     |     |     |      |      |     | 38  |     |     | 38    |
|      | Total       |     |     |     | 80  | 85  | 349 | 653  | 484  | 66  | 43  |     | 84  | 1844  |
|      |             |     |     |     |     |     |     |      |      |     |     |     |     |       |
|      | GN<400 fm   |     |     |     |     |     |     | 2    | 34   | 129 | 37  | 6   |     | 208   |
|      | GN⊳400 fm   |     |     |     |     | 16  |     |      | 66   | 34  |     |     |     | 116   |
| 3L   | Otter Trawl |     |     |     | 30  | 99  | 90  | 114  | 120  | 7   | 2   |     | 2   | 464   |
|      | Longline    |     |     |     |     | 1   |     |      | 4    |     |     | 1   |     | 6     |
|      | Total       |     |     |     | 30  | 116 | 90  | 116  | 224  | 170 | 39  | 7   | 2   | 794   |
|      |             |     |     |     |     |     |     |      |      |     |     |     |     |       |
| 2110 | Gillnet     | 1   | _   | 18  | 36  |     |     | 4    |      |     |     |     |     | 59    |
| 3NO  | Longline    | 4   | 4   | 16  | 37  | 27  |     | 4    |      |     |     |     |     | 84    |
|      | Total       | 1   | 4   | 34  | 73  | 27  |     | 4    |      |     |     |     |     | 143   |
|      | TOTAL       | 1   | 4   | 34  | 246 | 222 | 956 | 1511 | 1220 | 206 | 120 | 7   | 240 | 4869  |
|      | IOIAL       | 1   | 4   | 34  | 246 | 322 | 856 | 1511 | 1228 | 306 | 138 | /   | 216 | 4809  |

Table 5. Catch at age for the Canadian catch of G.halibut in SA2 + Div. 3kLMNO in 2004. Catch at age in thousands of fish. See text for definition of GN gear types.

|     | Gear  |      |      |      |                |        |        |              |       |         | Mean     |          |           |
|-----|-------|------|------|------|----------------|--------|--------|--------------|-------|---------|----------|----------|-----------|
| Age | OT2GH | OT2J | OT3K | OT3L | Total Ot trawl | GN<400 | GN⊳400 | Tot Fix Gear | Total | Pct     | Len (cm) | Wgt (kg) | S.O.P(t)  |
| 3   |       |      |      | *    | *              |        |        |              | 0.01  | 0.0003% | 28.5     | 0.178    | 0.0       |
| 4   | 1     | 1    | 1    | 5    | 7              |        |        |              | 7     | 0.2%    | 32.9     | 0.285    | 2.0       |
| 5   | 7     | 8    | 23   | 40   | 79             | 1      | 1      | 2            | 81    | 2.4%    | 36.8     | 0.404    | 32.7      |
| 6   | 67    | 53   | 94   | 118  | 331            | 22     | 9      | 36           | 368   | 10.9%   | 41.0     | 0.570    | 209.8     |
| 7   | 254   | 45   | 185  | 172  | 656            | 225    | 227    | 521          | 1177  | 34.9%   | 47.5     | 0.904    | 1064.0    |
| 8   | 158   | 9    | 85   | 94   | 345            | 113    | 345    | 528          | 873   | 25.9%   | 52.7     | 1.248    | 1089.5    |
| 9   | 85    | 3    | 28   | 43   | 159            | 32     | 120    | 176          | 335   | 9.9%    | 57.8     | 1.669    | 559.1     |
| 10  | 60    | 1    | 6    | 9    | 76             | 25     | 82     | 123          | 200   | 5.9%    | 63.4     | 2.234    | 446.8     |
| 11  | 20    | *    | 3    | 6    | 29             | 23     | 76     | 113          | 142   | 4.2%    | 68.2     | 2.819    | 400.3     |
| 12  | 11    | *    | 1    | 4    | 16             | 16     | 58     | 85           | 102   | 3.0%    | 73.8     | 3.621    | 369.3     |
| 13  | 5     | *    | *    | 1    | 6              | 8      | 30     | 43           | 50    | 1.5%    | 78.6     | 4.416    | 220.8     |
| 14  | 2     | *    | *    |      | 2              | 2      | 13     | 18           | 20    | 0.6%    | 82.5     | 5.135    | 102.7     |
| 15  | 1     | *    | *    |      | 1              | 1      | 7      | 9            | 10    | 0.3%    | 87.7     | 6.226    | 62.3      |
| 16  | *     | *    | *    |      | *              | 1      | 3      | 4            | 4     | 0.1%    | 91.5     | 7.133    | 28.5      |
| 17  |       |      |      |      |                | *      | 1      | 1_           | 1     | 0.03%_  | 93.2     | 7.521    | 7.5       |
|     |       |      |      |      |                |        |        |              |       |         |          |          | 4595      |
|     |       |      |      |      |                |        |        |              |       |         |          | C        | atch=4869 |

<sup>\*</sup> indicates catch of less than 500 fish

ANOVA results and regression coefficients from a multiplicative model utilized to derive a standardized CPUE index for Greenland halibut in NAFO Div. 2HJ3KL. Analysis is based on HOURS FISHED from the Canadian otter trawl fleet (2004 based on preliminary data).

ERR 0. 325 0. 320 0. 320 0. 331 0. 370 0. 423 0. 342 0. 425 0. 429 0. 336 0. 331 0. 311

| R<br>R SQUAR             | <br>ED                                                                                                                                                                        | . 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 749                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         | CATEGORY CODE # COEF  4 90 32 0.396 0 91 33 0.212 0 92 34 0.047 0 93 35 0.184 0 94 36 0.198 0                                                                                                                                |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF<br>                   | SQUAR                                                                                                                                                                         | ES<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MEAN<br>SQUARE                                                                                                                                                                                                | F-VALUE                                                                                                                                                                                                                                                                 | 95 37 0.305 0<br>96 38 0.199 0<br>97 39 0.587 0                                                                                                                                                                              |
| 46<br>4<br>11<br>3<br>28 | 5. 22<br>1. 29<br>3. 90<br>2. 03                                                                                                                                              | E1<br>E0<br>E0<br>E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. 13E0<br>3. 23E-1<br>3. 55E-1<br>6. 78E-1<br>9. 07E-1                                                                                                                                                       | 6. 648<br>1. 893<br>2. 079<br>3. 975<br>5. 313                                                                                                                                                                                                                          | 98 40 0.409 0<br>99 41 0.351 0<br>100 42 0.511 0<br>101 43 0.737 0<br>102 44 0.304 0<br>103 45 0.224 0<br>104 46 0.194 0                                                                                                     |
| 240<br>287               |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. 71E-1                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |
| CODE 3125                | VAR<br>#<br><br>I NT<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>27<br>28 | REG.<br>COEF<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STD. ERR 0. 315  0. 149 0. 137 0. 174 0. 101 0. 156 0. 137 0. 125 0. 124 0. 112 0. 100 0. 093 0. 129 0. 142 0. 159 0. 093 0. 199 0. 142 0. 159 0. 341 0. 385 0. 327 0. 330 0. 334 0. 320 0. 327 0. 326 0. 346 | 0BS<br><br>287<br>10<br>13<br>7<br>25<br>11<br>12<br>18<br>26<br>24<br>32<br>39<br>44<br>17<br>14<br>10<br>70<br>120<br>57<br>5<br>8<br>3<br>12<br>12<br>10<br>18<br>12<br>17<br>18<br>18<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | LEGEND FOR ANOVA RESULTS:  CGT CODES: All are Stern Trawlers  3123 = Can(NFLD) TC 3    3125 = Can(NFLD) TC 5    3126 = " TC 6    3127 = " TC 7    27125 = Can(M) TC 5    DIVISION CODES:  22 = 2H, 23 = 2J, 31 = 3K, 32 = 3L |
|                          | S                                                                                                                                                                             | SQUARED  SQUARED  F VARI ANCE  F VARI ANCE  1 2.68  46 5.22  4 1.29  11 3.90  3 2.03  28 2.54  240 4.10  287 3.61  EGRESSI ON COE  VAR  CODE  70  3125 INT  9  22  76  3123 1  3126 2  3127 3  27125 4  1 5  2 6  3 7  4 8  5 9  6 10  7 11  8 12  1 5  2 6  3 7  4 8  5 9  6 10  7 11  8 12  1 5  2 10  1 31  1 14  1 2 15  2 31  1 14  1 2 15  2 31  1 17  3 2 18  7 7  9 9  2 1  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12  8 12 | SUMS OF DF SQUARES                                                                                                                                                                                            | SUMS OF SQUARES SQUARES  SUMS OF SQUARES SQUARE  1 2.68E2 2.68E2  46 5.22E1 1.13E0 4 1.29E0 3.23E-1 11 3.90E0 3.55E-1 3 2.03E0 6.78E-1 28 2.54E1 9.07E-1  240 4.10E1 1.71E-1 287 3.61E2  EGRESSI ON COEFFI CI ENTS VAR REG. STD. CODE # COEF ERR.                       | SUMS OF SQUARE F-VALUE  SUMS OF SQUARE F-VALUE                                                                                                                                                                               |

Table 7. Standardized CPUE for Greenland halibut in NAFO 2HJ3KL based on a multiplicative model based utilizing HOURS FISHED as a measure of effort. Results are from the CANADIAN OTTERTRAWL fleet (2004 based on preliminary data).

# PREDICTED CATCH RATE

|                                                                                                                                                                                                              | LN TR                                                                                                                                                                                                                                                                                                                            | ANSFORM                                                                                                                                                                                                                                                              | RETRANSFORMED                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  | FLEET                                                                                                                                                                  |                                                                                                                                                                                                           | % OF CATCH IN                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| YEAR                                                                                                                                                                                                         | MEAN                                                                                                                                                                                                                                                                                                                             | S. E.                                                                                                                                                                                                                                                                | MEAN                                                                                                                                                                                                                               | S. E.                                                                                                                                                                                                                                                            | CATCH                                                                                                                                                                  | EFFORT                                                                                                                                                                                                    | THIS ANALYSIS                                                                                                                                                                             |
|                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                           |
| 1976<br>1977<br>1978<br>1979<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1999<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1997<br>1998<br>1999<br>2000<br>2001 | -1. 1385<br>-0. 8257<br>-0. 2181<br>-0. 2047<br>-0. 0605<br>-0. 2059<br>-0. 2003<br>-0. 2111<br>-0. 0798<br>-0. 5665<br>-0. 7124<br>-0. 3466<br>-1. 0873<br>-0. 6093<br>-0. 7426<br>-0. 9267<br>-1. 0918<br>-0. 9540<br>-0. 9406<br>-0. 8337<br>-0. 9398<br>-0. 5511<br>-0. 7291<br>-0. 7291<br>-0. 6274<br>-0. 6274<br>-0. 4020 | 0. 0990<br>0. 0473<br>0. 0351<br>0. 0746<br>0. 0285<br>0. 0268<br>0. 0236<br>0. 0205<br>0. 0207<br>0. 0320<br>0. 0442<br>0. 0563<br>0. 0395<br>0. 0230<br>0. 0242<br>0. 0558<br>0. 0309<br>0. 0328<br>0. 0328<br>0. 0328<br>0. 0328<br>0. 0328<br>0. 0320<br>0. 0243 | 0. 332<br>0. 466<br>0. 861<br>0. 855<br>1. 011<br>0. 875<br>0. 881<br>0. 996<br>0. 612<br>0. 526<br>0. 753<br>0. 357<br>0. 581<br>0. 512<br>0. 426<br>0. 362<br>0. 413<br>0. 414<br>0. 451<br>0. 419<br>0. 610<br>0. 572<br>0. 720 | 0. 102<br>0. 100<br>0. 160<br>0. 230<br>0. 170<br>0. 142<br>0. 135<br>0. 119<br>0. 142<br>0. 088<br>0. 094<br>0. 157<br>0. 084<br>0. 115<br>0. 077<br>0. 066<br>0. 052<br>0. 072<br>0. 072<br>0. 075<br>0. 117<br>0. 147<br>0. 147<br>0. 147<br>0. 102<br>0. 112 | 2866<br>3951<br>5183<br>3946<br>6155<br>8143<br>7085<br>6070<br>4847<br>1896<br>2465<br>629<br>988<br>2402<br>3254<br>2502<br>1034<br>575<br>632<br>1043<br>1017<br>46 | 2310<br>6152<br>4591<br>6061<br>3903<br>7035<br>9241<br>8106<br>6097<br>7922<br>3606<br>3272<br>1762<br>1761<br>4687<br>7638<br>6915<br>2503<br>1390<br>1402<br>2491<br>1650<br>92<br>172<br>2245<br>2546 | 30. 0<br>35. 4<br>42. 5<br>55. 8<br>73. 4<br>87. 4<br>90. 4<br>91. 2<br>73. 7<br>85. 6<br>38. 8<br>21. 2<br>76. 3<br>70. 0<br>50. 2<br>87. 7<br>96. 5<br>56. 2<br>81. 0<br>94. 7<br>63. 0 |
| 2002<br>2003<br>2004                                                                                                                                                                                         | -0. 8345<br>-0. 9145<br>-0. 9448                                                                                                                                                                                                                                                                                                 | 0. 0284<br>0. 0157<br>0. 0196                                                                                                                                                                                                                                        | 0. 466<br>0. 433<br>0. 419                                                                                                                                                                                                         | 0. 078<br>0. 054<br>0. 059                                                                                                                                                                                                                                       | 1784<br>3710                                                                                                                                                           | 3826<br>8566<br>4368                                                                                                                                                                                      | 98. 7<br>78. 9<br>90. 4                                                                                                                                                                   |

AVERAGE C.V. FOR THE RETRANSFORMED MEAN: 0.194

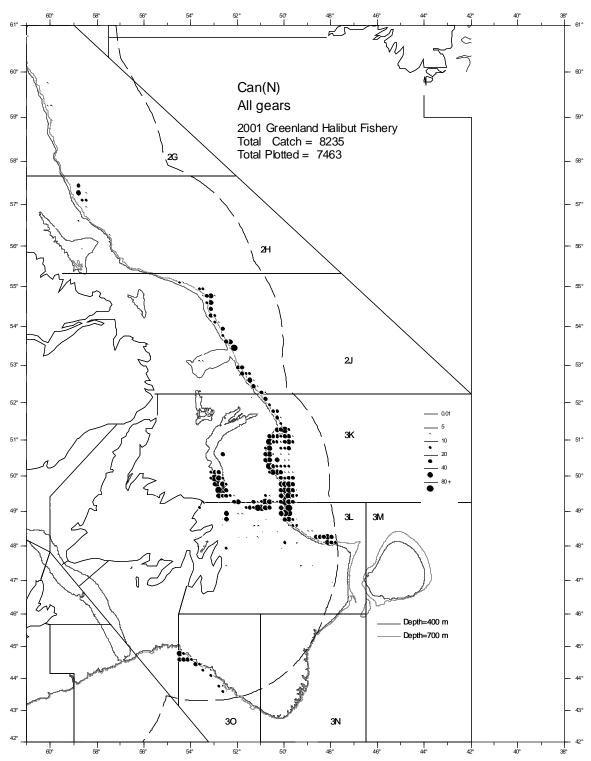



Fig. 1. Distribution of Can(N) Greenland halibut catch (tons) from the 2001 commercial fishery. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook.

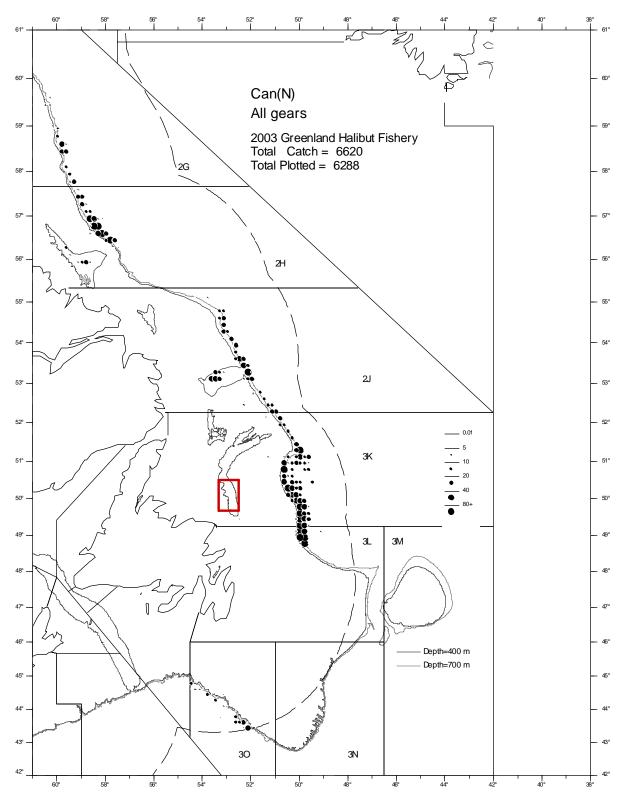



Fig. 2. Distribution of Can(N) Greenland halibut catch (tons) from the 2003 commercial fishery. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

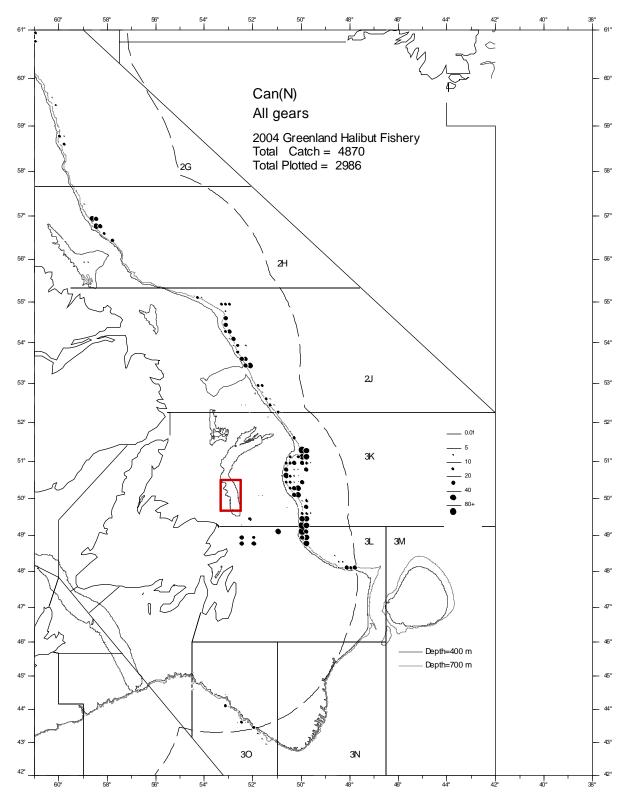



Fig. 3. Distribution of Can(N) Greenland halibut catch (tons) from the 2004 commercial fishery. Represented is catch from directed fisheries and by-catch from other fisheries aggregated by 10minute square for all gears from Div. 2G to Div. 3O where position was recorded on the logbook. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

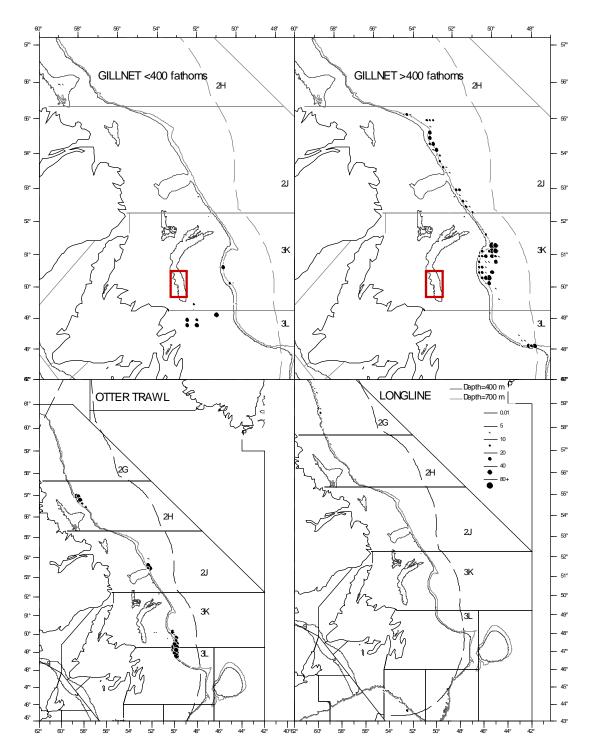



Fig. 4. Distribution of Can(N) Greenland halibut catch (tons) from the 2004 commercial fishery. Represented is LONGLINE, GILLNET (<400 fathoms and >400 fathoms) and OTTER TRAWL from both directed and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

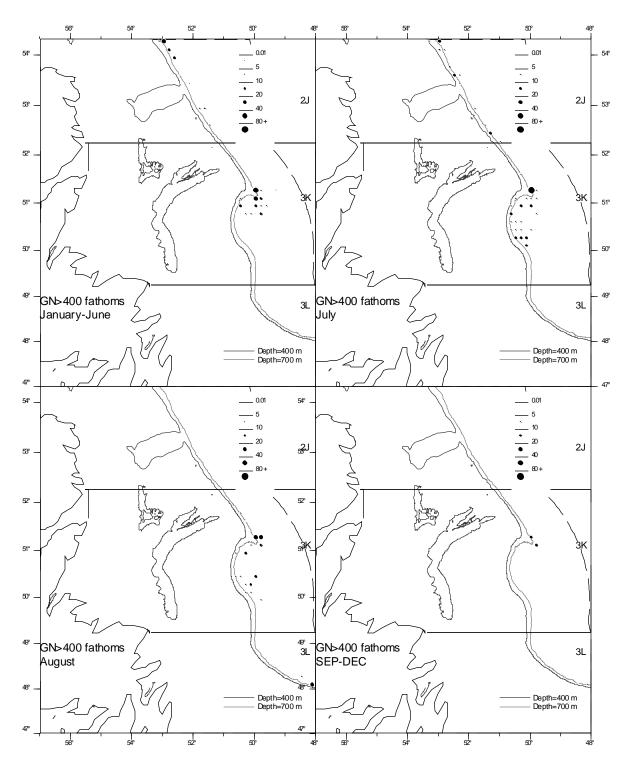



Fig. 5. Distribution of Can(N) Greenland halibut catch (tons) from the 2004 commercial fishery. Represented is GILLNET (>400 fathoms) for various months from both directed fisheries and by-catch fisheries. Data are aggregated by 10-minute square where position information exists. Note the closed area for GILLNETs in Div. 3K due to crab bycatch.

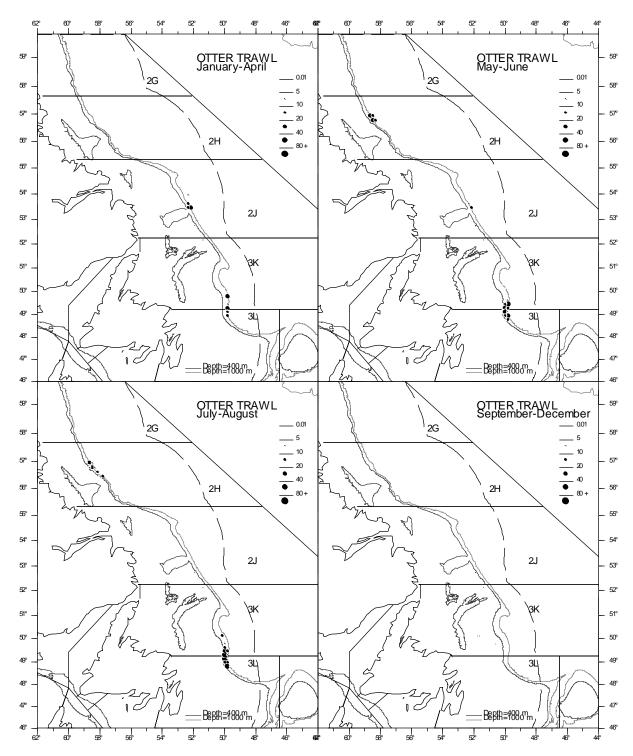



Fig. 6. Distribution of Can(N) Greenland halibut catch (tons) from the 2004 commercial fishery. Represented is OTTER TRAWL catch for various months from directed fisheries and by-catch from other fisheries. The data are aggregated by 10-minute square for Div. 2J3KL where position was recorded on the logbook.

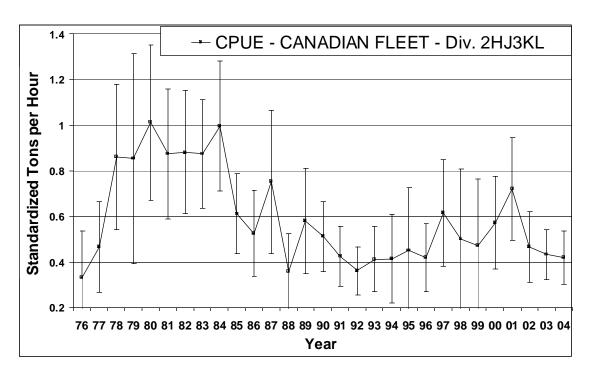



Fig. 7. Standardized Mean CPUE  $\pm$  2 standard errors for Greenland Halibut in Div. 2HJ3KL utilizing effort in HOURS fished from CANADIAN OTTERTRAWL FLEET.